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1. Introduction

We consider a continuous time Markov chain (ξt)t≥0 on a countable (finite or
infinite) state space V . Following [9] the dynamics is defined knowing the jump
rates r(x, y), x 6= y in V , under the assumption that r(x) :=

∑
y∈V r(x, y) <

+∞ for all x ∈ V . Then, at each site x the system waits an exponential time of
parameter r(x) afterwards it jumps to a state y with probability r(x, y)/r(x).
We assume that a.s. for any fixed initial state explosion does not occur, hence
the Markov chain is defined in V for all times t ∈ R+ and we do not need to
introduce any coffin state. We denote by Px the law on the Skorohod space
D(R+;V ) of the Markov chain starting at x.

In what follows we restrict to irreducible Markov chains such that there
exists a unique invariant probability measure, which we denote by π. As in [9],
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by invariant probability measure π we mean a probability measure on V such
that ∑

y∈V

π(x) r(x, y) =
∑

y∈V

π(y) r(y, x) ∀ x ∈ V (1.1)

where we understand r(x, x) = 0. We stress that the existence of π is guaranteed
if V is finite, while in general uniqueness is automatic if π exists.

A fundamental result in the theory of large deviations is given by the Donsker-
Varadhan Large Deviations Principle (LDP) of the empirical measure of Markov
processes. We recall its statement referring to the above Markov chain ξ. De-
note by P(V ) the space of probability measures on V endowed of the weak
topology. Given T > 0 the empirical measure µT : D(R+;V ) → P(V ) is defined
by

µT (X) =
1
T

T∫

0

dt δXt
(1.2)

where δy denotes the pointmass at y. Given x ∈ V , the ergodic theorem [9]
implies that the empirical measure µT converges Px a.s. to π as T → ∞. In
particular, the family of probabilities {Px ◦ µ−1

T }T>0 on P(V ) converges to δπ.
In [6] the large deviations from the above limit theorem have been studied by
Donsker and Varadhan. Under suitable hypotheses (see Remark 1.2 below) they
proved that as T → +∞ the family of probability measures {Px ◦ µ−1

T }T>0 on
P(V ) satisfies a LDP with good rate function I such that

I(µ) = sup
h

{−〈µ, h−1Lh〉} (1.3)

as h varies among the strictly positive functions in the domain of the infinitesi-
mal generator L (in general, < µ, f >:=

∑
x∈V µ(x)f(x)).

The above result has been derived in [6]–(I) from an analogous result for
discrete time Markov chains by an approximation argument in the case of V
finite. The extension to V infinite has been achieved in [6]–(III), while in [6]–
(IV) the LDP for the empirical measure is obtained by contraction from the
LDP for the empirical process.

Our aim in this note is to give an alternative proof of the LDP for the
empirical measure by contraction from the joint LDP for the empirical measure
and flow recently proved in [2]. As a consequence, we derive a new representation
of the rate function for the empirical measure. The classical Donsker – Varadhan
representation is given as a supremum of an explicit functional over a suitable
class of functions (cf. equation (1.3)). Our representation is given as an infimum
of an explicit functional over a suitable class of flows. In [6]–(IV) there is also a
representation in term of an infimum but the functional to be minimized is not
really explicit. Combining the two representations, the classic one and ours, one
gets easily upper and lower bounds on the rate function by choosing suitable test
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flows and functions, respectively. The equivalence of the two representations
follows at once since they both correspond to the rate function of the same
random object, the empirical measure. We give an alternative and direct proof
of this fact, independent from the LDP proved by Donsker and Varadhan in [6].
This proof exploits several discrete geometric features concerning the graph
underlying the Markov chain and the associated divergence-free flows, which
can be interesting by themselves. We show also that in the finite dimensional
case the equivalence of the two representations of the rate function is an instance
of the Fenchel – Rockafellar duality. The infinite dimensional case is more subtle,
cannot be achieved by adapting the finite-dimensional proof and requires new
arguments.

We recall the joint LDP for the empirical measure and flow in [2] and fix
some notation. We denote by E the set of ordered edges in V with positive
transition rate, namely E := {(y, z) ∈ V × V : y 6= z and r(y, z) > 0}. Then for
each T > 0 we define the empirical flow as the map QT : D(R+;V ) → [0,+∞]E

given by

QT (y, z) (X) :=
1
T

∑

0≤t≤T

δy(Xt−)δz(Xt) (y, z) ∈ E . (1.4)

Namely, TQT (y, z) is Px a.s. the number of jumps from y to z in the time
interval [0, T ] of the Markov chain ξ starting at x. As discussed in [2], QT (y, z)
converges to π(y)r(y, z) at T →∞ Px a.s.

Elements in [0,+∞]E are called flows. We denote by L1
+(E) the subset of

summable flows, i.e. of flows Q such that ‖Q‖1 :=
∑

(y,z)∈E Q(y, z) < +∞.
Given a summable flow Q ∈ L1

+(E) its divergence divQ : V → R is defined as

divQ (y) =
∑

z: (y,z)∈E

Q(y, z)−
∑

z: (z,y)∈E

Q(z, y), y ∈ V. (1.5)

Observe that the divergence maps L1
+(E) into L1(V ).

To each probability µ ∈ P(V ) we associate the flow Qµ ∈ RE
+ defined by

Qµ(y, z) := µ(y) r(y, z) (y, z) ∈ E. (1.6)

Note that Qµ ∈ L1
+(E) if and only if 〈µ, r〉 < +∞. Moreover, in this case, by

(1.1) Qµ has vanishing divergence if only if µ is invariant for the Markov chain
ξ, i.e. µ = π.

We endow L1
+(E) of the bounded weak* topology. As discussed in [2] this

topology is the most suited for studying large deviations of the empirical flow.
For completeness we recall its definition although it will never be used below (see
[8] for a detailed treatment). A subset W ⊂ L1

+(E) is open if and only if for each
` > 0 the set {Q ∈W : ‖Q‖1 < `} is open in the ball {Q ∈ L1

+(E) : ‖Q‖1 < `}
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endowed of the weak* topology inherited from L1(E). When E is finite, the
bounded weak* topology coincides with the L1-topology.

We can now recall the LDP proved in [2]. We start from the assumptions.
To this aim, given f : V → R such that

∑
y∈V r(x, y) |f(y)| < +∞ for each

x ∈ V , we denote by Lf : V → R the function defined by

Lf (x) :=
∑

y∈V

r(x, y)
[
f(y)− f(x)

]
, x ∈ V. (1.7)

Definition 1.1. Given σ ∈ R+ we say that Condition C(σ) holds if there exists
a sequence of functions un : V → (0,+∞) satisfying the following requirements:

(i) For each x ∈ V and n ∈ N it holds
∑

y∈V r(x, y)un(y) < +∞.

(ii) The sequence un is uniformly bounded from below. Namely, there exists
c > 0 such that un(x) ≥ c for any x ∈ V and n ∈ N.

(iii) The sequence un is uniformly bounded from above on compacts. Namely,
for each x ∈ V there exists a constant Cx such that for any n ∈ N it holds
un(x) ≤ Cx.

(iv) Set vn := −Lun/un. The sequence vn : V → R converges pointwise to
some v : V → R.

(v) The function v has compact level sets. Namely, for each ` ∈ R the level
set

{
x ∈ V : v(x) ≤ `

}
is finite.

(vi) There exists a positive constant C such that v ≥ σ r − C.

Several examples of Markov chains satisfying condition C(σ) with σ > 0 are
discussed in [2, 3].

Let Φ: R+ × R+ → [0,+∞] be the function defined by

Φ(q, p) :=





q log
q

p
− (q − p) if q, p ∈ (0,+∞),

p if q = 0, p ∈ [0,+∞),
+∞ if p = 0 and q ∈ (0,+∞).

(1.8)

For p > 0, Φ(·, p) is a nonnegative convex function and is zero only at q = p.
Indeed, it is the rate function for the LDP of the sequence NT /T as T → +∞,
(Nt)t∈R+ being a Poisson process with parameter p.

Finally, we let I : P(V )× L1
+(E) → [0,+∞] be the functional defined by

I(µ,Q) :=





∑

(y,z)∈E

Φ
(
Q(y, z), Qµ(y, z)

)
if divQ = 0 , 〈µ, r〉 < +∞,

+∞ otherwise.
(1.9)
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Remark 1.1. As proved in [2, Appendix B] the above condition 〈µ, r〉 < +∞ can
be removed, since the series in (1.9) diverges if 〈µ, r〉 = +∞.

Remark 1.2. Condition C(0) (i.e. C(σ) with σ = 0) with (i) replaced by the
fact that un belongs to the domain of the infinitesimal generator, and with Lun

defined as the infinitesimal generator applied to un, is the condition under which
the large deviation of the empirical measure is derived in [6]–(IV).

Theorem 1.1 (Bertini, Faggionato, Gabrielli, [2]). Assume Condition
C(σ) to hold with σ > 0. (Alternatively, assume the hypercontractivity Con-
dition 2.3 in [2]). Then as T → +∞ the family of probability measures {Px ◦
(µT , QT )−1} on P(V )×L1

+(E) satisfies a LDP with good and convex rate func-
tion I. Namely, for each closed set C ⊂ P(V ) × L1

+(E), and each open set
A ⊂ P(V )× L1

+(E), it holds for each x ∈ V

lim
T→+∞

1
T

logPx

(
(µT , QT ) ∈ C

)
≤ − inf

(µ,Q)∈C
I(µ,Q), (1.10)

lim
T→+∞

1
T

logPx

(
(µT , QT ) ∈ A

)
≥ − inf

(µ,Q)∈A
I(µ,Q). (1.11)

Remark 1.3. Condition C(σ) with σ > 0 (or alternatively the hypercontractivity
Condition 2.3 in [2]) implies that 〈π, r〉 < +∞ (see Lemma 3.9 in [2]).

We can finally state our new results.

Theorem 1.2. Assume that Condition C(σ) holds with σ > 0 (alternatively,
assume the hypercontractivity Condition 2.3 in [2]). Then as T → +∞ the
family of probability measures {Px ◦ µ−1

T } on P(V ) satisfies a LDP with good
rate function I such that

I(µ) = inf
{
I(µ,Q) : Q ∈ L1

+(E)
}
. (1.12)

I(µ) < +∞ if and only if 〈µ, r〉 < +∞, in this case the above infimum is indeed
attained at a unique flow Q∗ ∈ L1

+(E). Moreover the following alternative
variational characterization holds

I(µ) =

{
sup

{− 〈µ, e−gLeg〉 : g ∈ L∞(V )
}

if 〈µ, r〉 < +∞ ,

+∞ otherwise .
(1.13)

Since the projection map P(V ) × L1
+(E) 3 (µ,Q) → µ ∈ P(V ) is trivially

continuous, due to the contraction principle the first part of the theorem up
to (1.12) follows from Theorem 1.1. Since I(µ,Q) = +∞ if 〈µ, r〉 = +∞ and
I(µ, 0) < +∞ if 〈µ, r〉 < +∞, we get that I(µ) is finite if and only if 〈µ, r〉 is
finite. Finally, note that since I(·, ·) is good, then the map L1

+(E) 3 Q→ I(µ,Q)
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is lower semicontinuous with compact level sets and therefore it has a minimum.
The uniqueness of the minimizer follows from the fact that I(µ, ·) is strictly
convex on the set {Q : I(µ,Q) < +∞}, as can be easily derived from the
strictly convexity of Φ(·, p) for p > 0. The non trivial task is therefore to prove
(1.13).

We will use the following characterization of I proved in [2] (see formula
(5.4) there)

I(µ,Q) = sup Iφ,F (µ,Q) . (1.14)

In (1.14) the supremum is among all pairs φ, F with φ ∈ L∞(V ), F ∈ L∞(E),
being respectively L∞(V ) the set of bounded functions on vertices and L∞(E)
the set of bounded functions on edges. Moreover we have

Iφ,F (µ,Q) := 〈φ,divQ〉 − 〈µ, rF − r〉+
∑

(y,z)∈E

Q(y, z)F (y, z) (1.15)

where rF : V → (0,+∞) is defined by

rF (y) =
∑

z∈V

r(y, z)eF (y,z) and 〈φ,divQ〉 =
∑

y∈V

φ(y) divQ(y).

In [2] formula (1.14) is proved with a slightly different class of functions but the
argument can be clearly adapted to the present setting. See also Section 4 for
computations similar to (1.14).

In the reversible case we have the following additional result:

Proposition 1.1. Assume the same setting of Theorem 1.2. Suppose that
the invariant measure π is also reversible, i.e. π(y)r(y, z) = π(z)r(z, y) for all
y, z ∈ V . Suppose that µ ∈ P(V ) is such that I(µ) < +∞ (i.e. 〈µ, r〉 < +∞).
Then

Q∗(y, z) = Q∗(z, y) =
√
µ(y)µ(z)r(y, z)r(z, y)

is the minimizing flow in (1.12) and it holds

I(µ) =
1
2

∑

y∈V

∑

z∈V

(√
µ(y)r(y, z)−

√
µ(z)r(z, y)

)2

.

Moreover (1.13) admits a maximizing sequence g(n) that is a suitable approxi-
mating sequence in L∞(V ) of the extended function g : V → {−∞}∪R defined
by

g(y) := log
√
µ(y)/π(y) . (1.16)

The rest of the paper is devoted to the proof of Theorem 1.2 (see Section 2)
and the proof of Proposition 1.1 (see Section 3). Most of the technical difficulties
come from the case of V infinite. In Section 4 we give for V finite an alternative
proof of Theorem 1.2 showing that it is indeed a special case of the Fenchel –
Rockafellar Theorem. In the case |V | < +∞ different proofs where given in [7]
and [1].
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2. Proof of Theorem 1.2

2.1. Some preliminary results on oriented graphs

Let (V, E) be an oriented graph. Given y, z ∈ V, an oriented path from y to z
in (V, E) is a finite string (x1, x2, . . . , xn) with x1 = y, xn = z and (xi, xi+1) ∈ E
for all i = 1, . . . , n−1. A cycle in (V, E) is an oriented path (x1, x2, . . . , xn) with
x1 = xn. It is called self-avoiding if xi 6= xj for 1 ≤ i < j < n. Given a cycle
C we denote by 1IC the function on E taking value 1 on the edges (xi, xi+1),
1 ≤ i < n, and zero otherwise.

Let us now refer to the oriented graph (V,E). We denote by C the family
of self-avoiding cycles in (V,E). Given C ∈ C, note that 1IC is a divergence-
free flow in L1

+(E). In [2][Lemma 4.1] it is proved that any divergence-free
flow Q ∈ L1

+(E) can be written as Q =
∑

C∈C Q̂(C)1IC for suitable nonnega-
tive constants Q̂(C), C ∈ C. The above decomposition has to be thought as
Q(y, z) =

∑
C∈C Q̂(C)1IC(y, z) for each edge (y, z) ∈ E.

Take µ ∈ P(V ) such that 〈µ, r〉 < +∞. Consider the oriented graph (Vµ, Eµ)
where

Eµ = {(y, z) : Qµ(y, z) = µ(y)r(y, z) > 0} ,
Vµ = {y ∈ V : ∃z ∈ V with (y, z) ∈ Eµ or (z, y) ∈ Eµ} .

Trivially, the support of µ is included in Vµ. If z ∈ Vµ \ supp(µ) then there
exists y ∈ supp(µ) with r(y, z) > 0.

On the set Vµ we define the equivalence relation y ∼ z as follows: y ∼ z if
and only if in (Vµ, Eµ) there exists an oriented path from y to z as well as an
oriented path from z to y. We call (V (`)

µ )`∈L the equivalence classes of Vµ under
the relation ∼, and set

E(`)
µ := {(y, z) ∈ Eµ : y, z ∈ V (`)

µ } .

Above L is the index set of the equivalence classes, given by L = N = {1, 2, . . . }
if there are infinite classes, or L = {1, 2, . . . , |L|} if there is a finite number of
classes.

Given Q ∈ L1
+(E) and given y 6= z in V we set Q(y, z) = 0 if (y, z) 6∈ E. The

support ofQ, denoted by E(Q), is defined as E(Q) = {(y, z) ∈ E : Q(y, z) > 0}.

Lemma 2.1. Let Q ∈ L1
+(E) satisfy I(µ,Q) < +∞. Then Q(y, z) = 0 if y 6∼ z

in (Vµ, Eµ). In particular, E(Q) ⊂ ∪`∈LE
(`)
µ .

Proof. Suppose that Q(y, z) > 0. Since I(µ,Q) < +∞ the flow Q must be
divergence-free. In addition, since Φ(q, p) = +∞ if q > 0 and p = 0, the flow Q
must have support contained in Eµ. By the cyclic decomposition, we can write
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Q =
∑

C∈C Q̂(C)IC . In particular, (y, z) ∈ C0 for some C0 ∈ C with Q̂(C0) > 0.
Since Q has support contained in Eµ it must be (u, v) ∈ Eµ for all (u, v) ∈ C0.
The cycle C0 can be divided in two oriented paths, one from y to z and one
from z to y in (Vµ, Eµ). This implies that y, z belong to the same equivalence
class V (`)

µ . Since E(Q) ⊂ Eµ it must be (y, z) ∈ Eµ and therefore (y, z) ∈ E(`)
µ .
2

2.2. Proof of Theorem 1.2

We define the functions I1, J1 : P(V ) → [0,+∞] as the r.h.s. of (1.12) and
(1.13), respectively:

I1(µ) := inf
{
I(µ,Q) : Q ∈ L1

+(E)
}
, (2.1)

and

J1(µ) :=
{

sup
{− 〈µ, e−gLeg〉 : g ∈ L∞(V )

}
, if 〈µ, r〉 < +∞,

+∞ otherwise . (2.2)

As already explained we only need to prove the equality I1(µ) = J1(µ). By
Remark 1.1 we can restrict to probability measures µ such that 〈µ, r〉 < +∞.

We first show the inequality I1(µ) ≥ J1(µ). Given g : V → R, we define
the gradient ∇g : E → R as ∇g(y, z) := g(z) − g(y). We now observe that
for any g ∈ L∞(V ) and for any divergence-free flow Q ∈ L1

+(E) the following
integration by parts formula is satisfied:

〈Q,∇g〉 =
∑

(y,z)∈E

Q(y, z)(g(z)− g(y))

=
∑

y∈V

g(y)
( ∑

z:(z,y)∈E

Q(z, y)−
∑

z:(y,z)∈E

Q(y, z)
)

= −〈divQ, g〉 = 0 . (2.3)

After these observations the conclusion is simple. We can restrict the in-
fimum in (2.1) to divergence-free Q’s. Fix φ, g ∈ L∞(V ). We can use the
variational characterization (1.14) of the rate function I and deduce

I(µ,Q) ≥ Iφ,∇g(µ,Q)

=
∑

(y,z)∈E

{− µ(y)r(y, z)
[
eg(z)−g(y) − 1

]
+Q(y, z)[g(z)− g(y)]

}

= −〈µ, e−gLeg〉 . (2.4)

In both the above identities we used that Q is divergence-free. Minimizing over
Q and maximizing over g in (2.4) we obtain that I1(µ) ≥ J1(µ).
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We show now the converse inequality I1(µ) ≤ J1(µ). As already observed
after Theorem 1.2 the infimum defining I1 in (2.1) is attained as some flow Q∗,
i.e. I(µ,Q∗) = I1(µ). Taking Q ≡ 0 in (2.1) we get

I1(µ) = I(µ,Q∗) ≤ I(µ, 0) = 〈µ, r〉 < +∞ . (2.5)

Due to Lemma 2.1 we can write

I(µ,Q∗) =
∑

`∈L

∑

(y,z)∈E
(`)
µ

Φ
(
Q∗(y, z), µ(y)r(y, z)

)
+

∑

(y,z)∈Eµ\∪`∈LE
(`)
µ

µ(y)r(y, z).

(2.6)
The next step is to show that Q∗(y, z) > 0 for any (y, z) ∈ E

(`)
µ . Suppose by

contradiction that there exists an edge (y, z) ∈ E
(`)
µ such that Q∗(y, z) = 0.

Take a cycle C contained in (V `
µ , E

`
µ) and containing the edge (y, z) (it exists by

definition of the equivalence relation ∼). For any α ≥ 0 consider the perturbed
flow Q∗α := Q∗ + α1IC . Then I(µ,Q∗α) < +∞. Moreover, the map R+ 3 α →
I(µ,Q∗α) ∈ [0,+∞) is continuous and C1 on (0,+∞). Its derivative on (0,+∞)
is given by

d

dα

[
I(µ,Q∗α)

]
=

∑

(v,w)∈C

log
Q∗(v, w) + α

µ(v)r(v, w)
. (2.7)

The above derivative becomes strictly negative for α small enough and this
contradicts the fact that Q∗ is a global minimizer.

Consider now an arbitrary cycle C contained in (V (`)
µ , E

(`)
µ ). We have just

proved thatQ∗ is strictly positive on the edges of C. Hence, now we can conclude
that the above function R+ 3 α → I(µ,Q∗α) ∈ [0,+∞) is C1 on all R+ (zero
included) where its derivative is given by (2.7). Since Q∗ is a global minimizer
the value α = 0 is a local minimum and consequently the value of the derivative
in correspondence of α = 0 must be zero. From (2.7) we get

∑

(v,w)∈C

log
Q∗(v, w)
µ(v)r(v, w)

= 0 . (2.8)

The validity of (2.8) for any cycle C contained in (V (`)
µ , E

(`)
µ ) implies that there

exists a function g` : V (`)
µ → R such that

log
Q∗(y, z)
µ(y)r(y, z)

= g`(z)− g`(y) , ∀(y, z) ∈ E(`)
µ . (2.9)

The function g` is determined up to an arbitrary additive constant in the fol-
lowing way. Let y∗ be an arbitrary fixed element of V (`)

µ and set g`(y∗) := 0.
For any z ∈ V (`)

µ consider an arbitrary oriented path (z1, . . . , zn) going from y∗
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to z in (Vµ, Eµ) and define

g`(z) :=
n−1∑

i=1

log
Q∗(zi, zi+1)

µ(zi)r(zi, zi+1)
. (2.10)

If we prove that g` is well defined, i.e. that the above definition (2.10) does not
depend on the chosen path, then it is immediate to check (2.9).

To show that the definition is well posed, fix an oriented path (u1, . . . , uk)
from z to y∗ in (Vµ, Eµ) (it exists since y∗ ∼ z). Then C= (z1, . . . , zn, u2, . . . , uk)
is a cycle going through y∗, z. It is trivial to check that all points in C are ∼-
equivalent to y∗, z, hence C is a cycle in (V (`)

µ , E
(`)
µ ). Applying (2.8) we get

n−1∑

i=1

log
Q∗(zi, zi+1)

µ(zi)r(zi, zi+1)
= −

k−1∑

j=1

log
Q∗(uj , uj+1)

µ(uj)r(uj , uj+1)
. (2.11)

This shows that the l.h.s. does not depend on the particular oriented path
(z1, . . . , zn) from y∗ to z, since the r.h.s. is path-independent. Hence g` is well
defined.

The function g` does not necessarily belong to L∞(V (`)
µ ), nevertheless we

can improve a result similar to (2.3):

Claim 2.1. The series
∑

(y,z)∈E
(`)
µ
Q∗(y, z)(g`(z)− g`(y)) is absolutely conver-

gent and moreover

∑

(y,z)∈E
(`)
µ

Q∗(y, z)(g`(z)− g`(y)) = 0 . (2.12)

Since the series is absolutely convergent the l.h.s. of (2.12) does not depend on
the order of summation and therefore is well defined.

Proof of the claim. By the triangle inequality we have

q |log(q/p)| ≤ Φ(q, p) + |q − p| , q, p > 0 . (2.13)

Using the inequality (2.13) we have
∑

(y,z)∈E
(`)
µ

Q∗(y, z) |g`(z)− g`(y)|

≤
∑

(y,z)∈E(Q∗)⊂Eµ

Q∗(y, z)
∣∣∣∣log

Q∗(y, z)
µ(y)r(y, z)

∣∣∣∣

≤ I(µ,Q∗) + ‖Q∗ −Qµ‖1 < +∞ . (2.14)
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Above we have used (2.5) and the fact thatQµ ∈ L1
+(E) since 〈µ, r〉 < +∞. This

proves that the series in the l.h.s. of (2.12) is absolutely convergent. Trivially,
using the cyclic decomposition Q∗ =

∑
C∈C Q̂(C)1IC , this is equivalent to the

bound ∑

(y,z)∈E
(`)
µ

∑

C∈C:
C is inside (V (`)

µ ,E(`)
µ )

Q̂(C)|g`(z)− g`(y)| < +∞ . (2.15)

Due to (2.15) and the properties of absolutely convergent series (in particular,
their invariance under permutation of the addenda) we get

∑

C∈C:
C is inside (V (`)

µ ,E(`)
µ )

( ∑

(y,z)∈C

Q̂(C)(g`(z)− g`(y))
)

=
∑

(y,z)∈E
(`)
µ

( ∑

C∈C : (y,z)∈C ,

C is inside (V (`),E(`))

Q̂(C)(g`(z)− g`(y))

)
. (2.16)

On the other hand, the l.h.s. of (2.16) is trivially zero since each sum inside the
brackets is zero. The r.h.s. of (2.16) is simply the l.h.s. of (2.12) (recall Lemma
2.1), thus concluding the proof of our claim. 2

Using (2.9) and (2.12) we obtain
∑

(y,z)∈E
(`)
µ

Φ
(
Q∗(y, z), µ(y)r(y, z)

)
=

∑

(y,z)∈E
(`)
µ

µ(y)r(y, z)
(
1− e∇g`(y,z)

)
. (2.17)

Recall that L is the index set of the equivalence classes for ∼ in (Vµ, Eµ).
We then consider the oriented graph (L, E) where the oriented edges are given
by the pairs (`, `′) for which there exists an edge (y, z) ∈ Eµ such that y ∈ V (`)

µ

and z ∈ V (`′)
µ . Then the graph (L, E) is an oriented acyclic graph, i.e. it contains

no cycles.
We can now conclude the proof. First we consider the case when |L| < +∞.

Then by Proposition 1.4.3 in [5] the finite acyclic oriented graph (L, E) admits
an acyclic ordering of the vertices. This means that there exists a bijection
ĥ : L → L such that ĥ(`) < ĥ(`′) for any (`, `′) ∈ E . Then we define h(`) :=
|L| − ĥ(`) + 1 to get a bijection h : L → L such that h(`) > h(`′) for any
(`, `′) ∈ E .

Consider the sequence of functions g(n) ∈ L∞(V ) , n ∈ N defined by

g(n)(y) :=

{
g
(n)
` (y) + h(`)n if y ∈ V (`)

µ for some ` ∈ L ,
0 otherwise ,

(2.18)
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where

g
(n)
` (y) :=





g`(y) if |g`(y)| ≤ n

3
,

g`(y)
|g`(y)|

n

3
otherwise .

(2.19)

We finally get

J1(µ) ≥ lim
n→+∞

−〈
µ, exp{−g(n)}L exp{g(n)}〉

= lim
n→+∞

∑

(y,z)∈Eµ

µ(y)r(y, z)
(
1− exp{∇g(n)(y, z)})

= lim
n→+∞

[ ∑

`∈L

∑

(y,z)∈E
(`)
µ

µ(y)r(y, z)
(
1− exp{∇g(n)

` (y, z)})

+
∑

6̀=`′

∑

(y,z)∈Eµ:

y∈V (`)
µ , z∈V (`′)

µ

µ(y)r(y, z)

× (
1− exp{g(n)

`′ (y)− g
(n)
` (z) + [h(`′)− h(`)]n})

]
. (2.20)

The above limit can be computed applying the Dominated Convergence Theo-
rem. To this aim we first observe that




∣∣∇g(n)
` (y, z)

∣∣ ≤ ∣∣∇g`(y, z)
∣∣ if (y, z) ∈ E(`)

µ ,

sign{∇g(n)
` (y, z)} = sign{∇g`(y, z)} if (y, z) ∈ E(`)

µ ,

g
(n)
`′ (y)− g

(n)
` (z) + [h(`′)− h(`)]n≤ −1

3
n if (y, z) ∈ Eµ, y ∈ V (`)

µ , z ∈ V (`′)
µ .

(2.21)
Note that in the second case we have used that (`, `′) ∈ E thus implying that
h(`′)− h(`) ≤ −1. Note moreover that due to (2.21) we can write

∣∣1− exp{∇g(n)
` (y, z)}

∣∣ ≤ 1 + exp{∇g`(y, z)} , (y, z) ∈ E(`)
µ .

Since 〈µ, r〉 < +∞ and due to (2.9) we are allowed to apply the the Dominated
Convergence Theorem. As a consequence, we get

J1(µ) ≥ r.h.s. of (2.20)

=
∑

`∈L

∑

(y,z)∈E
(`)
µ

µ(y)r(y, z) (1− exp{∇g`(y, z)})

+
∑

(y,z)∈Eµ\∪`∈LE
(`)
µ

µ(y)r(y, z)

= I(µ,Q∗) = I1(µ) .

(2.22)
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Note that the second equality is a byproduct of (2.6) and (2.17). This ends the
proof of I1(µ) = J1(µ) when |L| < +∞. A special case with |L| < +∞ is when
supp(µ) = V . In this case |L| = 1 since Eµ = E and the Markov chain ξ is
irreducible.

We can now treat the general case. Let µ be an arbitrary probability measure
on V . We want to show that J1(µ) ≥ I1(µ).

We first observe that J1(π) = 0, where we recall that π is the unique invariant
measure of the Markov chain ξ. Indeed, since 1− ex ≤ x for all x ∈ R, we have
for any g ∈ L∞(V )

∑

(y,z)∈E

π(y)r(y, z)(1−exp{∇g(y, z)}) ≤
∑

(y,z)∈E

π(y)r(y, z)∇g(y, z) = 0 . (2.23)

The last equality in (2.23) follows by (2.3) since Qπ is a divergence-free element
of L1

+(E). Equation (2.23) gives J1(π) ≤ 0 and the converse inequality is
obtained selecting in (2.2) a constant function g. This concludes the proof that
J1(π) = 0.

Since supp(π) = V for any c ∈ (0, 1) supp(cµ+ (1− c)π) = V so that from
the result obtained in the case |L| < +∞ we know that

J1(cµ+ (1− c)π) = I1(cµ+ (1− c)π) . (2.24)

Since J1 is defined as a supremum of convex functions it is a convex function,
hence J1(cµ + (1 − c)π) ≤ cJ1(µ) + (1 − c)J1(π) = cJ1(µ). Invoking (2.24) we
get

J1(µ) ≥ lim inf
c→1

I1(cµ+ (1− c)π)
c

≥ I1(µ) . (2.25)

In the last inequality we have used the lower semicontinuity of I1.

3. Proof of Proposition 1.1

We will use both the equivalent representations (1.12) and (1.13) of the rate
function I. We take µ ∈ P(V ) with 〈µ, r〉 < +∞ and recall equation (1.16) that
defines the extended function g : V → [−∞,+∞) as g(y) := log

√
µ(y)/π(y),

with the convention log 0 := −∞. We consider also the sequence of functions
g(n) ∈ L∞(V ) defined by

g(n)(y) :=





g(y) if |g(y)| ≤ n ,
g(y)
|g(y)|n if |g(y)| > n ,

where by (−∞)/(+∞) we mean −1. We observe that (use 2ab ≤ a2 + b2)
∑

y∈V

∑

z∈V

µ(y)r(y, z)e∇g(y,z) =
∑

y

∑
z

√
µ(y)r(y, z)µ(z)r(z, y) ≤ 〈µ, r〉 < +∞.
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The above bound and the inequality

|1− exp{∇g(n)(y, z)}| ≤ 1 + exp{∇g(y, z)}
allows to apply the Dominated Convergence Theorem. As a consequence, by an
elementary computation we get

lim
n→+∞

−〈µ, exp{−g(n)}L exp{g(n)}〉 =
∑

{y,z}∈Eu

(√
µ(y)r(y, z)−

√
µ(z)r(z, y)

)2
,

(3.1)
where with Eu we denote the set of unordered bonds. Since we are considering
the reversible case then necessarily if (y, z) ∈ E then also (z, y) ∈ E. Conse-
quently {y, z} ∈ Eu when both (y, z) and (z, y) belong to E. Equation (3.1)
implies that I(µ) is greater or equal to the right hand side of (3.1).

To prove the converse inequality we restrict the infimum in (1.12) to sym-
metric flows, i.e. to flows Q such that Q(y, z) = Q(z, y) for any (y, z) ∈ E. Then
we can define S : Eu → R+ by S({y, z}) := Q(y, z) = Q(z, y). For symmetric
flows the rate function I(µ,Q) can be written as

∑

{y,z}∈Eu

[
2S({y, z}) log

S({y, z})√
µ(y)r(y, z)µ(z)r(z, y)

+ µ(y)r(y, z) + µ(z)r(z, y)− 2S({y, z})
]
.

(3.2)

The minimization procedure in (3.2) is easy since the zero divergence constraint
is always satisfied. We can then solve an independent variational problem for
each unordered bond, without any constraint apart the non-negativity of S. On
the bond {y, z} the minimizer is

S∗({y, z}) =
√
µ(y)r(y, z)µ(z)r(z, y) .

Calling Q∗ the associated symmetric flow we get that I(µ,Q∗) coincides with
the right hand side of (3.1). This completes the proof.

4. Alternative proof of Theorem 1.2 for V finite

As explained after Theorem 1.2 we only need to show the identity I1 = J1

(recall (2.1) and (2.2)).
In the finite case an interesting proof of this result is obtained observing that

it is a special case of the Fenchel – Rockafellar Theorem (see for example [4]). In
the case |V | = +∞ this strategy does not work since the continuity requirement
in the following general statement is missing. Consider a topological vector
space X and its dual X∗. Let φ, ψ : X → (−∞,+∞] be two proper (i.e. not
identically equal to +∞) extended convex functions such that φ + ψ is proper
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and there exists an x0 ∈ X where either φ(x0) < +∞ and φ is continuous at x0

or ψ(x0) < +∞ and ψ is continuous at x0. The Fenchel – Rockafellar Theorem
states that

inf
x∈X

{φ(x) + ψ(x)} = sup
f∈X∗

{−φ∗(−f)− ψ∗(f)} , (4.1)

where, given γ : X → (−∞,+∞],

γ∗(f) := sup
x∈X

{〈f, x〉 − γ(x)} , f ∈ X∗ ,

is the Legendre transform of γ.
Fix µ ∈ P(V ) and recall the definition of the graph (Vµ, Eµ) given at the

beginning of Section 2, as well as the equivalence relation ∼ leading to the
equivalence classes V (`)

µ , ` ∈ L, and associated set of edges E(`)
µ . Since V is

finite the condition 〈µ, r〉 < +∞ is automatically satisfied.
We want to apply the Fenchel –Rockafellar Theorem with X = L1(Eµ) en-

dowed of the standard L1-norm and X∗ = L∞(Eµ). Clearly in the finite case
we could work with the simpler choice X = X∗ = REµ with the Euclidean
topology (we use instead a more general notation having in mind some possible
extensions to the infinite case). Our choice for the functions φ, ψ is

φ(Q) :=





∑

(y,z)∈Eµ

Φ
(
Q(y, z), Qµ(y, z)

)
if Q ∈ L1

+(Eµ) ,

+∞ otherwise;

ψ(Q) :=

{
0 if divQ = 0 ,
+∞ otherwise .

Given Q ∈ L1(Eµ) the divergence divQ : V → R is still defined as

divQ(y) =
∑

(y,z)∈Eµ

Q(y, z)−
∑

(z,y)∈Eµ

Q(z, y) .

The above functions φ, ψ are proper convex functions (recall that Φ(·, p)
is convex for any p ≥ 0). Moreover, since Φ(·, p) is a continuous function on
(0,+∞) for all p > 0, we conclude that φ(Q) < +∞ and φ is continuous at Q for
any Q ∈ L1(Eµ) such that Q(y, z) > 0 for all (y, z) ∈ Eµ. Finally, we note that
the function φ + ψ is proper since finite on the zero flow. Note that working
with E instead of Eµ, neither ψ nor φ would have satisfied the condition of
boundedness and continuity in at least one point.

Clearly it holds

I1(µ) = inf
Q∈L1

+(E)
I(µ,Q) = inf

Q∈L1(Eµ)
{φ(Q) + ψ(Q)} . (4.2)
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The fact that I1(µ) = J1(µ) then follows as a byproduct of the Fenchel –
Rockafellar Theorem and the following Claims 4.1 and 4.2.

Claim 4.1. For any f ∈ L∞(Eµ) we have

φ∗(f) =
∑

(y,z)∈Eµ

µ(y)r(y, z)
(
ef(y,z) − 1

)
, f ∈ L∞(Eµ) . (4.3)

Proof. For each edge (y, z) ∈ Eµ, the function R+3u→f(y, z)u−Φ(u,Qµ(y, z))
has maximum value µ(y)r(y, z)

(
ef(y,z) − 1

)
attained at u = ef(y,z)Qµ(y, z) =

ef(y,z)µ(y)r(y, z). 2

Before stating Claim 4.2 we prove a geometric characterization of gradient
functions on oriented graphs. To this aim we fix some language.

We define E∗µ as the set of oriented edges (y, z) such that (y, z) ∈ Eµ or
(z, y) ∈ Eµ. Given a function f on Eµ we can extend it to a function f∗ on E∗µ
setting

f∗(y, z) :=

{
f(y, z) if (y, z) ∈ Eµ ,

−f(z, y) if (y, z) ∈ E∗µ \ Eµ .

We say that (x1, x2, . . . , xn) is a generalized path from x1 to xn in (Vµ, Eµ) if
for any i = 1, . . . , n− 1 it holds (xi, xi+1) ∈ E∗µ (in other words, (x1, x2, . . . , xn)
is an oriented path in (Vµ, E

∗
µ)). Given a generalized path γ we define

∫
γ
f as

∫

γ

f :=
n−1∑

i=1

f∗(xi, xi+1)

if γ is given by x1, x2, . . . , xn.

Lemma 4.1. Given f ∈ L∞(Eµ) there exists a g : V → R such that f = ∇g,
i.e. such that f(y, z) = g(z)− g(y) for all (y, z) ∈ Eµ, if and only if for any pair
of generalized paths γ and γ′ having the same initial point and the same final
point it holds ∫

γ

f =
∫

γ′

f . (4.4)

Proof. If is simple to check that if f = ∇g then f∗(y, z) = g(z) − g(y). This
implies that

∫
γ
f = g(z)− g(y) for any generalized path γ in (Vµ, Eµ) from y to

z. Therefore (4.4) is satisfied whenever γ, γ′ have the same extremes.
Suppose on the other hand that (4.4) is satisfied for any γ, γ′ having the same

extremes. We introduce on Vµ the equivalent relation ∼∗ saying that y ∼∗ z if
there exists a generalized path from y to z in (Vµ, Eµ). It is simple to check that
we have indeed an equivalence relation. For each equivalence class W ⊂ Vµ we
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fix a reference site x∗ ∈W and define g on W setting g(y) :=
∫

γ
f where γ is any

generalized path from x∗ to y. Due to (4.4) the definition is well posed. Let us
check that ∇g = f . To this aim we fix (y, z) ∈ Eµ. Clearly this implies y ∼∗ z.
Call x∗ the reference site of their equivalence class and fix a path γ from x∗ to y.
If γ = (x1, x2, . . . , xn) set γ̃ := (x1, x2, . . . , xn, z). The path γ̃ is a generalized
path from x∗ to z. By definition g(z) =

∫
eγ f = f(y, z) +

∫
γ
f = f(y, z) + g(y),

thus concluding the proof. 2

We can now state our final claim:

Claim 4.2. For any f ∈ L∞(Eµ) we have

ψ∗(f) =

{
0 if f = ∇g for some g : V → R ,
+∞ otherwise .

(4.5)

Proof. By a simple integration by parts it is trivial to check that it holds
〈f,Q〉 = 0 if f ∈ L∞(Eµ) is of gradient type (i.e. f = ∇g) and Q ∈ L1(Eµ) is a
divergence-free flow (see (2.3)). As a consequence we get

ψ∗(f) = sup
Q∈L1(Eµ)

{〈f,Q〉 − ψ(Q)} = 0 ,

for any f of gradient type.
Conversely suppose that f is not of gradient type. Then, by Lemma 4.1 there

exist two generalized paths (x1, x2, . . . , xn) and (y1, y2, . . . , ym) in (Vµ, Eµ) such
that x1 = y1, xn = ym and

n−1∑

i=1

f∗(xi, xi+1)−
m−1∑

j=1

f∗(yj , yj+1) > 0 . (4.6)

The given λ > 0 we define the divergence-free Qλ ∈ L1(Eµ) as

Qλ(y, z) :=





λ if (y, z) = (xi, xi+1) i = 1, . . . , n− 1 ,
−λ if (y, z) = (xi+1, xi) and (xi, xi+1) 6∈ Eµ i = 1, . . . , n− 1,
−λ if (y, z) = (yj , yj+1) j = 1, . . . ,m− 1 ,
λ if (y, z) = (yj+1, yj) and (yj , yj+1) 6∈ Eµ j = 1, . . . ,m− 1 ,
0 otherwise .

Then 〈f,Qλ〉 equals λ times the r.h.s. of (4.6), thus implying that

lim
λ→+∞

〈f,Qλ〉 = +∞.

In particular, we obtain

ψ∗(f) ≥ lim
λ→+∞

(〈f,Qλ〉 − ψ(Qλ)) = +∞ .

This ends the proof of our claim. 2
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