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Abstract

We consider a continuous time Markov chain on a countable state space. We prove a joint large deviation
principle (LDP) of the empirical measure and current in the limit of large time interval. The proof is based
on results on the joint large deviations of the empirical measure and flow obtained in Bertini et al. (in press).
By improving such results we also show, under additional assumptions, that the LDP holds with the strong
L1 topology on the space of currents. We deduce a general version of the Gallavotti–Cohen (GC) symmetry
for the current field and show that it implies the so-called fluctuation theorem for the GC functional. We also
analyze the large deviation properties of generalized empirical currents associated to a fundamental basis
in the cycle space, which, as we show, are given by the first class homological coefficients in the graph
underlying the Markov chain. Finally, we discuss in detail some examples.
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1. Introduction

We consider a continuous time Markov chain on a countable (finite or infinite) state space V
with transition rates r(·, ·). We assume that the chain is ergodic and positive recurrent, so that it
admits a unique invariant probability distribution π .

A natural observable is given by the empirical measure µT , which accounts for the fraction
of time spent on the various states up to time T . As T → ∞, µT converges to π . The large
deviation principle for the family {µT } is the classical Donsker–Varadhan theorem [13]. Other
natural observables are the empirical flow QT and empirical current JT , which respectively ac-
count for the total numbers of jumps and for the net flow between pairs of states per unit of time.
In particular, given two states y, z ∈ V , it holds JT (y, z) = QT (y, z)− QT (z, y). As T → ∞,
QT (y, z) and JT (y, z) respectively converge to π(y)r(y, z) and π(y)r(y, z)− π(z)r(z, y). The
large deviation principle for the family {(µT , QT )} is proven in [5].

The interest for these observables comes from several applications. We mention some of them,
mainly related to the concept of work, to the Gallavotti–Cohen functional and to the concept of
activity in kinetically constrained spin systems.

When the Markov chain models the stochastic dynamics of a physical particle in presence of
an external field and thermal noise, the work done by the field can be expressed in terms of the
empirical current. When modeling biochemical systems, the state describes both the mechani-
cal and the chemical configuration. One is then interested in the work done both by the applied
mechanical force and the chemical one, in which the latter is induced by differences in the chem-
ical potentials. In both cases the work is a linear function of the empirical current. Significant
examples are biochemical systems given by single molecules like molecular motors [27].

In out-of-equilibrium statistical mechanics a much studied observable is the Gallavotti–Cohen
functional WT . It is defined as follows [20]: e−T WT is the Radon–Nikodym derivative of the time-
reversed stationary process P∗

π w.r.t. the stationary process itself Pπ in the time window [0, T ].
It follows that WT accounts for the irreversibility of the stochastic dynamics and its expectation
w.r.t. Pπ is the relative entropy of Pπ w.r.t. P∗

π per unit of time. By a straightforward computation,
it turns out that WT is a linear function of the empirical current apart boundary terms. When
the state space is finite, the large deviation principle for {WT } has been derived in [20] by the
Gärtner–Ellis theorem. The so-called fluctuation theorem (or Gallavotti–Cohen symmetry) is then
the identity ι(u)− ι(−u) = −u satisfied by the corresponding rate function ι : R → R+.

For kinetically constrained spin systems, see [7] and references therein, the empirical flow is
a relevant observable and its large deviation properties exhibit peculiar and rich features. More
precisely, given a system of N spins, the N -normalized total number of jumps per unit time (also
called activity) has a nontrivial second order LDP in the limit T → ∞ and afterwards N → ∞.
We point out that the above activity is proportional to the total mass of the empirical flow.

Starting from the results in [5], in this paper we derive the large deviation principle for the
family {(µT , JT )} (Theorem 6.1). By contraction, we then deduce the large deviation principle
for the Gallavotti–Cohen functional and show the rate function ι satisfies the Gallavotti–Cohen
symmetry (Theorem 8.1). We remark that this derivation yields an explicit variational represen-
tation of ι, while the derivation via Gärtner–Ellis theorem gives a spectral characterization [20].
For infinite state spaces there are however some technical issues that are best exemplified in the
case of a single particle performing a random walk on Zd with confining potential U and external
field F . Since the result in [5] is proven by using the bounded weak* topology for the empirical
flow, the contraction can be performed only when the external field vanishes at infinity. On the
other hand, a natural condition is that F is bounded. To overcome the requirement of F vanishing
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at infinity, we prove the large deviation principle for {(µT , QT )} in the strong L1 topology for
the empirical flow (Theorem 5.2) under (needed) additional conditions in the general setting. As
further reinforcement of the results of [5] we also show that some technical assumption there can
be dropped (see Proposition 4.1).

We continue our investigation of Gallavotti–Cohen type symmetries. Consider the transition
graph G, with vertex set V , of the Markov chain. For biochemical models, as explained in Sec-
tion 9, the work of the mechanical/chemical forces can be expressed in terms of the homological
coefficients of the trajectory in a suitable basis of the first cellular homology class H1(G; R) of
G [26]. For finite state space, the analysis of the large deviations of the homological coefficients
and the related Gallavotti–Cohen symmetry has been deduced in [1,14] via Gärtner–Ellis theo-
rem. We extend this result to infinite state space emphasizing the relationship of the homological
coefficients with the empirical current (Theorem 9.4). To perform this extension in Section 9 we
present a self-contained overview on concepts from graph theory and cycle spaces with empha-
sis on the infinite case setting. We finally point out that the Gallavotti–Cohen symmetry both for
the Gallavotti–Cohen functional and the homological coefficients is a consequence of a general
symmetry of the rate functional for {(µT , JT )} (Theorem 7.1).

Finally, in Section 10 we discuss several examples in which some rate functionals can be
computed explicitly.

We conclude with further bibliographical remarks. In the context of finite state space, the joint
LDPs for {(µT , QT )} and {(µT , JT )} have been discussed in [16,21,23]. See also [3] for a per-
turbative expansion in the context of non-equilibrium statistical mechanics. For countable state
spaces, a weak form of joint LDP for {(µT , QT )} is derived in [10]. In [17] large deviation prop-
erties of periodic random walks on crystal lattices are analyzed and related to the first homology
group of the finite quotient graph. The joint LDP for {(µT , JT )} of a Brownian motion on a com-
pact Riemannian manifold is proved in [18,19]. See also the discussion in [22] for diffusions on
the torus Td and on Rd with a confining potential.

2. Basic setting

We consider a continuous time Markov chain ξt , t ∈ R+ on a countable (finite or infinite)
state space V . The Markov chain is defined in terms of the jump rates r(x, y), x ≠ y in V , from
which one derives the holding times and the jump chain [25].

The basic assumptions on the chain are the following:

(A1) for each x ∈ V , r(x) :=


y∈V r(x, y) is finite;
(A2) for each x ∈ V the Markov chain ξ x

t starting from x has no explosion a.s.;
(A3) the Markov chain is irreducible, i.e. for each x, y ∈ V and t > 0 the event {ξ x

t = y} has
strictly positive probability;

(A4) there exists a unique invariant probability measure, that is denoted by π .

By assumption (A1) the holding time at x ∈ V is a well defined exponential random variable of
parameter r(x). As in [25], by invariant probability measure π we mean a probability measure
on V such that

y∈V

π(x) r(x, y) =


y∈V

π(y) r(y, x) ∀x ∈ V (2.1)

where we understand r(x, x) = 0. We refer to Section 4 for a discussion on the above assump-
tions (A1), . . .,(A4) and their relation with Condition C(σ ) introduced in the next section. We
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only recall that π(x) > 0 for all x ∈ V and that the Markov chain starting with distribution π is
stationary (i.e. is left invariant by time-translations).

We consider V endowed with the discrete topology and the associated Borel σ -algebra given
by the collection of all the subsets of V . Given x ∈ V , the distribution of the Markov chain ξ x

t
starting from x , is a probability measure on the Skorohod space of càdlàg paths D(R+; V ) that
we denote by Px . The expectation with respect to Px is denoted by Ex . In the sequel we con-
sider D(R+; V ) equipped with the canonical filtration, the canonical coordinate in D(R+; V ) is
denoted by X t . The set of probability measures on V is denoted by P(V ) and it is considered
endowed with the topology of weak convergence and the associated Borel σ -algebra.

In view of Assumptions (A1)–(A4) the ergodic theorem holds: for any bounded function
f : V → R and for any x ∈ V

lim
T →+∞

1
T

 T

0
dt f (ξt ) = ⟨π, f ⟩ Px -a.s. (2.2)

where ⟨π, f ⟩ denotes the expectation of f with respect to π .

2.1. Empirical measure and empirical flow

Given T > 0 the empirical measure µT : D(R+; V ) → P(V ) is defined by

µT (X) =
1
T

 T

0
dt δX t ,

where δy denotes the point mass at y. By the ergodic theorem the sequence of probabilities
{Px ◦ µ−1

T }T>0 on P(V ) converges to δπ .
We denote by E the (countable) set of ordered edges in V with strictly positive jump rate, i.e.

E := {(y, z) ∈ V × V : r(y, z) > 0},

by L1(E) the collection of absolutely summable functions on E and by ∥ · ∥ the associated L1-
norm. The set of positive elements in L1(E) is denoted by L1

+(E). Note that, since V has the
discrete topology and is countable, any path in D(R+; V ) has a locally finite number of jumps.
In particular, for each T > 0 we can define the empirical flow as the map QT : D(R+; V ) →

L1
+(E) given by

QT (y, z) (X) :=
1
T


0≤t≤T

1 (X t− = y, X t = z) (y, z) ∈ E, (2.3)

where, in general, 1(A) denotes the characteristic function of A. Namely, T QT (y, z) gives the
number of jumps from y to z in the time interval [0, T ].

Elements of L1
+(E) will be denoted by Q and called flows. Given a flow Q we let its diver-

gence divQ : V → R be the pointwise difference between the outgoing flow and the ingoing
one, namely

divQ (y) =


z: (y,z)∈E

Q(y, z)−


z: (z,y)∈E

Q(z, y), y ∈ V . (2.4)

Observe that the divergence maps L1
+(E) to L1(V ). To each probability µ ∈ P(V ) such that

⟨µ, r⟩ < +∞ we associate the flow Qµ defined by

Qµ(y, z) := µ(y) r(y, z) (y, z) ∈ E . (2.5)
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Note that Qµ has vanishing divergence if and only if µ is invariant, i.e. µ = π .
By the ergodic theorem and a martingale argument (cf. [5]) one can show that for each x ∈ V

and (y, z) ∈ E the sequence of real random variables QT (y, z) converges as T → +∞ to
Qπ (y, z) in probability with respect to Px .

3. Joint large deviations for the empirical measure and flow

In this section we recall the main results of [5]. The space L1
+(E) is endowed with the

bounded weak* topology [24], which is defined as follows. Let C0(E) be the space of functions
f : E → R vanishing at infinity, endowed with the uniform norm. Then its dual space is given
by L1(E) endowed with the strong topology (i.e. the topology determined by the L1-norm). A
basis of the bounded weak* topology on L1(E) is then given by the sets

{q ∈ L1(E) : ⟨q − q̄, fn⟩ < 1 ∀n ≥ 1}

as q̄ varies among L1(E) and ( fn)n≥1 varies among the sequences in C0(E) converging to 0 in
uniform norm. In general, given q ∈ L1(E) and f ∈ C0(E), we set ⟨q, f ⟩ :=


e∈E q(e) f (e).

Finally, the bounded weak* topology on L1
+(E) is the inherited subspace topology on L1

+(E) ⊂

L1(E), when L1(E) itself is endowed with the above defined bounded weak* topology.
One can prove (cf. [24][Corollary 2.7.4]) that a subset W ⊂ L1(E) is open in the bounded

weak* topology if and only if for each ℓ > 0 the set {q ∈ W : ∥q∥1 ≤ ℓ} is open in the ball
{q ∈ L1(E) : ∥q∥1 ≤ ℓ} endowed with the weak* topology inherited from L1(E). We recall
that the weak* topology of L1(E) is the weakest topology such that the map L1(E) ∋ q →

⟨q, f ⟩ ∈ R is continuous for any map f ∈ C0(E). When E is finite, the bounded weak* topol-
ogy coincides with the strong topology. If E is infinite then the former is weaker than the latter
and cannot be metrized.

We can now recall the LDP proved in [5]. We start from the assumptions. To this aim, given
f : V → R such that


y∈V r(x, y) | f (y)| < +∞ for each x ∈ V , we denote by L f : V → R

the function defined by

L f (x) :=


y∈V

r(x, y)


f (y)− f (x)

, x ∈ V . (3.1)

Condition C(σ ). Given σ ∈ R+ we say that Condition C(σ ) holds if there exists a sequence of
functions un : V → (0,+∞) satisfying the following requirements:

(i) For each x ∈ V and n ∈ N it holds


y∈V r(x, y)un(y) < +∞.
(ii) The sequence un is uniformly bounded from below. Namely, there exists c > 0 such that

un(x) ≥ c for any x ∈ V and n ∈ N.
(iii) The sequence un is uniformly bounded from above on compacts. Namely, for each x ∈ V

there exists a constant Cx such that for any n ∈ N it holds un(x) ≤ Cx .
(iv) Set vn := −Lun/un . The sequence vn : V → R converges pointwise to some v : V → R.
(v) The function v has compact level sets. Namely, for each ℓ ∈ R the level set


x ∈ V : v(x) ≤

ℓ


is finite.
(vi) There exists a positive constant C such that v ≥ σ r − C .

Let Φ : R+ × R+ → [0,+∞] be the function defined by

Φ(q, p) :=


q log

q

p
− (q − p) if q, p ∈ (0,+∞)

p if q = 0, p ∈ [0,+∞)

+∞ if p = 0 and q ∈ (0,+∞).

(3.2)
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For p > 0, Φ(·, p) is a nonnegative strictly convex function and is zero only at q = p. Indeed,
since Φ(q, p) = sups∈R {qs − p(es

− 1)}, Φ is the rate function for the LDP of the sequence
NT /T as T → +∞, (Nt )t∈R+

being a Poisson process with parameter p.
Finally, we let I : P(V )× L1

+(E) → [0,+∞] be the functional defined by

I (µ, Q) :=




(y,z)∈E

Φ

Q(y, z), Qµ(y, z)


if divQ = 0, ⟨µ, r⟩ < +∞

+∞ otherwise.
(3.3)

Remark 3.1. As stated in [5, Remark 2.6] the above condition ⟨µ, r⟩ < +∞ can be removed,
since the series in (3.3) diverges if ⟨µ, r⟩ = +∞.

Theorem 3.2 ([5, Theorem 2.7]). Endow P(V ) with the weak topology and L1
+(E) with the

bounded weak* topology. Assume the Markov chain satisfies (A1)–(A4) and ConditionC(σ ) with
σ > 0. Then, as T → +∞, the sequence of probability measures {Px ◦ (µT , QT )

−1
} on P(V )×

L1
+(E) satisfies a LDP with good and convex rate function I . Namely, for each closed set

C ⊂ P(V )× L1
+(E), and each open set A ⊂ P(V )× L1

+(E), it holds for each x ∈ V

lim
T →+∞

1
T

log Px


(µT , QT ) ∈ C


≤ − inf

(µ,Q)∈C
I (µ, Q), (3.4)

lim
T →+∞

1
T

log Px


(µT , QT ) ∈ A


≥ − inf

(µ,Q)∈A
I (µ, Q). (3.5)

We point out that Condition C(σ ) with σ > 0 implies that ⟨π, r⟩ < +∞ (cf. [5, Lemma 3.9])
and that r(·) has compact level sets (cf. [5, Remark 2.3]). Moreover, Condition C(0) (i.e. C(σ )
with σ = 0) with (i) replaced by the fact that un belongs to the domain of the infinitesimal
generator of the Markov chain (ξt )t∈R+

, and with Lun defined as the infinitesimal generator
applied to un , is the condition under which the large deviation of the empirical measure is derived
in [13]–(IV). Finally, see [5, Section 2.3], it holds I (µ, Q) = 0 if and only if µ = π and
Q = Qπ and Theorem 3.2 implies that, for any x ∈ V , the empirical flow QT converges in
L1

+(E) (endowed with the bounded weak* topology) to Qπ in Px -probability.

Remark 3.3. As discussed in [5] Theorem 3.2 holds also replacing Condition C(σ ), σ > 0, with
a suitable hypercontractivity assumption (see Condition 2.4 there). Also the results we present in
the rest of the present article could be obtained under this alternative assumption.

4. Comments on the main assumptions

We first recall some basic facts from [25, Chapter 3]. Assuming (A1) and irreducibility (A3),
assumptions (A2) and (A4) together are equivalent to the fact that all states are positive recurrent.
In (A4) one could remove the assumption of uniqueness of the invariant probability measure,
since for an irreducible Markov chain there can be at most one. We observe that if V is finite
then (A1) and (A2) are automatically satisfied, while (A3) implies (A4).

Proposition 4.1. If the Markov chain satisfies assumptions (A1), (A2), (A3) and Condi-
tion C(σ ) for some σ ≥ 0, then (A4) is verified.
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Proof. The core of the proof will consist in showing that there exist s > 0 and a probability
measure π on V such that π P(s) = π , where P(s) is the V × V -matrix such that Py,z(s) =

Py(ξs = z).
Before proving this property, let us explain how to deduce that π is invariant in the algebraic

sense (2.1) (as already stressed, uniqueness in (A4) is a consequence of (A3)). Due to [25, The-
orem 3.5.5] we only need to prove that the Markov chain ξ is recurrent. To this aim, consider
the discrete time Markov chain ζn := ξns with associated stochastic matrix P(s). Note that the
irreducibility of ξ implies the irreducibility of ζ and that the condition π P(s) = π corresponds
to the fact that π is an invariant probability for ζ . Hence, due to [25, Theorem 1.7.7], each state
is positive recurrent for the Markov chain ζ and therefore is recurrent for the Markov chain ξ .

Next, we exhibit π ∈ P(V ) such that π P(s) = π for any s > 0. To this aim, we fix x ∈ V and,
given an integer n ≥ 1, we define πn ∈ P(V ) as πn(A) = Ex (µn(A)) for all A ⊂ V (µn denotes
the empirical measure at time n). We claim that, due to Condition C(σ ), the sequence {πn}n≥1 is
tight in P(V ). In the proof of Proposition 3.6 in [5] we have deduced (without using (A4)) that

for each ℓ ≥ 1 there exists a finite set Kℓ ⊂ V such that limn→∞ Px


µn(K c

ℓ ) >
1
ℓ


= 0. Since

πn(K
c
ℓ ) = Ex (µn(K

c
ℓ )) ≤

1
ℓ

Px


µn(K

c
ℓ ) ≤

1
ℓ


+ Px


µn(K

c
ℓ ) >

1
ℓ


≤

1
ℓ

+ Px


µn(K

c
ℓ ) >

1
ℓ


,

it is simple to obtain that the sequence {πn}n≥1 is tight in P(V ). By Prohorov theorem (cf.
[6, Theorem 5.1]) the sequence is relatively compact, and therefore there exists a subsequence
nk↗∞ and a probability measure π in P(V ) such that πnk converges weakly to π . Let us show
that for any s > 0 it holds π P(s) = π . To this aim we show that ⟨π, P(s) f ⟩ = ⟨π, f ⟩ for any
bounded function f : V → R. Since P(s) f : V → R is bounded and continuous, by the weak
convergence we can write

⟨π, P(s) f ⟩ = lim
k→∞

⟨πnk , P(s) f ⟩. (4.1)

On the other hand, given g : V → R bounded it holds

⟨πn, g⟩ = Ex


1
n

 n

0
g(Xu)du


=

1
n

 n

0
Ex (g(Xu)) du =

1
n

 n

0
[P(u)g] (x)du.

In particular, by using the above identity twice (both with g := P(s) f and with g := f ) and
using the semigroup property P(u)P(s) = P(u + s), we have

⟨πn, P(s) f ⟩ = ⟨πn, f ⟩ −
1
n

 s

0
[P(u) f ] (x)du +

1
n

 n+s

n
[P(u) f ] (x)du

= ⟨πn, f ⟩ + O
 s

n


. (4.2)

By setting n := nk in (4.2) and afterwards taking the limit k → +∞, from the weak convergence
of πnk to π we conclude that (4.1) equals ⟨π, f ⟩. �

5. Joint LDP for the empirical measure and flow in the strong L1
+
(E) topology

As stated in Theorem 2.7.2. in [24], the bounded weak* topology is weaker than the strong
topology in L1

+(E), i.e. the one coming from the L1-norm. This means that any bounded weakly*
open (closed) set is also strongly open (closed).
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Proposition 5.1. Under the same hypotheses of Theorem 3.2 a weak joint LDP for (µT , QT )

holds with the strong topology on L1
+(E). Namely, (3.4) and (3.5) are valid for any C compact

and any A open when L1
+(E) is endowed with the strong topology.

Proof. Since any strongly compact subset of L1
+(E) is bounded weak* compact and there-

fore bounded weak* closed (as the bounded weak* topology is Hausdorff), the upper bound
for strongly compact subsets is a direct consequence of (3.4). Moreover, one can verify that the
direct proof in [5, Section 5] of the lower bound (3.5) works also for strongly open sets. Note that
the hypothesis of locally finite graph stated in [5, Section 5] is not used for the lower bound. �

We now describe a criterion implying the (full) joint LDP for (µT , QT ) when L1
+(E) is en-

dowed with the strong topology. To this aim, given E ′
⊂ E , we define Q(E ′) =


(y,z)∈E ′ Q(y,

z). Moreover, for a fixed subset E ⊂ E , we define the E-dependent function H : V → R as

H(y) :=


z:(y,z)∈E r(y, z)
z:(y,z)∈E

r(y, z)
. (5.1)

Given a ∈ (0, 1) suppose that H(y) < a. Then, after arriving in y, the Markov chain has prob-
ability H(y) < a to jump from y along an edge in E . We then call a-unlikely all edges (y, z)
with H(y) < a and (y, z) ∈ E , while we call a-likely all edges (y, z) with H(y) < a and
(y, z) ∈ E\E .

Theorem 5.2. Assume Assumptions (A1), (A2), (A3) and Condition C(σ ) with σ > 0. Suppose
there exists a subset E ⊂ E such that

(i) for each y ∈ V there exists z ∈ V with (y, z) ∈ E;
(ii) the function H : V → (0,+∞) defined in (5.1) vanishes at infinity;

(iii) fixed any x ∈ V , there exist constants a0, γ > 0 such that for any a < a0 one can find a
subset W = W (x, a) in E satisfying the following properties:
(1) the complement E\W is finite;
(2) each edge in W is a-likely or a-unlikely, i.e. if (y, z) ∈ W then H(y) < a;
(3) for each path exiting from x the number of a-unlikely edges in W is at least γ -times

the total number of edges in W . Namely, for any path x1, x2, . . . , xn with x1 = x and
(xi , xi+1) ∈ E it holds

♯


i : (xi , xi+1) ∈ E ∩ W


≥ γ ♯


i : (xi , xi+1) ∈ W

. (5.2)

Then Theorem 3.2 remains valid if L1
+(E) is endowed with the strong topology instead of the

bounded weak* topology.

Applications of the above theorem can be found in Proposition 10.1 and in Lemma 10.4 of
Section 10. We point out that a possible natural candidate for the above set W is given by the
set {(y, z) : H(y) < a}. In many applications the geometric control of {(y, z) : H(y) < a} is
partial, and therefore it can be convenient to use a subset W ⊂ {(y, z) : H(y) < a}.

Proof. In view of Proposition 5.1, we only need to prove the exponential tightness of the empir-
ical flow in the strong topology.
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The core of the proof consists in showing that there exists an invading sequence of finite
subsets En↗E such that

Px

QT (E

c
n) ≥ 1/n


≤ c1e−c2T n+c3T

∀T ≥ 0, ∀n ≥ 1, (5.3)

for suitable positive constants c1, c2, c3 (depending on x ∈ V ). Let us first derive from (5.3)
the exponential tightness of the empirical flow in the strong topology. To this aim, fixed positive
integers ℓ,m, we let

Km,ℓ :=


Q ∈ L1

+(E) : ∥Q∥ ≤ ℓ, Q(Ec
n) ≤ 1/n ∀n ≥ m


.

We claim that Km,ℓ ⊂ L1
+(E) is compact for the strong topology. Indeed, by Prohorov theorem

for measures [8, Chapter 8], the set Km,ℓ is relatively compact in the space of nonnegative finite
measures on E endowed with the weak topology. Hence, given a sequence {Qk}k≥0 in Km,ℓ, at
cost to extract a subsequence we can assume that Qk converges weakly to some Q : E → [0,∞)

thought of as measure on E . By definition of weak convergence (recall that E has the discrete
topology, hence any function on E is continuous) one gets that Q ∈ Km,ℓ and that Qk(e) →

Q(e) for all e ∈ E . In particular, one can estimate ∥Q − Qk∥ ≤ 2/n +


e∈En
|Q(e) − Qk(e)|

for n ≥ m. This implies that ∥Q − Qk∥ converges to 0, hence our claim.
We can bound

Px (QT ∉ Km,ℓ) ≤ Px

∥QT ∥ ≥ ℓ


+


n≥m

Px (QT (E
c
n) > 1/n). (5.4)

By Proposition 3.6 in [5] limℓ→+∞ limT →+∞
1
T log Px


∥QT ∥ ≥ ℓ


= −∞, while by (5.3) the

series in the above r.h.s. is bounded by c1e−c2T m+c3T /(1 − e−c2T ). This implies the exponential
tightness, under Px , of the empirical flow QT in L1

+(E) endowed with the strong topology.
Let us now derive (5.3). We first point out that, for suitable positive constants λ and c, it holds

Ex


eTλ⟨µT ,r⟩


≤ c ecT , ∀T ≥ 0. (5.5)

Indeed, this follows from [5, Lemma 3.5] with λ = σ (if instead of Condition C(σ ) one as-
sumes Items (i) and (ii) of the hypercontractivity Condition 2.4 in [5], then (5.5) follows from
[5, Eq. (3.12)]).

Fixed λ as above, we introduce the set E := {(y, z) ∈ E : H(y) ≤ λ} and then define the
function F : E → [0,+∞) as

F(y, z) :=

log
λ

H(y)
if (y, z) ∈ E,

0 if (y, z) ∈ E\E .
Defining r F (y, z) := r(y, z)eF(y,z) we get (recall that r(y) =


z:(y,z)∈E r(y, z)):

r F (y) :=


z:(y,z)∈E

r F (y, z) =


z:(y,z)∈E\E r(y, z)+

λ

H(y)


z:(y,z)∈E r(y, z)

≤


z:(y,z)∈E

r(y, z)+
λ

H(y)


z:(y,z)∈E r(y, z) ≤ (1 + λ)r(y). (5.6)
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In particular, we conclude that r F (y)− r(y) ≤ λr(y) for all y ∈ V . Since r F (y) < +∞ for all
y ∈ V , by Lemma 3.1 in [5] we get that

Ex


eT

⟨QT ,F⟩−λ⟨µT ,r⟩


≤ Ex


eT

⟨QT ,F⟩−⟨µT ,r F

−r⟩


≤ 1. (5.7)

By Schwarz inequality, combining (5.5) and (5.7), we get for some C > 0:

Ex


e

T
2 ⟨QT ,F⟩


≤ Ex


eT

⟨QT ,F⟩−λ⟨µT ,r⟩

 1
2 Ex


eTλ⟨µT ,r⟩

 1
2

≤ CeCT . (5.8)

Take a < a0 and recall the properties of W (x, a) ⊂ E given in Item (iii). Since x is fixed, we
write simply W (a). By assumption W (a)c is a finite set. Given an integer n ≥ 1 let an := λ/en2

.
In particular if H(y) ≤ an it must be H(y) < λ and ln(λ/H(y)) ≥ n2. We conclude that

F(y, z) ≥ n2
∀(y, z) ∈ E ∩ W (an) = E ∩ W (an). (5.9)

Since F is a nonnegative function, combining (5.8) with (5.9) we get

Ex


e

n2
2 T QT (E∩W (an))


≤ CeCT . (5.10)

On the other hand, by applying Item (iii)-(3) to the family of consecutive states visited by the
trajectory (X t )t∈[0,T ], we get that T QT (E ∩W (an)) ≥ γ T QT


W (an)


. Hence we conclude that

Ex


e

n2γ
2 T QT (W (an))


≤ CeCT . (5.11)

Consider now the set En := W (an)
c, which is finite by Item (iii)-(1). By Chebyshev inequality

and (5.11) we obtain

Px


QT (E

c
n) ≥

1
n


= Px


n2γ

2
T QT (W (an)) ≥

nγ T

2


≤ Ce−

nγ T
2 +CT ,

thus leading to (5.3). �

6. Joint large deviations for the empirical measure and current

Recalling that E denotes the set of ordered edges in V with strictly positive jump rate, we let
Es :=


(y, z) ∈ V ×V : (y, z) ∈ E or (z, y) ∈ E


be the symmetrization of E in V ×V . We then

introduce L1
a(Es) as the space of antisymmetric and absolutely summable functions on Es, i.e.

L1
a(Es) :=


J ∈ L1(Es) : J (y, z) = −J (z, y) ∀ (y, z) ∈ Es


.

Elements of L1
a(Es)will be denoted by J and called currents. We shall consider L1

a(Es) endowed
either with the bounded weak* topology or with the strong topology, and the associated Borel
σ -algebra.

To each flow Q ∈ L1
+(E), we associate the canonical current JQ defined by

JQ(y, z) :=

Q(y, z)− Q(z, y) if (y, z) ∈ E and (z, y) ∈ E ,
Q(y, z) if (y, z) ∈ E and (z, y) ∉ E ,
−Q(z, y) if (y, z) ∉ E and (z, y) ∈ E .

(6.1)
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Given a current J we define its divergence, divJ ∈ L1(V ) by

divJ (y) :=


z:(y,z)∈Es

J (y, z).

It is simple to check the above definition is consistent with (2.4) in the sense that divJQ = divQ.
Given T > 0, the empirical current is the map JT : D(R+; V ) → L1

a(Es) defined as

JT (y, z) (X) :=
1
T


0≤t≤T


1

X t− = y, X t = z


− 1


X t− = z, X t = y


= QT (y, z)(X)− QT (z, y)(X) (6.2)

for all (y, z) ∈ Es , where QT (a, b) := 0 if (a, b) ∈ Es\E . Namely, T JT (y, z) is the net number
of jumps across (y, z) ∈ Es in the time interval [0, T ]. Equivalently, the empirical current JT is
the canonical current associated to the empirical flow QT , i.e. JT = JQT .

Recalling (2.5), to each probability µ ∈ P(V ) we associate the current Jµ := JQµ , i.e.
Jµ(y, z) = µ(y)r(y, z)− µ(z)r(z, y). Observe that Jµ has vanishing divergence if and only if
µ = π and Jµ vanishes if and only if the chain is reversible with respect to µ. In view of the
discussion in Section 2.1, for each x ∈ V and (y, z) ∈ Es the sequence of real random variables
{JT (y, z)} converges, in probability with respect to Px , to Jπ (y, z) as T → +∞.

To state the joint LDP for (µT , JT ) we introduce the function Ψ : R × R × R+ → [0,+∞)

given by

Ψ(u, ū; a) :=

u


arcsinh

u

a
− arcsinh

ū

a


−


a2 + u2 −


a2 + ū2


if a > 0,

Φ(u, ū) if a = 0.
(6.3)

Due to the continuity of the map Q → JQ the joint large deviation principle for the empirical
measure and current follows from Theorem 3.2 by contraction:

Theorem 6.1. Assume the Markov chain satisfies (A1), (A2), (A3) and Condition C(σ ) with
σ > 0. Then, as T → +∞, the sequence of probability measures {Px ◦ (µT , JT )

−1
} on P(V )×

L1
a(Es) satisfies a large deviation principle with good and convex rate function I : P(V ) ×

L1
a(Es) → [0,+∞].

To have I (µ, J ) < +∞ it is necessary that divJ = 0, J (y, z) ≥ 0 for any (y, z) ∈ E such
that (z, y) ∉ E and ⟨µ, r⟩ < +∞. When all these conditions are satisfied we haveI (µ, J ) = I (µ, Q J,µ) =


(y,z)∈E

Φ

Q J,µ(y, z), Qµ(y, z)


, (6.4)

where

Q J,µ(y, z) :=
J (y, z)+


J 2(y, z)+ 4µ(y)µ(z)r(y, z)r(z, y)

2
.

The above identity (6.4) can also be rewritten as

I (µ, J ) =
1
2


(y,z)∈Es

Ψ

J (y, z), Jµ(y, z); aµ(y, z)


(6.5)

where

aµ(y, z) := 2

µ(y)µ(z)r(y, z)r(z, y).
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Moreover, if the conditions of Theorem 5.2 are satisfied, then the above result remains true
with L1

a(Es) endowed with the strong L1-topology.

Note that if J ∈ L1
a(Es) and ⟨µ, r⟩ < +∞ then Q J,µ

∈ L1
+(E), moreover if divJ = 0 then

also divQ J,µ
= 0. Note also that I (µ, J ) = 0 if and only if I (µ, Q J,µ) = 0, and we know this

holds if and only if µ = π and Q J,µ
= Qπ (see the discussion after Theorem 3.2). It is trivial to

check that this last condition is equivalent to (µ, J ) = (π, Jπ ).

Proof of Theorem 6.1. Recalling that L1
+(E) is equipped with the bounded weak* topology, the

map L1
+(E) ∋ Q → JQ ∈ L1

a(Es) is continuous. This map remains continuous if L1
+(E) and

L1
a(Es) are both endowed of the strong L1-topology. Hence, by Theorem 3.2, Theorem 5.2 and

the contraction principle, a joint LDP holds for (µT , JT ) with good rate functionI (µ, J ) := inf


I (µ, Q) : Q ∈ L1
+(E) with JQ = J


, (µ, J ) ∈ P(V )× L1

a(Es).

It remains to show that the above I (µ, J ) fulfills the properties stated in the theorem.
From the above variational characterization of I (µ, J ) one easily derives that I is convex,

since I (µ, Q) is convex and the map L1
+(E) ∋ Q → JQ ∈ L1

a(Es) is linear.
It is simple to verify that to haveI (µ, J ) < +∞ it is necessary that divJ = 0, J (y, z) ≥ 0 for

any (y, z) ∈ E such that (z, y) ∉ E and ⟨µ, r⟩ < +∞. Let us now take (µ, J ) ∈ P(V )× L1
a(Es)

satisfying the above three conditions. Then the set


Q ∈ L1
+(E) : JQ = J


coincides with the

set of flows of the type

Q(y, z) =


[J (y, z)]+ + s({y, z}), if (z, y) ∈ E,
[J (y, z)]+ = J (y, z), if (z, y) ∉ E,

where [·]+ denotes the positive part (i.e. [z]+ := max{0, z}), s ∈ L1
+(Eu) and Eu := {{y, z} :

(y, z) ∈ Es} is the set of unordered edges. We can then solve independently a variational prob-
lem for each pair of edges (y, z) and (z, y) in Es. If (y, z) and (z, y) both belong to E , then an
elementary computation gives that

inf
s∈[0,+∞)


Φ

[J (y, z)]+ + s, Qµ(y, z)


+ Φ


[−J (y, z)]+ + s, Qµ(z, y)


= Φ


Q J,µ(y, z), Qµ(y, z)


+ Φ


Q J,µ(z, y), Qµ(z, y)


.

If (y, z) ∈ E and (z, y) ∉ E , then Q(y, z) = J (y, z) = Q J,µ(y, z) for any Q ∈ L1
+(E) with

JQ = J . Since divQ = divJQ = 0, by the expression (3.3) of the rate function I and the above
computations, we obtain that I (µ, Q) = I (µ, Q J,µ), hence (6.4).

It remains to prove (6.5). To this aim we observe that, if both (y, z) and (z, y) belong to E ,
then the following identities hold:

Φ

Q J,µ(y, z), Qµ(y, z)


+ Φ


Q J,µ(z, y), Qµ(z, y)


=

j

2
log
 j +


j2 + 4pp′

− j +


j2 + 4pp′

p′

p


−


j2 + 4pp′ + p + p′

= j log
j +


j2 + 4pp′

2p
−


j2 + 4pp′ + p + p′ (6.6)

where j := J (y, z), p = µ(y)r(y, z), p′
= µ(z)r(z, y), assuming p, p′ positive. Set a :=

aµ(y, z) = 2


pp′ and j̄ := Jµ(y, z) = p − p′. Since arcsinh u = log[u +
√

u2 + 1], j2
+4pp′

= j2
+ a2, p + p′

=


j̄2 + a2, the last member in (6.6) can be rewritten as Ψ( j, j̄; a).
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Suppose now that (y, z) ∈ E and (y, z) ∉ E , J (y, z) ≥ 0. Then Q J,µ(y, z) = J (y, z) and
Qµ(y, z) = Jµ(y, z). In particular,

Φ

Q J,µ(y, z), Qµ(y, z)


= Ψ(J (y, z), Jµ(y, z); 0).

From the above considerations it is simple to derive (6.5) from (6.4). �

7. Gallavotti–Cohen type symmetries for the empirical current

In this section and in Sections 8 and 9, we assume that Es = E (i.e. r(y, z) > 0 if and only if
r(z, y) > 0) and we derive Gallavotti–Cohen (GC) symmetries of the LD rate function both of
the empirical current and of suitable linear functionals of the empirical current itself.

In what follows, wπ : E → R denotes the antisymmetric function

wπ (y, z) = log
π(y)r(y, z)

π(z)r(z, y)
, (y, z) ∈ E, (7.1)

and we will assume that wπ ∈ L∞(E), thus implying that ⟨J, wπ ⟩ is finite for any J ∈ L1
a(E).

Theorem 7.1. Assume Es = E and that wπ ∈ L∞(E). Then the rate function I of Theo-
rem 6.1 satisfies the following GC symmetry in [0,+∞]:

I (µ, J ) = I (µ,−J )−
1
2
⟨J, wπ ⟩, ∀(µ, J ) ∈ P(V )× L1

a(E). (7.2)

In particular, the good and convex rate function I : L1
a(E) → [0,+∞], I (J ) = infµ I (µ, J ),

of the LDP for the empirical current obtained by contraction from Theorem 6.1 satisfies the
following GC symmetry in [0,+∞]:

I (J ) = I (−J )−
1
2
⟨J, wπ ⟩, ∀J ∈ L1

a(E). (7.3)

Remark 7.2. For finite state spaces the GC symmetry (7.3) has already been derived in [1,2,14]
in terms of the moment generating functions (essentially, by means of Gärtner–Ellis theorem).

Proof. Having (7.2), the conclusion is a trivial consequence of the contraction principle. Let us
prove (7.2). If divJ ≠ 0 or ⟨µ, r⟩ = +∞, then I (µ, J ) = I (µ,−J ) = +∞ and (7.2) is trivially
true (recall that ⟨J, wπ ⟩ is finite). Suppose therefore that divJ = 0 and ⟨µ, r⟩ < +∞. Then,I (µ, J ) and I (µ,−J ) have the series expression induced by (6.4). It is simple to check that,
given p, p′ > 0 and q, q ′

≥ 0, it holds

Φ(q, p)+ Φ(q ′, p′) = Φ(q ′, p)+ Φ(q, p′)+ (q − q ′) log(p′/p). (7.4)

Taking q := Q J,µ(y, z) = Q−J,µ(z, y), q ′
:= Q J,µ(z, y) = Q−J,µ(y, z), p := Qµ(y, z),

p′
:= Qµ(z, y), from the above identity we get

Φ


Q J,µ(y, z), Qµ(y, z)


+ Φ


Q J,µ(z, y), Qµ(z, y)


= Φ


Q−J,µ(y, z), Qµ(y, z)


+ Φ


Q−J,µ(z, y), Qµ(z, y)


− J (y, z)wπ (y, z).

Summing above (y, z) ∈ E we get (7.2). �
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8. Gallavotti–Cohen symmetry for the Gallavotti–Cohen functional

Let Pπ be the law of the stationary chain (the initial state is sampled according to the invariant
probability π ). By stationarity, Pπ can be extended to a measure on D(R; V ). Let ϑ : D(R; V )
→ D(R; V ) be the time reversal, i.e. for the set of times t ∈ R which are continuity points of X
the map ϑ is defined by (ϑX)t = X−t . We then set P∗

π := Pπ ◦ ϑ−1; of course P∗
π = Pπ if and

only if the chain is reversible. In general, P∗
π is the law of the stationary chain with jump rates

r∗(y, z) = π(z)r(z, y)/π(y). Given x ∈ V and T > 0, the Gallavotti–Cohen functional can be
defined (cf. [20]) as the map WT : D(R+; V ) → R which is Px a.s. given by

WT := −
1
T

log
dP∗

π


[0,T ]

dPπ |[0,T ]

. (8.1)

Observe that Eπ

WT


is (1/T )-proportional to the relative entropy of Pπ |[0,T ] with respect to

P∗
π


[0,T ]

, thus providing a natural measure of the irreversibility of the chain.
A simple computation of the Radon–Nikodym derivative in (8.1) (use (3.1) in [5] and observe

that r∗(y) = r(y) for any y ∈ V due to the invariance of π ) gives that the Gallavotti–Cohen
functional WT can be written in terms of the empirical current JT as

WT =
1
2

⟨JT , wπ ⟩, (8.2)

where wπ : E → R is the antisymmetric function defined by (7.1).
As a consequence of our previous results and the contraction principle we get the following

LDP:

Theorem 8.1. Assume that E = Es , the Markov chain satisfies (A1), (A2), (A3) and assume
Condition C(σ ) with σ > 0. Assume also that wπ vanishes at infinity. If the conditions of The-
orem 5.2 are satisfied, it is enough to require that wπ is a bounded function.

Then, as T → +∞, the sequence of probability measures {Px ◦ W −1
T } on R satisfies a large

deviation principle with good and convex rate function ı : R → [0,+∞] given by

ı(u) = inf
I (µ, J ) : (µ, J ) ∈ P(V )× L1

a(E), ⟨J, wπ ⟩ = 2u

. (8.3)

Moreover, the following GC symmetry holds in [0,+∞]:

ı(u) = ı(−u)− u. (8.4)

Proof. Note that the map L1
a(E) ∋ J → ⟨J, wπ ⟩ ∈ R is well defined and continuous in both

the following cases: (i) L1
a(E) is endowed of the bounded weak* topology and wπ vanishes at

infinity, (ii) L1
a(E) is endowed of the strong L1-topology and wπ is bounded. Hence, due to the

contraction principle and Theorem 6.1, we only need to prove that the rate function ı(·) is con-
vex and that GC symmetry (8.4) is fulfilled. The last property follows from Theorem 7.1. The
convexity follows easily from the fact that I (µ, J ) is convex and the constraint ⟨J, wπ ⟩ = 2u is
linear in J . �

The Gallavotti–Cohen functional is defined in [20] by replacing the function wπ above with
w(y, z) = log[r(y, z)/r(z, y)]. In order to be able to discuss applications to Markov chains with
infinitely many states we have chosen the previous definition with wπ . Note that

1
2
⟨JT , wπ ⟩ −

1
2
⟨JT , w⟩ =

1
2


(y,z)∈E

JT (y, z) log
π(y)

π(z)
=

1
T

log
π(XT )

π(X0)
. (8.5)
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Hence, if V is finite, the term log π(XT )
π(X0)

is bounded, thus implying that 1
2 ⟨JT , wπ ⟩ and 1

2 ⟨JT , w⟩

satisfy the same LDP. Theorem 8.1 provides a variational characterization of the rate function
for the Gallavotti–Cohen functional which can be compared to the rather implicit one derived
e.g. in [20, withw instead ofwπ ] by using the Perron–Frobenius and the Gärtner–Ellis theorems.

9. LDP for the homological coefficients and Gallavotti–Cohen symmetry

Also in this section we assume that the (connected) graph G = (E, V ) has the property
(y, z) ∈ E ⇔ (z, y) ∈ E (i.e. E = Es) and extend to the infinite case the concept of cycle
space. We refer e.g. to [1,2,14,27] for physical applications and e.g. to [9,12] for a mathematical
treatment in finite graphs. We also prove that the cycle space is isomorphic to the first cellular
homological class over R of the graph G (shortly, H1(G,R)). Then we associate to each trajec-
tory up to time T a cycle CT and prove a LDP for the empirical homological coefficients, which
are given by the coefficients in a given basis of the cycle CT thought of as element of the cycle
space, and therefore of H1(G,R).

9.1. Cycle space of the graph G

We point out that, working with a graph G = (V, E) with E = Es , all information encoded
in G corresponds to the one encoded in its unoriented version Gu = (V, Eu), where Eu :=
{y, z} : (y, z) ∈ E


. The subscript “u” stays for unoriented. Hence, the discussion that follows

applies as well to unoriented graphs.
We fix some notation. Given an edge e = (y, z) ∈ E we write ē = (z, y) for the reversed

edge. A cycle C in G is a finite string (x1, . . . , xk) of elements of V such that (xi , xi+1) ∈ E
when i = 1, . . . , k, with the convention that xk+1 = x1. Given a cycle C and given e ∈ E we
definite Se(C) as the number of times the edge e appears in C minus the number of times the
reversed edge ē appears in C:

Se(C) := ♯{i : 1 ≤ i ≤ k, (xi , xi+1) = e} − ♯{i : 1 ≤ i ≤ k, (xi , xi+1) = ē}.

Consider now the free real vector space V generated by all cycles C. Its elements are the
formal sums

n
j=1 a j C j , varying n ∈ N, a j ∈ R and C j cycles, with the natural rules for sum

and multiplication by a constant. The empty sum is the zero element of V , denoted by ∅.
The cycle space V∗ of the graph G is then defined as the quotient vector space of V imposing

that in V∗ it holds

n
j=1

a j C j =

m
i=1

bi C′

i iff
n

j=1

a j Se(C j ) =

m
i=1

bi Se(C′

i ) ∀e ∈ E (9.1)

(we keep the same notation for the elements of V and V∗). More precisely, V∗ is defined as the
quotient V/W , where the subspace W is given by the sums

n
j=1 a j C j−

m
i=1 bi C′

i satisfying the
identity system in the r.h.s. of (9.1). Note that in the cycle space V∗ the cycle C = (x1, x2, . . . , xk)

equals the cycle C′
= (xi , xi+1, . . . , xk, x1, . . . , xi−1), and that −C = (xk, xk−1, . . . , x1).

Special bases (called fundamental bases) of V∗ can be obtained starting from a spanning tree
T = (V, ET ) of the unoriented graph Gu = (V, Eu). Fix such a spanning tree T . To each edge
in Eu\ET we assign an orientation and we call chords the resulting oriented edges.1 To each

1 Usually, chords are the unoriented edges in Eu\ET [9,12,27]. To avoid additional notation we have directly included
in their definition a fixed orientation.
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Fig. 1. Fundamental basis. The bold edges form the spanning tree T . The chords c1 = (x1, x2), c2 = (x2, x3) and
c3 = (x6, x7) correspond to the cycles Cc1 = (x1, x2, x4), Cc2 = (x2, x3, x4) and Cc3 = (x6, x7, x5), respectively.

chord c we associate a cycle Cc ∈ V∗ as follows: writing c = (x1, x2) consider the unique self-
avoiding path x2, x3, . . . , xk−1, xk, x1 from x2 to x1 in G such that {xi , xi+1} ∈ ET for all i =

2, 3, . . . , k (where xk+1 := x1), and set Cc := (x1, x2, . . . , xk). Note that by construction

Sc(Cc′) = δc,c′ . (9.2)

Proposition 9.1. Given a spanning tree T of the unoriented graph Gu = (V, Eu), the cycles Cc–
with c varying among the chords of T – form a basis of the quotient space V∗. Moreover, for each
cycle C the following identity holds in V∗:

C =


c

S−→c


C


Cc. (9.3)

We call the above basis {Cc : c chord of T } a fundamental basis associated to the spanning
tree T (see Fig. 1). Not all basis of V∗ are fundamental, as can be seen e.g. from the simple ex-
ample given in [14, Section 7]. Due to the above proposition and (9.2), the linear functions V∗ ∋n

i=1 ai Ci →
n

i=1 ai Sc(Ci ) ∈ R, as c varies among the chords, form the dual basis of {Cc :

c chord of T }.
The above proposition is a classical result in the finite setting (cf. [12] when working with the

field F2 instead of R). The proof for infinite graphs could be recovered by the result for finite
graphs. For completeness we give a direct and self-contained proof.

Proof. If C =
n

i=1 ai Cci with chords c1, c2, . . . , cn all distinct, by applying Sc j and invoking
(9.2) we get that a j = Sc j (C). This proves (9.3) for any cycle C that is generated by the funda-
mental cycles Cc’s. We thus need to prove that these cycles form a basis.

We first prove that the cycles Cc’s are linearly independent. Suppose that
n

i=1 ai Cci = 0 for
some constants a1, . . . , an and some chords c1, . . . , cn. By (9.1) and (9.2) one easily gets that
ai = 0 for all i , hence the independence.

We now prove that the cycles Cc’s generate all V∗. To this end, it is enough to show that they
generate any cycle C. Since any cycle C is in V∗ the sum of self-avoiding cycles, we can restrict
to a self-avoiding cycle C, i.e. C = (x1, x2, . . . , xk) with x1, x2, . . . , xk all distinct (recall that it
must be (xi , xi+1) ∈ E for all i = 1, 2, . . . , k with the convention xk+1 = xk). We prove that the
self-avoiding cycle C can be expressed as linear combination of the fundamental cycles Cc’s by
induction on the cardinality of the set

c chord : Sc(C) ≠ 0

. (9.4)
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If the above set has zero cardinality, i.e. it is empty, then, as C is self-avoiding and T is a tree,
then C = (x1, x2), which is indeed zero in V∗. Given a positive integer m, let us now suppose
that C is generated by fundamental cycles when the set (9.4) has cardinality less then m. Take a
self-avoiding cycle C = (x1, x2, . . . , xk) such that the set (9.4) has cardinality m and fix a chord
c∗ inside (9.4). Without restriction we can suppose that (x2, x1) = c∗ (at cost to replace C by −C
and to relabel the points x1, x2, . . . , xn). The cycle Cc∗ is then of the form (x2, x1, y3, . . . , yr ),
where {x1, y3}, {y3, y4}, . . . , {yr−1, yr }, {yr , x2} are edges of the tree T . Consider now the cycle

C̄ := (x1, y3, . . . , yr , x2, x3, . . . , xm),

obtained by removing from C the edge (x1, x2) and replacing it with the path x1, y3, . . . , yr . Note
that C = C̄ − Cc∗ in V∗. By construction,

c chord : Sc(C̄) ≠ 0


=

c chord : Sc(C) ≠ 0


\{c∗}. (9.5)

At this point, write C̄ as sum
s

u=1 C̄u of self-avoiding cycles simply by cutting C̄ at its intersec-
tion points. Since the support of C̄u is included in the support of C̄ we have

c chord : Sc(C̄u) ≠ 0


⊂

c chord : Sc(C̄) ≠ 0


, (9.6)

hence by (9.5) the set in the l.h.s. of (9.6) has cardinality less than m. By applying the inductive
hypothesis we finally get

C̄u =


c

Sc


C̄u


Cc.

Putting all together we then conclude

C = C̄ − Cc∗ =

s
u=1

C̄u − Cc∗ =

s
u=1


c

Sc


C̄u


Cc − Cc∗ ,

hence C is a (finite) linear combination of cycles Cc’s. By applying (9.2) one gets that (9.3) is
satisfied. �

9.2. Cellular homology

Consider the graph Gu = (V, Eu), for each unordered edge in Eu fix a canonical orientation
and call Eo the set of canonically ordered edges (the subscript “o” stays for ordered, or oriented).
In other words, Eo is any subset Eo ⊂ E such that if (y, z) ∈ E then either (y, z) ∈ Eo or
(z, y) ∈ Eo.

We recall the definition of the first cellular homology class H1(G,R) (the field R could be
replaced by an arbitrary ring). To this aim, we introduce a proper terminology: the vertexes in V
are called 0-cells and the edges in Eo are called 1-cells. For k = 0, 1 we define the space Ck(R)
of k-chains as the free vector space over R with basis given by the k-cells. Finally, we define the
boundary operator

∂ : C1(R) → C0(R)

as the unique linear map such that ∂(y, z) = z−y for any (y, z) ∈ Eo. The first cellular homology
class H1(G,R) is then given by the kernel of ∂ . We point out that the definition depends on the
choice of the set Eo of canonically oriented edges, but any other choice of Eo would lead to a
isomorphic vector space.
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Since the graph has no facets of dimension 2, the family of 2-cells is empty and the space
C2(R) of 2-chains is zero, hence the boundary operator from C2(R) to C1(R) would be the zero
map. In particular, the zero 1-chain is the only exact chain, while the closed 1-chains form the
kernel of the boundary operator ∂ : C1(R) → C0(R). Hence the above definition of H1(G,R)
coincides indeed with the standard one, as quotient of the closed 1-chains over the exact 1-chains.

To a given cycle C = (x1, x2, . . . , xk) in V we associate the homological class

[C] :=


e∈Eo

Se(C)e (9.7)

in H1(G,R). Note that the above series is indeed a finite sum and that ∂[C] = 0.
Then we have the following result:

Proposition 9.2. The linear map ψ : V ∋
n

i=1 ai Ci →
n

i=1 ai [Ci ] ∈ H1(G,R) induces the
quotient linear map

φ : V∗ ∋

n
i=1

ai Ci →

n
i=1

ai [Ci ] ∈ H1(G,R),

which is a linear isomorphism.

Proof. To see that the map φ is well defined, we need to show that ψ is zero on W (recall that
V∗ = V/W ). To this aim, given

n
i=1 ai Ci in V such that

n
i=1 ai Se(Ci ) = 0 for any e ∈ E , we

have to prove that
n

i=1 ai [Ci ] = 0. This follows easily from definition (9.7).
Let us prove that φ is injective. Suppose that, for some

n
i=1 ai Ci ∈ V∗, it holds

n
i=1 ai [Ci ]

= 0. Since, by (9.7),
n

i=1 ai [Ci ] =


e∈Eo

n
i=1 ai Se(Ci )


e (note that the series over e ∈ Eo

is indeed a finite sum) we conclude that
n

i=1 ai Se(Ci ) = 0 for any e ∈ Eo, which implies thatn
i=1 ai Ci = 0 in V∗ by (9.1).
Let us prove that φ is surjective. To this aim fix f =


e∈E0

bee in H1(G,R) (in particular,
the above series over e ∈ Eo is a finite sum). Since φ(∅) = 0 we can assume f ≠ 0. We define
the flow Q ∈ L1

+(E) as follows: for any e ∈ Eo with be > 0 we put Q(e) := be, while for any
e ∈ Eo with be < 0 we put Q(ē) := −be, and we set the flow Q equal to zero in all other edges.
By the above definition it is simple to check that Q(e) − Q(ē) = be for any e ∈ Eo. We now
show that divQ = 0. Indeed

divQ(y) =


z


Q(y, z)− Q(z, y)


=


z:(y,z)∈Eo


Q(y, z)− Q(z, y)


+


z:(z,y)∈Eo


Q(y, z)− Q(z, y)


=


z:(y,z)∈Eo

b(y,z) −


z:(z,y)∈Eo

b(z,y).

On the other hand the last member equals the value of the 0-chain −∂ f in y and we know that
∂ f = 0, thus proving the zero-divergence of Q. By Lemma 4.1 in [5] and since the flow Q has
finite support, we then conclude that there exist self-avoiding cycles C1, C2, . . . , Cn and positive
constants a1, a2, . . . , an such that

Q(e) =

n
i=1

ai1(e ∈ Ci ). (9.8)
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In general we write e ∈ C if C = (x1, x2, . . . , xk) and e = (x j , x j+1) for some j ∈ {1, 2, . . . , k}.
We claim that φ maps

n
i=1 ai Ci , thought of as element of V∗, to f ∈ H1(G; R). To this aim we

need to show that
n

i=1

ai Se(Ci ) = be (9.9)

for any e ∈ Eo. If be = 0, then by construction Q(e) = Q(ē) = 0, hence by (9.8) e, ē are not
in the support of the Ci ’s, thus implying (9.9). If be > 0 then Q(e) = be and Q(ē) = 0, hence
by (9.8)

n
i=1 ai1(e ∈ Ci ) = be, while ē is not in the support of the Ci ’s. This implies (9.9). If

be < 0, then Q(e) = 0 and Q(ē) = −be, hence by (9.8) e is not in the support of the Ci ’s andn
i=1 ai1(ē ∈ Ci ) = −be. This implies (9.9). �

9.3. LDP for the homological coefficients

Given a cycle C in G, its affinity A(C) is defined as (cf. [26])

A(C) :=

k
j=1

log
r(x j , x j+1)

r(x j+1, x j )
=

k
j=1

log
π(x j )r(x j , x j+1)

π(x j+1)r(x j+1, x j )
=

k
j=1

wπ (x j , x j+1), (9.10)

where C = (x1, x2, . . . , xk) and wπ : E → R is the function defined in (7.1). Note that we can
also write

A(C) =
1
2


e∈E

Se(C)wπ (e),

hence the above affinity induces a linear map on the cycle space V∗.
From now on we fix a spanning tree T in Gu = (V, Eu) and chords c′s. Given distinct ele-

ments y ≠ z in V , we call γy,z the unique self-avoiding path y = y1, y2, y3, . . . , yn = z from y
to z in the tree T .

Finally we come back to our Markov chain. To the trajectory read up to time T , (X t )0≤t≤T ,
we associate the cycle CT as follows. Let X0 = x1, x2, . . . , xn = XT be the states visited by the
path (X t )0≤t≤T , chronologically ordered. If XT = X0, then we set CT := (x1, x2, . . . , xn−1). If
XT ≠ X0, then CT := (x1, x2, . . . , xn, y1, . . . , ym−1) where (xn, y1, . . . , ym) is the canonical
path γXT ,X0 . Roughly speaking the cycle CT is obtained by gluing the trajectory (X t )0≤t≤T with
the canonical path γXT ,X0 and then keeping knowledge only of the visited sites (disregarding the
jump times).

Enumerating the chords as ck, k ∈ K , we consider the fundamental basis Ck, k ∈ K , where
Ck := Cck . For each k ∈ K and T ≥ 0 we define the empirical homological coefficient aT (k) as
the map aT (k) : D(R+, V ) → R characterized by the identity in V∗

CT [X ] =


k∈K

T aT (k)[X ]Ck, (9.11)

where X = (X t )t∈R+
and CT [X ] denotes the cycle associated to the trajectory (X t )t∈[0,T ]. Note

that we can think of aT as a map aT : D(R+, V ) → L1(K ). We endow L1(K ) with the bounded
weak* topology. When K is finite this reduces to the standard L1-topology. We write a =


a(k) :

k ∈ K


for a generic element of L1(K ).
Before stating our LDP for aT we give a representation result. To this aim, for each k, let Jk

be the current in L1
a(E) satisfying Jk(e) := Se(Ck) for all e ∈ E .
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Lemma 9.3. If J ∈ L1
a(E) has zero divergence, then J =


k J (ck)Jk pointwise: J (e) =


k

J (ck)Jk(e) for all e ∈ E and the series


k J (ck)Jk(e) is absolutely convergent for all e ∈ E.

Proof. Let Q(e) := [J (e)]+ for any e ∈ E , where [x]+ := max{x, 0}. Then Q ∈ L1(E) and
divQ = 0. By Lemma 4.1 in [5] we can write Q =


C αC1C with αC ≥ 0 and C varying among

the self-avoiding cycles (the function 1C : E → {0, 1} is defined as 1C(e) := 1(e ∈ C)). Since
J (e) = Q(e)− Q(ē) we have

J (e) =


C
αC1(e ∈ C)−


C
αC1(ē ∈ C),

and both series in the r.h.s. are convergent (and therefore absolutely convergent). Hence we can
arrange the terms as we prefer and get the identities

J (e) =


C
αC

1(e ∈ C)− 1(ē ∈ C)


=


C
αC Se(C), (9.12)

and the above series in (9.12) are absolutely convergent. By (9.3) we can write C =


k Sck


C


Ck ,
which is indeed a finite sum. In particular, Se(C) is given by the finite sum


k Sck


C

Se(Ck).

Coming back to (9.12) we get

J (e) =


C
αC


k

Sck


C

Se(Ck)


. (9.13)

Since Se(Ck) ∈ {0,−1, 1} we can bound (recall that C is self-avoiding)
C


k

|αC Sck


C

Se(Ck)| ≤


C


k

αC |Sck


C

|

=


C


k

αC

1(ck ∈ C)+ 1(c̄k ∈ C)


=


k


C
αC1(ck ∈ C)+


k


C
αC1(c̄k ∈ C)

=


k

Q(ck)+


k

Q(c̄k) ≤ ∥Q∥1 < +∞.

Hence the series in (9.13) is absolutely convergent, and we can rearrange its terms getting the
following identities concerning absolutely convergent series (recall (9.12)):

J (e) =


k

Se(Ck)


C
αC Sck


C


=


k

Se(Ck)J (ck) =


k

Jk(e)J (ck). �

Due to (9.2) and (9.3) it holds

aT (k) =
1
T

Sck (CT ) = JT (ck).

Indeed, since γy,z is the only self-avoiding path from y to z inside the spanning tree T , we have
Sck


γXT ,X0


= 0. In conclusion,

{aT (k) : k ∈ K } = {JT (ck) : k ∈ K }. (9.14)

We have now all the tools to prove the following result (recall the definition of Jk ∈ L1
a(E)

given before Lemma 9.3):
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Theorem 9.4. Assume the Markov chain satisfies (A1), (A2), (A3) and Condition C(σ ) with
σ > 0. Then the following holds:

(i) As T → +∞ the sequence of probability measures {Px ◦ a−1
T } on L1(K ) (endowed with

the bounded weak* topology) satisfies a large deviation principle with good and convex rate
function Ic : L1(K ) → [0,+∞] such that

Ic(a) =


I 

k∈K

ak Jk


if


e


k∈K

ak Jk(e)

 < +∞,

+∞ otherwise,

(9.15)

where I is the good and convex rate function of the LDP for the empirical current obtained
by contraction from Theorem 6.1.

(ii) Suppose in addition that the function wπ introduced in (7.1) is in C0(E). If


e |


k∈K
ak Jk(e)| = +∞, then it holds Ic(a) = Ic(−a) = +∞; otherwise in R ∪ {+∞} it holds

Ic(a) = Ic(−a)−


e


k∈K

ak Jk(e)

wπ (e). (9.16)

When


e∈E


k∈K |ak Jk(e)| < +∞, then (9.16) can be rewritten as

Ic(a) = Ic(−a)−


k

ak A(Ck), (9.17)

and the last series is indeed absolutely convergent.
(iii) If the conditions of Theorem 5.2 are satisfied, then the above results remain true with L1(K )

endowed with the strong L1-topology and wπ bounded.

Some comments on the above theorem:

Comment 1. Since Jk(e) = 1(e ∈ Ck) − 1(ē ∈ Ck) and the cycle Ck is self-avoiding, we have
Jk(e) ∈ {−1, 0, 1} and therefore

k∈K

|ak Jk(e)| < +∞ ∀e ∈ E (9.18)

for any a ∈ L1(K ). Hence the map E ∋ e → J (e) :=


k∈K ak Jk(e) ∈ R is well defined (indeed
the r.h.s. is absolutely convergent) and antisymmetric. If in addition


e |


k∈K ak Jk(e)| < +∞

then the above J belongs to L1(E), hence J is a summable current in L1
a(E).

Comment 2. We have
e∈E


k∈K

|ak Jk(e)| =


k∈K

|ak |ℓ(Ck) (9.19)

where ℓ(Ck) denotes the number of edges in Ck . Hence, the condition leading to (9.17) can be
rewritten as


k∈K |ak |ℓ(Ck) < +∞. It is therefore useful to know if a graph admits a fundamen-

tal basis whose cycles have uniformly bounded length. Only some partial results in this direction
have been achieved in graph theory [11]. For example, working with the field F2 instead of R,
the following result is proved in [15]: if a locally finite transitive2graph has the property that the

2 A graph G is called transitive if for any two vertices v,w one can exhibit a graph automorphism of G mapping v tow.
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Fig. 2. Top. The graph G is the ladder with vertex set {1, 2, . . .} ∪ {1, 2, . . .}, cycle Cn is given by (1, 2, . . . , n,
n, n − 1, . . . , 1). Center. The fundamental tree T (1) is the bold comb. The arrows correspond to the chords. The basis cy-

cle C(1)k is given by (k + 1, k, k, k + 1). Bottom. The fundamental tree T (2) is in boldface. The basis cycle C(2)k equals Ck .

cycle space is generated by cycles of uniformly bounded length, then the graph must be accessi-
ble (we refer to [15] for the terminology).

The lattice Zd does not admit a fundamental basis whose cycles have uniformly bounded
length (see the Appendix). Positive examples can be easily constructed.

Comment 3. If


e∈E


k∈K |ak Jk(e)| < +∞ then J has zero divergence. Indeed, given y ∈ V
we have (in the third identity we use that the series is absolutely convergent)

divJ =


z

J (y, z) =


z


k∈K

ak Jk(y, z)


=


k∈K

ak


z

Jk(y, z)


=


k∈K

ak · 0 = 0.

Comment 4. When working with finite graphs, one can deal with an arbitrary basis of the cycle
space, fixing arbitrarily once and for all the paths γy,z from y to z and defining the homological
coefficients as in (9.11) referred to the chosen basis. Then the above theorem remains true and
(9.17) is always satisfied (cf. [14]).

Comment 5. For infinite graphs G, the LDP stated in Theorem 9.4 refers to the coefficients
in a given basis of H1(G,R) and is not intrinsic to H1(G,R). Indeed, for suitable graphs G,
by choosing different fundamental trees T1, T2 and associated fundamental cycle bases {C(1)k :

k ∈ N+}, {C(2)k : k ∈ N+}, one can exhibit a sequence of cycles


Cn


n≥1 with the following

property: setting Cn =


∞

k=1 a(n)k C(1)k =


∞

k=1 b(n)k C(2)k , the n-sequence (a(n)k : k ∈ N+)n≥1 does
not converge in L1(N+) (endowed with the bounded weak* topology), while the n-sequence
(b(n)k : k ∈ N+)n≥1 does. See Fig. 2 where (a(n)k : k ∈ N+) is the string (1, 1, . . . , 1, 0, 0 . . .)

with n 1’s, while (b(n)k : k ∈ N) is the string (0, 0, . . . , 0, 1, 0, 0, . . .) with a single 1 located at

position n (note that (b(n)k : k ∈ N) converges to the zero element of L1(N+) in the bounded
weak* topology).

Proof. Item (i) as well as the first part of Item (ii) are a consequence of Lemma 9.3, identity
(9.14) and the LDP for the empirical current obtained by contraction from Theorem 6.1. Let
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us now prove (9.17) when


e∈E


k∈K |ak Jk(e)| < +∞. By Item (i) we have Ic(a) = I (J )
and Ic(−a) = I (−J ), where J =


k∈K ak Jk (which is indeed a summable current with zero

divergence due to Problem 3). Due to (7.3) we then have

Ic(a) = Ic(−a)−
1
2
⟨J, wπ ⟩ = Ic(−a)−

1
2


e


k

ak Jk(e)

wπ (e).

Since wπ is bounded and since


e∈E


k∈K |ak Jk(e)| < +∞, the last series is absolutely con-
vergent and we can rearrange it as

1
2


e


k

ak Jk(e)

wπ (e) =

1
2


k

ak


e


Jk(e)wπ (e)


=


k

ak A(Ck).

By the same observations we also have
k

|ak A(Ck)| ≤
1
2


k

ak


e
(Jk(e)wπ (e))

 ≤
∥wπ∥∞

2


k


e

ak Jk(e)
 < +∞,

thus proving our thesis.
Finally, Item (iii) follows from the previous items and from Theorem 5.2. �

10. Examples

10.1. Markov chain with two states

We start by the simplest possible situation: a Markov chain with two states (a similar analysis
is given in [21]). Let 0 and 1 be the two states, and denote by r0 = r(0, 1) and r1 = r(1, 0)
the corresponding jump rates. To avoid trivialities we assume that r0, r1 > 0. The unique in-
variant measure π is also reversible and is given by π(0) = r1/(r0 + r1), π(1) = r0/(r0 + r1).
Given T > 0 we let qT := QT (0, 1) + QT (1, 0) be the mean total number of jumps in the
time interval [0, T ]. We shall here derive the large deviation principle for the family of random
variables {qT }T>0. We point out that the empirical current JT (0, 1) is of order O(1/T ), hence
the associated LDP is trivial.

By Theorem 3.2 and the contraction principle, the family of positive random variables
{qT }T>0 satisfies a large deviation principle with rate function f : R+ → R+ given by

f (q) = inf


I (µ, Q) : (µ, Q) ∈ P(V )× L+

1 (E), Q(0, 1)+ Q(1, 0) = q

.

In view of the constraint divQ = 0 in (3.3) we can assume Q(0, 1) = Q(1, 0) = q/2 and
therefore

f (q) = inf

Φ
 q

2 , µ(0)r0

+ Φ

 q
2 , µ(1)r1


: µ ∈ P(V )


.

If q = 0 we have to minimize µ(0)r0 + µ(1)r1, getting therefore f (0) = min{r0, r1}. If q > 0,
writing µ(0) = 1/2 − γ and µ(1) = 1/2 + γ , we need to minimize the function

ψ(γ ) :=
q

2
log

q2

4r0r1
− q +

r0 + r1

2
+ γ (r1 − r0)−

q

2
log
1

4
− γ 2

over γ ∈ [−1/2, 1/2].
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Since ψ ′(γ ) =


1
4 − γ 2

−1 
(r0 − r1)γ

2
+ qγ +

r1−r0
4


, the optimal γ is given by

−q +


q2 + (r0 − r1)2


/2(r0 − r1).

Hence the optimal µ is given by

µ(0) =
1
2


1 +

q
r0−r1

−


q2 + (r0 − r1)2

r0 − r1


,

µ(1) =
1
2


1 −

q
r0−r1

+


q2 + (r0 − r1)2

r0 − r1


,

understanding µ(0) = µ(1) = 1/2 when r0 = r1. In particular, we get

f (q) =
1
2


q log

 q

2r0r1


q2 + (r0 − r1)2 + q


+ r0 + r1 − q −


q2 + (r0 − r1)2


and, in the special case r0 = r1 = r , f (q) = q log q

r − q + r , which coincides with the rate
function of NT /T where NT is a Poisson process with intensity r . Set q := 2r0r1/(r0 + r1) and
observe that, by the law of large numbers for the empirical flow, qT converges in probability to
q. It is simple to check that f is a strictly convex function which achieves its minimum, as it
must be the case, for q = q.

10.2. A random watch

We consider the following random watch in which an hour consists of n minutes. At time
t = 0 the minute hand is at 0, it stays there for an exponential time of parameter r0 then it moves
at 1,. . . , it stays at n−1 for an exponential time of parameter rn−1 then it moves to 0 and the hour
hand advances by one,. . . (the exponential times are all independent). Observe that for n > 2 the
chain just defined is not reversible while for n = 2 one recovers the previous 2 states Markov
chain. The above random watch can be thought of also as a totally asymmetric random walk on
a ring with site disorder.

Let NT be the number of hours marked by such a watch in the time interval [0, T ]. Taking
the discrete torus Tn = Z/nZ as state space, note that NT = ⌊

n−1
i=0 T QT (i, i + 1)/n⌋, ⌊x⌋

denoting the integer part of x . Hence NT /T satisfies the same large deviation principle of
n−1

i=0
QT (i, i + 1)/n. In particular, by using Theorem 3.2 and the contraction principle, we can com-
pute the large deviation rate function f for NT /T . Since the only divergence-free flows are the
constant flows, the rate function f : R+ → R+ is given by

f (q) = inf


n−1
i=0

Φ(q, µiri ) : µi ≥ 0,
n−1
i=0

µi = 1


. (10.1)

Trivially, f (0) = min{ri : 0 ≤ i ≤ n − 1}. Let us assume q > 0. Since
n−1

i=0 Φ(q, µiri ) ≥

q
n−1

i=0 log 1
µi

− C for a suitable constant C independent from {µi }, we conclude that the above
infimum is indeed achieved inside the region {µi > 0 ∀i}. Introducing the Lagrangian multiplier
λ, we first look for the extremal points of

ψ ({µi }, λ) =

n−1
i=0

Φ(q, µiri )+ λ


n−1
i=0

µi − 1


.
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These are characterized by the system
−

q

µi
+ ri + λ = 0,

n−1
i=0

µi = 1.
(10.2)

We restrict to the region {µi > 0 ∀i} as it must be. From the first identity we get that λ > −rmin
where rmin := mini ri . Let R : (−rmin,+∞) → (0,+∞) be the strictly increasing function
defined by

1
R(λ)

=

n−1
i=0

1
ri + λ

.

We denote by R−1
: (0,+∞) → (−rmin,+∞) the corresponding inverse function. Then the

unique solution of (10.2) is given by λ = R−1(q) and µi = q/(R−1(q) + ri ). This gives also
the minimizer of (10.1). In particular, the large deviation rate function f : R+ → [0,+∞) asso-
ciated to NT /T is given by

f (q) =

n−1
i=0

q log

1 +

R−1(q)
ri


− R−1(q)

where we understand f (0) = rmin.
Note that the invariant measure πi is given by πi = r−1

i /
n−1

k=0 r−1
k . Hence, NT /T converges

in probability to n−1n−1
i=0 πiri = R(0). Indeed, we have f (R(0)) = 0 as it must be.

Finally, we point out that JT (i, i +1) = QT (i, i +1), hence the large deviations for the current
and for the flow coincide.

10.3. One particle on a ring

Consider a homogeneous simple random walk on the discrete one dimensional torus with N
sites TN := Z/NZ. The generator of the process is

L N f (x) = λp


f (x + 1)− f (x)

+ λ(1 − p)


f (x − 1)− f (x)


, (10.3)

where x ∈ TN , λ is a positive parameter and p ∈ [0, 1]. We are interested in the rate function
for the empirical current JT (x, x + 1) = QT (x, x + 1) − QT (x + 1, x). By symmetry the rate
function does not depend on x (we refer to [23] for related results).

The rate function can be computed directly since it coincides with the rate function of XT /N
where XT is a simple random walk on Z having generator (10.3). Indeed, if for example the
random walk starts at x , ⌊XT /N⌋ corresponds to the number of cycles made by the walker, with
the rule that a clockwise cycle has weight 1 and a unclockwise cycle has weight −1. In particular,
T JT (x, x + 1) differs from ⌊XT /N⌋ by at most one, hence |JT (x, x + 1) − XT /N T | ≤ 2/T .
Note that for p = ±1, we have XT = ±NT , (Nt )t∈R+

being a Poisson process of parameter λ.
To simplify the treatment below, we restrict to p ∈ (0, 1) excluding the trivial cases p = ±1.

The rate function of XT /N can be easily computed by means of Gärtner–Ellis Theorem using
the representation

XT =

NT
i=1

Yi ,
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where (N )t∈R+
is a Poisson process of parameter λ and Yi are independent i.i.d. random variables

taking values 1,−1 with probability p, 1 − p, respectively. We have that the corresponding rate
function WN is obtained as

WN ( j) = sup
α∈R

{ jα − ΛN (α)} , (10.4)

where

ΛN (α) = lim
T →+∞

1
T

log E


e
αXT

N


= lim

T →+∞

1
T

log


+∞
k=0

e−λT (λT )k

k!
E


e
α
N (Y1+···+Yk )



= lim
T →+∞

1
T

log


+∞
k=0

e−λT (λT )k

k!


pe

α
N + (1 − p)e−

α
N

k


= λ p e
α
N + λ(1 − p)e−

α
N − λ. (10.5)

Putting (10.5) into (10.4), one gets that the supremum in (10.4) is attained at α = N log
N j/2pλ+ (1/2pλ)


(N j)2 + 4p(1 − p)λ2


, hence

WN ( j) = N j log
 N j

2pλ
+

1
2pλ


(N j)2 + 4p(1 − p)λ2


−


(N j)2 + 4p(1 − p)λ2 + λ. (10.6)

Note that, given F ∈ R, choosing p =
1
2 +

F
2N and 1 − p =

1
2 −

F
2N (for N large enough) and

λ = γ N 2, it holds

lim
N→+∞

WN ( j) =
( j − γ F)2

2γ
.

The above asymptotics is consistent with formula (58) in [22] of the large deviation rate function
for the current of a diffusion on the circle.

The same result, i.e. the LD rate functional for JT (x, x + 1), can be obtained by a purely
variational approach. We write J for the unique zero divergence current such that J (x, x + 1) =

j . By Theorem 6.1 and the contraction principle, we get

WN ( j) = inf
I (µ, J ) : µ ∈ P(V )


,

where I (µ, J ) has been defined in (6.5). Since I (·, J ) is l.s.c. on the compact space P(V ), the
above infimum is obtained at some minimizer. We call Γ the set of minimizers µ ∈ P(V ) and
observe that Γ is convex since I is convex. As I (·, J ) is left invariant by the transformation µ →

T µ with T µ = {µy+1}y∈TN if µ = {µy}y∈TN , also Γ is T -invariant. Fix µ ∈ Γ . Then, µ, T µ,
T 2µ, . . . , T N−1µ all belong to Γ . By convexity of Γ , the uniform measure µ∗ =

1
N

N−1
j=0 T jµ

is in Γ . Hence, WN ( j) = I (µ∗, J ) and from (6.5) one recovers (10.6).
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10.4. Birth and death chains

Consider the birth and death Markov chain on Z+ = {0, 1, 2, . . .} with rates r(k, k + 1) =

bk > 0 for k ≥ 0 and r(k, k −1) = dk > 0 for k ≥ 1. This chain has been treated in details in [5].
Here we restrict to investigate when the joint LDP for the empirical measure and flow holds with
the L1-strong topology instead of the bounded weak* topology.

As proved in [5, Section 9], if limk→∞ dk = +∞ and limk→∞ bk/dk < 1, then Condi-
tion C(σ ) is satisfied for some σ > 0 (as well the basic assumptions (A1),. . . ,(A4)). Then the
following holds

Proposition 10.1. Suppose that limk→∞ dk = +∞ and limk→∞ bk/dk < 1.

(i) If limk→∞ bk/dk = 0, then the joint LDP for (µT , QT ) holds with L1
+(E) endowed with the

strong topology;
(ii) If limk→∞

bk/dk > 0, then the joint LDP for (µT , QT ) does not hold with L1
+(E) endowed

with the strong topology.

Proof. We first derive (i) by applying Theorem 5.2 to which we refer for the notation. We de-
fine E := {(k, k + 1) : k ∈ Z+}. Then H(k) = bk/(bk + dk) so that, by assumption, limk→∞

H(k) = 0. Hence, Items (i) and (ii) of Theorem 5.2 are satisfied.
Given a > 0 and a state x ∈ Z+, we choose k∗ ≥ x such that H(k) < a for any k ≥ k∗ and

define W = W (x, a) := {(k, k + 1), (k + 1, k), k ≥ k∗}. In particular, Items (iii.1) and (iii.2) in
Theorem 5.2 are satisfied.

It remains to check Item (iii.3). For any path exiting from x , given k ≥ k∗ we get that the num-
ber of times the path uses the edge (k, k +1) is at least the number of times the path uses the edge
(k +1, k) (more precisely, we have equality when the path ends inside [0, k]∩Z+ while we have
a difference of one unit if the path ends outside [0, k]). In conclusion (5.2) is valid with γ = 1/2.

To prove Item (ii) we generalize the argument used at the end of Section 9 in [5]. We restrict
to n large enough that 1/dn + 1/dn+1 < 1. In this case we define

γn := 1 −
1
dn

−
1

dn+1
,

µn
:= γn π +

δn

dn
+
δn+1

dn+1
,

Qn
:= γn Qπ

+ δ(n,n+1) + δ(n+1,n).

Note that Qn is divergence-free. For all edges (y, z) different from (n, n − 1), (n, n + 1), (n +

1, n), (n + 1, n + 2) it holds Φ

Qn(y, z), µn(y)r(y, z)


= 0 since Qn(y, z) = µn(y)r(y, z).

On the other hand

Φ

Qn(n, n − 1), µn(n)r(n, n − 1)


= Φ


q(1)n , p(1)n


,

Φ

Qn(n, n + 1), µn(n)r(n, n + 1)


= Φ


q(2)n , p(2)n


,

Φ

Qn(n + 1, n), µn(n + 1)r(n + 1, n)


= Φ


q(3)n , p(3)n


,

Φ

Qn(n + 1, n + 2), µn(n + 1)r(n + 1, n + 2)


= Φ


q(4)n , p(4)n


,

where

q(1)n := γn Qπ (n, n − 1), p(1)n := γn Qπ (n, n − 1)+ 1,

q(2)n := γn Qπ (n, n + 1)+ 1, p(2)n := γn Qπ (n, n + 1)+
bn

dn
,
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q(3)n := γn Qπ (n + 1, n)+ 1, p(3)n := γn Qπ (n + 1, n)+ 1,

q(4)n := γn Qπ (n + 1, n + 2), p(4)n := γn Qπ (n + 1, n + 2)+
bn+1

dn+1
.

Trivially, Φ

q(3)n , p(3)n


= 0. For p ≥ q we have 0 ≤ Φ(q, p) ≤ p − q; hence Φ


q(i)n , p(i)n


is uniformly bounded for i = 1, 4. Since limk→∞

bk/dk ∈ (0, 1), we can extract a subsequence
{nk}k≥1 such that 0 < c ≤ bnk/dnk ≤ c′ for some fixed c, c′ > 0 and for all k ≥ 1. As Qπ

is summable then γn Qπ (n, n + 1) is uniformly bounded. We conclude that supk≥1 Φ

q(2)nk , p(2)nk


< +∞.

We have thus shown that limk→∞ I (µnk , Qnk ) < +∞. We cannot therefore have a LDP with
L1

+(E) endowed with the strong topology since the level sets of I would be compact while the
sequence


(µnk , Qnk )


k≥1 is not relatively compact in L1

+(E) with the strong topology. �

Remark 10.2. Since the only current associated to the birth–death chain with vanishing diver-
gence is the zero current, the LDP for the empirical current becomes trivial.

10.5. Random walks with confining potential and external force

We now apply some of our previous considerations to the nearest neighbor random walk on
Zd with jump rates

r(y, z) = exp

−

1
2


U (z)− U (y)


+

1
2

F(y, z)

, (y, z) ∈ E, (10.7)

where E :=

(y, z) ∈ Zd

× Zd , |x − y| = 1

, U : Zd

→ R is a function satisfying


y∈Zd

exp{−U (y)} < +∞ (in particular U has compact level sets) and F ∈ L∞(E). It is convenient
to set

r0(y, z) = exp

−

1
2


U (z)− U (y)


, (y, z) ∈ E . (10.8)

Note that when r(·, ·) = r0(·, ·), the random walk is reversible with respect to the probability
π = exp{−U }, where we assume that U has been chosen so that π is properly normalized. As
usual, we denote by r the holding time parameters, i.e. r(y) =


z∼y r(y, z) where the summa-

tion is carried out over the nearest neighbors of y.
If one regards the random walk with rates (10.7) as a model for the position of a charged

particle in the confining potential U , the function F is naturally interpreted as the external field.
We start discussing explosion, i.e. Assumption (A.2). A sufficient condition for non explosion

is given by Theorem 4.6 in [28]: explosion does not occur if there exist a constant γ ≥ 0 and a
nonnegative function G such that G(xn) → +∞ when r(xn) → +∞ and such that (recall (3.1))

LG(y) ≤ γG(y), ∀y ∈ Zd . (10.9)

Consider the function G(y) = e
U (y)

2 . This is nonnegative and has compact level sets. We have
z

r(y, z)


G(z)− G(y)


≤


z

r(y, z)G(z)

= G(y)


z
e

F(y,z)
2 ≤ 2de

∥F∥∞
2 G(y).

We therefore conclude that explosion never occurs.
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To continue our investigation of the other assumptions, we consider the radial and the transver-
sal variation of the potential. More precisely, when U ∈ C1(Rd) we consider the orthogonal
decomposition

∇U (y) = ⟨∇U (y),y ⟩y + W (y), y ∈ Rd
\{0} (10.10)

withy := y/|y| and ⟨y,W (y)⟩ = 0. Above ⟨·, ·⟩ is the inner product in Rd .
We say that the potential U ∈ C1(Rd) has diverging radial variation which dominates the

transversal variation if

lim
|y|→∞

⟨∇U (y),y ⟩ = +∞, (10.11)

and

|W (y)| ≤
α

√
d

⟨∇U (y),y ⟩ + C, (10.12)

for some α ∈ [0, 1) and some C ≥ 0. Note that if W in (10.10) is bounded, then (10.12) is triv-
ially satisfied with α = 0. Moreover, note that (10.11) implies that lim|y|→∞ U (y)/|y| = +∞.

We give a criterion assuring Condition C(σ ).

Lemma 10.3 (Condition C(σ )). If lim|y|→∞ r0(y) = +∞, then Condition C(σ ) holds for
some σ > 0. In particular, if U ∈ C1(Rd) has diverging radial variation which dominates the
transversal variation, then Condition C(σ ) holds for some σ > 0.

Proof. We first prove the first part. As un we pick the constant sequence u = exp{U/2

. Items

(i)–(iv) in Condition C(σ ) then hold trivially. Moreover,

v(y) = −
Lu

u
(y) =


z:z∼y

r(y, z)−


z:z∼y

exp
 1

2 F(y, z)


≥ r(y)− 2d exp
 1

2∥F∥∞


≥ r0(y) exp


−

1
2∥F∥∞


− 2d exp

 1
2∥F∥∞


which imply Items (v) and (vi).

Let now U be as in the second part of the lemma. Fix y ∈ Zd
\{0}. There must exist a unit

vector e ∈ Zd such that ⟨y, e⟩ ≥ |y|/
√

d. Set z = y − e. Then, for some ξ = y − se and
s ∈ [0, 1], we can write

U (y)− U (z) = ⟨∇U (ξ), e⟩ = ⟨∇U (ξ),ξ⟩⟨ξ, e⟩ + ⟨W (ξ), e⟩

≥ ⟨∇U (ξ),ξ⟩ ⟨ξ, e⟩ −
α

√
d


− C,

where in the last bound we used (10.12). Since ⟨ξ, e⟩ = ⟨y, e⟩ − s ≥ |y|/
√

d − 1 while |ξ | ≤

|y| + 1, we conclude that

U (y)− U (z) ≥
⟨∇U (ξ),ξ⟩

√
d


|y| −

√
d

|y| + 1
− α


− C. (10.13)

The above inequality gives a lower bound for r0(y, z), and therefore for r0(y), which implies that
lim|y|→∞ r0(y) = +∞ under assumption (10.11). �

We now give a criterion assuring that the joint LDP of Theorem 3.2 holds with L1
+(E)

endowed with the strong L1-topology.
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Lemma 10.4 (LDP in L1-strong topology). Suppose that U ∈ C1(Rd) has diverging radial
variation which dominates the transversal variation. Consider one of the two following cases:

Case 1: W is bounded (which automatically implies (10.12));
Case 2: (10.12) holds for some α ∈ [0, 1/2) and

lim
|y|,|z|→∞

|y−z|≤1

⟨∇U (y),y ⟩

⟨∇U (z),z ⟩
= 1. (10.14)

Then, both in Case 1 and in Case 2, Theorem 3.2 holds with L1
+(E) endowed with the strong

L1-topology.

Proof. We apply Theorem 5.2 withE := {(y, y + e) ∈ Zd
× Zd

: |e| = 1, ⟨y, e⟩ ≥ 0}.

The validity of Item (i) of Theorem 5.2 is trivial. Let us check Item (ii) of Theorem 5.2. We
restrict to Case 2 (Case 1 follows the main lines and is simpler, we give some comments below).
To this aim fix y ∈ Zd

\{0}. Take z ∈ Zd with z = y + e, |e| = 1 and ⟨y, e⟩ ≥ 0. Then, for some
ξ = y + se and s ∈ [0, 1], we can write

U (z)− U (y) = ⟨∇U (ξ), e⟩ = ⟨∇U (ξ),ξ⟩⟨ξ, e⟩ + ⟨W (ξ), e⟩.

Since ⟨ξ, e⟩ = ⟨y, e⟩ + s ≥ 0, for |y| large we can bound

U (z)− U (y) ≥ −|W (ξ)| ≥ −
α

√
d

⟨∇U (ξ),ξ⟩ − C.

This implies for |y| large that
z:(y,z)∈E r(y, z) ≤ 2d exp


αγ+(y)

2
√

d
+

∥F∥∞ + C

2


, (10.15)

where

γ+(y) := sup

⟨∇U (ξ),ξ ⟩ : ξ ∈ Rd , |ξ − y| ≤ 1


.

In Case 1 (10.15) remains valid with αγ+(y)
2
√

d
replaced by supi :1≤i≤d ∥Wi∥∞/2, where W =

(W1, . . . ,Wd).
Take e′ a unit vector such that ⟨y, e′

⟩ ≥ |y|/
√

d and set z′
= z − e′. Being in the same setting

of (10.13), we conclude that

r(y, z′) ≥ exp


γ−(y)

2
√

d


|y| −

√
d

|y| + 1
− α


−

C

2
−

1
2
∥F∥∞


, (10.16)

where

γ−(y) := inf

⟨∇U (ξ),ξ ⟩ : ξ ∈ Rd , |ξ − y| ≤ 1


.

By using (10.15) and (10.16) we get

H(y) ≤


z:(y,z)∈E r(y, z)

r(y, z′)
≤ C ′ exp


γ−(y)

2
√

d


α
γ+(y)

γ−(y)
+ α −

|y| −
√

d

|y| + 1


. (10.17)
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Since the map ξ → ⟨∇U (ξ),ξ ⟩ is continuous, we can write γ+(y) = ⟨∇U (ξ0),ξ0 ⟩ and
γ−(y) = ⟨∇U (ξ1),ξ1 ⟩ for suitable ξ0, ξ1 satisfying |ξ0 − y|, |ξ1 − y| ≤ 1. Writing

γ+(y)

γ−(y)
=

⟨∇U (ξ0),ξ0 ⟩

⟨∇U (y),y ⟩

⟨∇U (y),y ⟩

⟨∇U (ξ1),ξ1 ⟩
,

by (10.14) we deduce that γ+(y)/γ−(y) = 1 + o(1) as |y| → +∞. In particular, we can rewrite
(10.17) as

H(y) ≤ C ′ exp

γ−(y)

2
√

d


2α − 1 + o(1)


.

Using that γ−(y) → +∞ as |y| → +∞ and that α < 1/2 (we restrict to Case 2), we get Item
(ii) of Theorem 5.2, i.e. that the function H defined in (5.1) vanishes at infinity.

Let us finally check Item (iii) of Theorem 5.2. To this aim, given a positive integer r , we
introduce the diamond B(r) := {y ∈ Zd

: |y|1 ≤ r}. Given x ∈ Zd and a > 0, we take r large
enough that x ∈ B(r) and {H ≥ a} ⊂ B(r − 1) (recall that H vanishes at infinity). Finally we
define W = W (x, a) as the family of oriented edges in Zd not inside B(r):

W := {(y, z) ∈ E : y ∉ B(r)or z ∉ B(r)}.

Trivially W satisfies Items (iii.1) and (iii.2) in Theorem 5.2. We claim that also Item (iii.3) holds:
given any path x1 = x, x2, x3 . . . xn of nearest-neighbor points in Zd starting at x , the number
of its edges in W ∩ E is at least 1/2 of the total number of its edges in W . To prove the above
claim it is enough to observe that, considering the pieces of the path in {y ∈ Zd

: |y|1 ≥ r},
we can restrict to a path x1, x2, x3 . . . xn with |x1|1 = r and with |xi |1 ≥ r for all i = 2, . . . , n.
To prove the thesis for this path, we observe that |xi+1|1 = |xi |1 + 1 if xi+1 − xi ∈ E while
|xi+1|1 = |xi |1 − 1 if xi+1 − xi ∉ E . Therefore,

♯{i : 1 ≤ i < n, xi+1 − xi ∈ E} − ♯{i : 1 ≤ i < n, xi+1 − xi ∉ E}

= |xn|1 − |x1|1 = |xn|1 − r.

Since by assumption |xn|1 ≥ r we get the thesis. �

We next discuss some choices of the field F allowing to apply Theorem 8.1 and to deduce
the large deviation principle for the Gallavotti–Cohen functional. These hypotheses will be in the
same spirit of those introduced in [4] for continuous diffusions. Observing that in this example
it holds E = Es, we restrict to the physically relevant case in which F is antisymmetric,
i.e. F(y, z) = −F(z, y), (y, z) ∈ E . We then require that the chain with rates r has the same
invariant measure π = exp{−U } as the one with rates r0, that is

z:z∼y
exp


−

1
2 [U (z)+ U (y)]


sinh

1
2

F(y, z)


= 0, ∀y ∈ V . (10.18)

We stress that the knowledge of π is necessary to know the function wπ in (7.1), we consider
here models where the external force field does not change the invariant distribution.

For simplicity we restrict to d = 2. Functions U and F satisfying (10.18) can be easily
constructed. For instance one can take U “radial”, i.e. U (y) = U (|y|1) for some U : Z+ → R.
Then the discrete vector field F has to be fixed as in Fig. 3. In that figure we represent the level
curves of U with black lines and use arrows of different colors to represent the force field. To
each color we arbitrarily associate a real number varying in a fixed interval [−A, A] representing
the value of the discrete vector field. Consider an oriented edge (y, z). If in Fig. 3 there is a
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Fig. 3. The vector field F when U = U (|x |1). (The reader is referred to the web version of this article for colored
figures.)

Fig. 4. The vector field F when U = U (|x |∞). (The reader is referred to the web version of this article for colored
figures.)

colored arrow from y to z then F(y, z) assumes the value corresponding to that color, while if
there is a colored arrow from z to y then F(y, z) assumes the value corresponding to that color
with a minus sign. If there is no arrow associated either to (y, z) or to (z, y) then F(y, z) = 0.
Note that by construction ∥F∥∞ is bounded and (10.18) is satisfied.

If instead we consider U of the form U (y) = U (|x |∞) for some U : Z+ → R then to have
(10.18) we need to fix the discrete vector field F as in Fig. 4, following the same construction as
above. In both cases the discrete vector field F is associated to “rotations” along the level curves
of U .

The Gallavotti–Cohen functional (8.2) then becomes

WT =
1
2


(y,z)∈E

JT (y, z)F(y, z) =


y∈Zd

d
i=1

JT (y, y + ei )F(y, y + ei )

where we used the antisymmetry of JT and F . In particular, WT is naturally interpreted as the
empirical power dissipated by F . The large deviation principle for the family {WT } then follows
from Theorem 8.1. In particular, if F ∈ C0(E) we only need to require Condition C(σ ) for some
σ > 0 and this can be checked using the criterion given in Lemma 10.3. If F ∈ L∞(E) we
need in addition to verify that the joint LDP for the empirical measure and flow holds with the
L1-topology instead of the bounded weak* topology for L1

+(E). This can be done by applying
Theorem 5.2, or the criterion (as well as some variations) given in Lemma 10.4.
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Appendix. Geometric properties of spanning trees of Zd

We consider here the lattice Zd , d ≥ 2. Trivially, the cycle space admits a basis given by
cycles of uniformly bounded length: take the cycles (x, x + ei , x + ei + e j , x + e j ) where x
varies in Zd , 1 ≤ i < j ≤ d , ei and e j vary among the vectors in the canonical basis of Zd . Due
to Problem 2 after Theorem 9.4 it is natural to ask if the lattice Zd admits a fundamental basis
given by cycles of uniformly bounded length. The answer is negative due to the following fact:

Proposition A.1. Consider a countable connected unoriented graph G = (V, E) and fix a span-
ning tree T . If the fundamental cycle basis associated to T has cycles with at most ℓ+1 vertices,
then the following property holds:

Given a ≠ b ∈ V fix a path γ = (x0, x1, . . . , xM ) from x0 = a to xM = b. Let γa,b =

(z0, z1, . . . , zR) be the unique self-avoiding path inside the tree T from z0 = a to zR = b. Then
for any i : 0 ≤ i ≤ R there exists j : 0 ≤ j ≤ M with d(zi , x j ) ≤ ℓ, d(·, ·) being the graph
distance.

Since the property in the above proposition is trivially not satisfied by the lattice Zd , d ≥ 2,
we get that Zd has no fundamental cycle basis with uniformly bounded length.

Proof. Consider the path γ = (x0, x1, x2, . . . , xM ). For each k = 0, 1, . . . ,M − 1 either the
edge (xk, xk+1) belongs to the tree T , or it is a chord and therefore the vertices xk, xk+1 have
graph distance bounded by ℓ inside T . We modify γ as follows. If the edge (xk, xk+1) belongs
to the tree T , then keep the pair xk, xk+1 unchanged, otherwise replace the pair xk, xk+1 by the
string xk, a1, a2, . . . , ar , xk+1 given by the unique self-avoiding path inside T from xk to xk+1.
We call γ (1) the resulting new path. Writing γ (1) = (y0, y1, . . . , yS), we get that y0 = a, yS = b,
γ (1) lies inside the tree and that

∀i : 0 ≤ i ≤ S ∃ j : 0 ≤ j ≤ M such that d(yi , x j ) ≤ ℓ. (A.1)

The path γ (1) could have self-intersections, anyway thought of as an unoriented graph it is a
connected subgraph of T , hence it contains a self-avoiding path from a to b, which (by definition
of tree) must be γa,b. In particular, the vertices of γa,b are of the form yi and therefore satisfy
(A.1). �
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[22] C. Maes, K. Netoc̆ný, B. Wynants, Steady state statistics of driven diffusions, Physica A 387 (2008) 2675–2689.
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