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Abstract In a recent work, Bodineau and Derrida analyzed the phase fluctuations in the
ABC model. In particular, they computed the asymptotic variance and, on the basis of nu-
merical simulations, they conjectured the presence of a drift, which they guessed to be an
antisymmetric function of the three densities. By assuming the validity of the fluctuating
hydrodynamic approximation, we prove the presence of such a drift, providing an analytical
expression for it. This expression is then shown to be an antisymmetric function of the three
densities. The antisymmetry of the drift can also be inferred from a symmetry property of
the underlying microscopic dynamics.

Keywords ABC model · Phase fluctuations · Fluctuating hydrodynamics

1 Introduction

The ABC model, introduced by Evans et al. [12, 13], is a one-dimensional stochastic conser-
vative dynamics with local jump rates, whose invariant measure undergoes a phase transi-
tion. It is a system consisting of three species of particles, traditionally labeled A, B , and C,
on a discrete ring with L sites. The system evolves by nearest neighbor particles exchanges
with the following rates: AB → BA, BC → CB , CA → AC with rate q and BA → AB ,
CB → BC, AC → CA with rate 1/q . In particular, the total number of particles Nα , of
each species α ∈ {A,B,C}, are conserved and satisfy NA + NB + NC = L. When q �= 1,
Evans et al. [12, 13] argued that in the thermodynamic limit L → ∞ with Nα/L → rα the
system segregates into pure A, B , and C regions, with translationally invariant distribution
of the phase boundaries. In the equal densities case NA = NB = NC = L/3 the dynamics is
reversible and its invariant measure can be explicitly computed. As shown in [14, 15], the
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ABC model can be reformulated in terms of a dynamic of random walks on the triangular
lattice.

As discussed by Clincy et al. [10], the natural scaling to investigate the asymptotic behav-
ior of the ABC model is the weakly asymmetric regime q = exp{− β

2L
}, where the parameter

β plays the role of an inverse temperature. With this choice, the reversible measure of the
equal densities case rA = rB = rC = 1/3 becomes a canonical Gibbs measure with a mean
field Hamiltonian, which undergoes a second order phase transition at βc = 2π

√
3. More

precisely, for β ≤ βc the typical densities profiles are homogeneous while for β > βc the
three species segregate. For unequal densities the invariant measure of the ABC dynamics
on a ring is not reversible and cannot be computed explicitly. The asymptotic of the two-
point correlation functions in the homogeneous phase is obtained in [6, 10], where the large
deviation rate function for the stationary measure is also calculated up to order β2. When
the ABC dynamics is considered on an open interval with zero flux condition at the end-
points, the corresponding invariant measure is reversible for all values of the densities [1].
In particular, it has the same Gibbs form as the one in the ring for the equal density case. In
this paper we shall however stick to the case of periodic boundary conditions.

Diffusive Scaling Limit The hydrodynamic behavior of the empirical densities ρ =
ρ(x, t) = (ρA(x, t), ρB(x, t), ρC(x, t)), where t ≥ 0 and x ∈ T, the one-dimensional torus of
length one, is obtained by a diffusive rescaling by space and time. In this limit the empirical
density evolves according to the deterministic parabolic system,

∂ρA

∂t
= ∂2ρA

∂x2
+ β

∂

∂x

[
ρA(ρB − ρC)

]
,

∂ρB

∂t
= ∂2ρB

∂x2
+ β

∂

∂x

[
ρB(ρC − ρA)

]
,

∂ρC

∂t
= ∂2ρC

∂x2
+ β

∂

∂x

[
ρC(ρA − ρB)

]
.

(1.1)

The proof of such a statement could be achieved by using standard tools in hydrodynamical
limits, see e.g., [21, 24]; see also [16] for an alternative method. The initial conditions for
the system (1.1) are determined by the starting microscopic configuration, they satisfy the
constraints ρA(·,0) + ρB(·,0) + ρC(·,0) = 1 and 0 ≤ ρα(·,0) ≤ 1, α ∈ {A,B,C}, which
are preserved by the above flow. Clearly, it also preserves the mass of each species, i.e.,
rα = ∫ dx ρα(x, t), α ∈ {A,B,C}, is constant in time. We mention that in the equal densities
case, rA = rB = rC = 1/3, the flow defined by (1.1) is a (suitable) gradient flow of the large
deviations rate function, which in this case reads,

Fβ(ρ) =
∫ 1

0
dx
∑

α

ρα(x) logρα(x) + β

∫ 1

0
dx

∫ 1

x

dy
∑

α

ρα(x)ρα+2(y), (1.2)

where the sum on the species label α is modulo three. This is the macroscopic counterpart
of the reversibility of the underlying microscopic dynamics.

In the equal density case the stationary solutions to (1.1) correspond to the critical
points of (1.2), which have been analyzed in [1]. In particular, the homogeneous profile
r = ( 1

3 , 1
3 , 1

3 ) is the unique stationary solutions for β ∈ [0, βc], while for β > βc there exists
a one-periodic inhomogeneous stationary solution, unique up to translations, which mini-
mizes the large deviation functional and it is therefore stable for the flow (1.1). In the general
case, the homogeneous profile r = (rA, rB, rC) is clearly still a stationary solution to (1.1).
For β small enough (depending on r) it is the unique one. As discussed in [6, 10], a linear
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stability analysis shows that for β > βr = 2π/
√

1 − 2r2, r2 = r2
A + r2

B + r2
C , it becomes un-

stable. As stated there, the phase transition, at least for particular values of r , is expected to
become of first order. Namely, for some β ∈ (0, βr) there exist other stationary solutions to
(1.1) which actually describe the typical profiles with respect to the invariant measure of the
underlying microscopic dynamics. In [11] the stationary solutions to (1.1) are characterized
and their explicit expression is written in terms of elliptic functions (see also [14], where
similar results were obtained for some general exclusion processes, including ABC with
not necessarily weakly asymmetric transition rates). This analysis reveals that for some r

and β ∈ (0, βr) there exist one-periodic stationary solutions to (1.1), in agreement with the
conjectured occurrence of a first order transition.

The next natural issue on (1.1) is whether it admits traveling wave solutions, this is indeed
a side question both in [5] and [11]. A simple argument, discussed in [23] shows that such
solutions do not occur. For the reader’s convenience we report the argument in Appendix A.
We emphasize that the periodicity of the space variable is crucial. Indeed, when the system
(1.1) is considered on the whole line it does admit traveling waves.

Beyond the Diffusive Scaling The main result of the present paper is the identification of
the drift for the phase fluctuations. In order to describe it, fix values of r and β in the low
temperature part of the phase diagram. The analysis in [11] implies the existence of a one-
periodic profile ρ = (ρA,ρB,ρC) such that the one-periodic stationary solutions to (1.1) are
given by the translations of ρ. Observe that, as discussed in [1, 11], for larger values of β

there exist also 1
2 -periodic solutions, 1

3 -periodic solutions, . . . However, as proven in [1] in
the case of equal densities and suggested by numerical evidences in general, these less segre-
gated profiles are not expected to describe the typical behavior of the microscopic evolution.
Consider now the microscopic dynamics in which the initial distribution of the species is
associated to the macroscopic profile ρ. The hydrodynamical description discussed above
implies that on the microscopic time scale O(L2) the associated macroscopic profile does
not move. Since macroscopic fluctuations are O(L− 1

2 ), by taking into account the translation
invariance, at times O(L3) the macroscopic profile is expected to perform a random motion
on the set {ρ(· − z), z ∈ T}. This motion is refereed to as phase fluctuations. In agreement
with the above dynamical picture, we observe that in the equal densities case, by sampling
the particles according to the Gibbsian invariant measure, the law of large numbers for the
empirical densities of the three species is ρ(· − ζ ), where ζ is a uniform random variable
on T, see [3] for a formal proof of this statement.

Bodineau and Derrida [5] have computed the variance of the phase fluctuations by us-
ing both the methods of the fluctuating hydrodynamics and of the macroscopic fluctuation
theory. Moreover, on the basis of numerical evidences, further confirmed in [11], they con-
jectured the presence of a drift which they guessed to be an antisymmetric function of the
three densities. Observe that for equal densities, reversibility readily implies that the drift
vanishes. In this paper, by assuming the validity of the fluctuating hydrodynamic approxi-
mation for the ABC model, we prove in general the presence of such a drift. In particular,
we deduce an analytical expression for the drift, v = v(β; rA, rB, rC), see Eq. (2.19) below,
in terms of the semigroup generated by the linearization of the hydrodynamic equations
around ρ. We also show that, as conjectured in [11], v(β; rA, rB, rC) is antisymmetric with
respect to the exchange of the masses rA, rB, rC . We finally analyze the behavior of the drift
near the second order phase transition, showing that, in contrast to the variance, it does not
diverge. In this respect, we also quote [18, 19], where current fluctuations and long-range
correlations at the phase transition are analyzed.
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In order to obtain the statistics of the phase fluctuations, we need to obtain an effective
dynamics on the manifold {ρ(· − z), z ∈ T}. The fluctuating hydrodynamic approximation
allows to describe the behavior of the microscopic ABC dynamics by the hydrodynamic
equations (1.1) perturbed with an additive noise of order L− 1

2 . In particular, the behavior of
the ABC model on the time scale O(L3) is captured by the asymptotic of the fluctuating
hydrodynamics on the time scale O(L). Under this assumption, the variance of the phase
fluctuations can be computed by considering the projection along the manifold of the noise:
this is the sum of independent, mean zero, order L− 1

2 random variables, that converges to
a Brownian motion. On the other hand, the origin of the drift is much less evident and due
to the nonlinearity of (1.1). Indeed, we show that in a time step T with 1 	 T 	 L the
nonlinear term gives a deterministic contribution to the effective dynamics of order T/L,
which sum up to a finite drift at times O(L).

We finally mention that the statistics of dynamical phase fluctuations has been already
analyzed in the context of the one-dimensional nonconservative stochastic Ginzburg-Landau
equation [8, 9, 17]. In particular, if the reaction term is not symmetric, the mechanism out-
lined above gives rise to a constant drift in the resulting random motion. This has been
rigorously proved in [7]. Phase fluctuations for the Kuramoto model, which is a mean field
conservative dynamics, have been recently discussed in [4].

2 Identification of the Drift

In this section we introduce the fluctuating hydrodynamic assumption and identify the drift
of the phase fluctuations in terms of the semigroup generated by the linearization of (1.1)
around the periodic profile ρ. We shall frequently refer to [5] and use the same notation
introduced there. For convenience we set ε = 1/L.

2.1 The Fluctuating Hydrodynamic Assumption

At the macroscopic level, the effect of the microscopic fluctuation can be modeled by adding
to the hydrodynamic system (1.1) a suitable random force whose statistics can be inferred
by an informal computation on the underlying Markov dynamics. Referring to either Ap-
pendix B or [5, 6, 10] for the details of such computation, the corresponding stochastic
system reads, using vector notation,

∂

∂t

(
ρA

ρB

ρC

)

= ∂2

∂x2

(
ρA

ρB

ρC

)

+ β
∂

∂x

(
ρA(ρB − ρC)

ρB(ρC − ρA)

ρC(ρA − ρB)

)

+ √
ε

∂

∂x

(
ηε

A

ηε
B

ηε
C

)

(2.1)

where t ≥ 0, x ∈ T = R/Z, the one-dimensional torus, and, conditionally on the value ρ,
the noise ηε = (ηε

A, ηε
B, ηε

C) is Gaussian with correlations
〈
ηε

α(x, t)ηε
α′
(
x ′, t ′

)〉= Σα,α′
(
ρ;x, x ′)δε

(
x − x ′)δ

(
t − t ′

)
, α,α′ ∈ {A,B,C}. (2.2)

Above, δε is the ε-approximation to the Dirac’s δ-function, i.e., its length scale is of order ε,
and Σ is the matrix

Σ
(
ρ;x, x ′)= D

(
ρ;x, x ′)+ D

(
ρ;x ′, x

)
(2.3)

in which D(ρ;x, x ′) is
⎛

⎝
ρA(x)[ρB(x ′) + ρC(x ′)] −ρA(x)ρB(x ′) −ρA(x)ρC(x ′)

−ρA(x)ρB(x ′) ρB(x)[ρA(x ′) + ρC(x ′)] −ρB(x)ρC(x ′)
−ρA(x)ρC(x ′) −ρB(x)ρC(x ′) ρC(x)[ρA(x ′) + ρB(x ′)]

⎞

⎠ .
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We observe that Σ has a vanishing eingenvalue whose corresponding eigenspace is spanned
by the vector (1,1,1)�. Accordingly, (2.1) preserves the constraint

∑
α ρα = 1.

Clearly, the (deterministic) hydrodynamic system (1.1) is recovered from (2.1) simply
by setting ε = 0. As discussed e.g., in [24, § II.3.5], (2.1) also predicts the nonequilibrium
Gaussian fluctuations (in the diffusive scaling limit) which can be inferred by linearizing
(2.1) around an hydrodynamic solution. As discussed in the Introduction, in our analysis
we shall need the stronger assumption that (2.1) correctly encodes the behavior of the ABC
dynamics on time scales longer then the hydrodynamical one. More precisely, as phase
fluctuations becomes observable (i.e., macroscopically of order one) at microscopic times
of order L3, the connection between the analysis on the stochastic system (2.1) performed
in the sequel and the microscopic dynamics relies on the hypotheses that the ABC dynamics
at times L3 can be captured by looking at (2.1) on times of order ε−1 and then taking the
limit ε → 0.

In regard to such fluctuating hydrodynamic assumption, we simply observe that the use
of nonlinear stochastic equation to describe the evolution of particle systems beyond the hy-
drodynamic scale is a common practice in nonequilibrium statistical physics. On the other
hand, the rigorous justification of such procedure is a most challenging task of mathematical
physics, see [2] for the weakly asymmetric exclusion process which has, albeit much sim-
pler, similar feature to the ABC model. We finally emphasize that in (2.1) we have somehow
kept track of the underlying discrete structure by using a colored noise with spatial correla-
tion length of order ε. With this choice, we avoid in particular the difficult problem of giving
a precise mathematical meaning to (2.1) with a space-time white noise, see [20] for the KPZ
equation whose nonlinearity has a similar structure. As it will clear in the computation of
the drift, the problem of ultraviolet singularities will however appear when taking the limit
ε → 0.

2.2 The Effective Phase Dynamics

It is convenient to take advantage of the constraint ρA + ρB + ρC = 1 and write the system
(2.1) in terms of

ρ = ρ(x, t) =
(

ρA(x, t)

ρB(x, t)

)
.

Denoting by

N (ρ) =
(

ρ2
A + 2ρAρB − ρA

−ρ2
B − 2ρAρB + ρB

)
, ηε =

(
ηε

A

ηε
B

)
(2.4)

the nonlinear transport and the noise, respectively, we thus rewrite (2.1) as

∂ρ

∂t
= ∂2ρ

∂x2
+ β

∂

∂x
N (ρ) + √

ε
∂ηε

∂x
. (2.5)

Conditionally on the value ρ, the noise ηε is Gaussian with correlations as in (2.2), where
Σ(ρ;x, x ′) is the 2 × 2 matrix as in (2.3) in which now

D
(
ρ;x, x ′)=

(
ρA(x)[1 − ρA(x ′)] −ρA(x)ρB(x ′)

−ρA(x)ρB(x ′) ρB(x)[1 − ρB(x ′)]
)

. (2.6)

Hereafter, we fix the total densities r = (rA, rB) and β > 0 in the low temperature part
of the phase diagram established in [11]. The analysis therein implies the existence of a
one-periodic profile

ρ = ρ(x) =
(

ρA(x)

ρB(x)

)
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which solves the following system of ordinary differential equation,

ρ ′′ + βN (ρ)′ = 0, (2.7)

and satisfies the constraints ρα ≥ 0, ρA + ρB ≤ 1, and
∫

dx ρα = rα , α ∈ {A,B}. The one-
periodic stationary solutions to (2.5) with ε = 0 are given by the translations of ρ.

We denote by ρz(x) = ρ(x − z) the translation of ρ by z on the torus. Let also Lz be the
linear part of (2.5) around ρz, i.e.,

Lzψ = ∂2ψ

∂x2
+ β

∂

∂x
(Bzψ), (2.8)

where

Bz(x) = B(x − z), B =
(

2ρA + 2ρB − 1 2ρA

−2ρB −2ρA − 2ρB + 1

)
. (2.9)

Since the nonlinear evolution preserves the masses, we regard Lz as an operator on the space
of mean zero functions. In view of [5],

χz(x) = (ρB(x − z) − rB, rA − ρA(x − z)
)
, ρ ′

z(x) =
(

ρ ′
A(x − z)

ρ ′
B(x − z)

)
(2.10)

are the left and right eigenvectors of Lz with zero eigenvalue, which can be easily shown to
be a simple eigenvalue. The rest of the spectrum is composed by a countable set of eigenval-
ues. As in [5], we assume they have strictly negative real part, bounded away from zero. In
regard to this assumption, apart from the numerical evidence, see e.g., [11], we remark that it
can be verified analytically in two regimes. The first is when the total densities (rA, rB, rC)

are close to ( 1
3 , 1

3 , 1
3 ). In the equal density case Lz can be realized as a nonnegative self-

adjoint operator on a suitable Hilbert space, see [5, Remark 4.1], and the above assumption
is fulfilled. A standard perturbation argument yields the statement. The second regime is
when β and r are close to the second order phase transition. The result follows by Ap-
pendix C, where the operator Lz is analyzed as a perturbation of the differential operator
with constant coefficients obtained by linearizing (1.1) around the homogeneous profile.

Under the above assumption, the manifold M = {ρz: z ∈ T} is locally exponentially at-
tractive for the deterministic flow (1.1). The projection onto the null space of Lz is given by
the tensor product γ ρ ′

z(x)χz(x
′), where

1

γ
=
∫ 1

0
dx χρ ′. (2.11)

We shall denote by Pz the projector whose integral kernel is given by Pz(x, x ′) =
δ(x − x ′)1 − γ ρ ′

z(x)χz(x
′). Observe also that the right eigenvector ρ ′

z is the infinitesimal
generator of the translations on M.

We consider the random flow (2.1) with an initial condition lying in a ε
1
2 -neighbor-

hood of M. As fluctuations transversal to M are exponentially damped by the deterministic
part of the flow, we deduce that the solution remains in such neighborhood until a large
fluctuation takes place. For our purposes, those large fluctuations can be neglected, as their
probability is exponentially small in ε−1 up to time scales polynomially large in ε−1. Indeed,
such a fluctuation requires a very large deviation of the noise to overcame the deterministic
flow. We conclude that, with probability close to one, the solution to (2.1) remains in a
ε

1
2 -neighborhood of M up to the time scale of order ε−1, which is the relevant one for the

phase fluctuations.
In order to describe the motion along the manifold M we use the Fermi coordinates

(ζ,ψ), defined as it follows. Given ρ in a neighborhood of M, the angular coordinate ζ ∈ T,
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called the center of ρ, is defined as the point z such that the component of ρ −ρz in the null
space of Lz vanishes, namely, the solution to

F(z) =
∫ 1

0
dx χz(ρ − ρz) = 0 (2.12)

and then we set ψ = ρ − ρζ , so that ψ = Pζ ψ . An application of the implicit function
theorem shows that z is uniquely defined if ρ lies in a small neighborhood of M.

According to the scheme introduced in [9] and further developed in [8], the motion
along the manifold M can be identified by the following recursive procedure. Given an
initial datum ρ(·,0) in a ε

1
2 -neighborhood of M, we let ζ0 be its center and decompose

ρ(·,0) = ρζ0
(·) + ψ(·,0). We then linearize the evolution (2.5) around ρζ0

and compute the
displacement in a time interval 1 	 T 	 ε−1. At this point, we recenter the solution by
computing the new center ζT at time T and then iterate. As it will be clearer in the sequel,
after (εT )−1 steps we get a finite displacement of the center, which has the form of a Brow-
nian motion with a constant drift on T. Referring to e.g., [9], for the precise mathematical
construction in terms of stopped martingales, we next detail the first step of such procedure
in which we drop the subscript ζ0 from the notation. By introducing u = u(x, t) as

u =
(

uA

uB

)
= ρ − ρ,

the evolution (2.5) can be recast into the form,

∂u

∂t
= Lu + β

∂

∂x
N1(u) + √

ε
∂η̄ε

∂x
+ · · · , (2.13)

where

N1(u) =
(

u2
A + 2uAuB

−u2
B − 2uAuB

)
, (2.14)

the operator L is as in (2.8)–(2.9), and we approximated ηε with the Gaussian noise η̄ε ,
having covariance matrix Σ(ρ;x, x ′) = D(ρ;x, x ′) + D(ρ;x ′, x), with D(ρ;x, x ′) as in
(2.6). Note indeed that in a single step of the iteration the solution remains close to the
initial condition and, as it will be clearer in the sequel, the approximation in (2.13) does not
affect the phase fluctuations. By Duhamel formula,

u(t) = et Lψ(0) + β

∫ t

0
ds e(t−s)L ∂

∂x
N1
(
u(s)

)+ √
εWε(t) + · · · , (2.15)

where Wε(t) = (Wε
A

(t)

Wε
B

(t)

)
is Gaussian with covariance

〈
Wε(x, t)Wε

(
x ′, t
)�〉

=
∫ t

0
ds

∫ 1

0
dy

∫ 1

0
dy ′ ∂G

∂y
(x, y, s)δε

(
y − y ′)Σ

(
ρ;y, y ′)∂G

∂y

(
x ′, y ′, s

)�
(2.16)

and G(x,y, t) = et L(x, y) is the fundamental solution associated to L.
Since ψ(0) has vanishing projection on the null space of L, i.e., Pψ(0) = ψ(0), the first

term on the right hand side of (2.15) is of order ε
1
2 and exponentially small as t → ∞. In

particular, u(T ) is of order ε
1
2 so that we can compute the displacement of the center in the

time interval [0, T ] by solving (2.15) in the linear approximation. We thus get

ζT = ζ0 − γ

∫ 1

0
dx χ(x)u(x,T ) + · · · , (2.17)

where γ is defined in (2.11).
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2.3 Computation of the Variance and the Drift

The variance of the infinitesimal displacement ζT − ζ0 can be effectively computed by con-
sidering the component of the noise Wε in the direction spanned by the right eigenvec-
tor ρ ′. Note indeed that the nonlinear term in (2.15) is of order εT . Recalling (2.16) and that
χ et L = χ ,

〈
(ζT − ζ0)

2
〉≈ εγ 2

〈(∫ 1

0
dx χ(x)Wε(x,T )

)2〉
≈ εT γ 2

∫
dy χ ′(y)Σ(ρ;y, y)χ ′(y)�

= 2εT γ 2
∫

dy
[
ρA(1 − ρA)

(
ρ ′

B

)2 + 2ρAρBρ ′
Aρ ′

B + ρB(1 − ρB)
(
ρ ′

A

)2]
,

where we evaluated (2.16) with δε replaced by the true Dirac’s δ-function. By translation
invariance, each step of the iterations has the same variance. Therefore, since the fluctuation
of the infinitesimal displacements relative to different steps are also independent and mean
zero, they sum up to a Brownian motion with variance σ 2 = σ 2(β; rA, rB) given by

σ 2(β; rA, rB) = 2γ 2
∫

dy
[
ρA(1 − ρA)

(
ρ ′

B

)2 + 2ρAρBρ ′
Aρ ′

B + ρB(1 − ρB)
(
ρ ′

A

)2]
,

which has been computed in [5, Eq. (7)].
As discussed in the Introduction, the non-linear term contributes to the phase fluctuations

at times ε−1, by giving a constant drift to the resulting random motion. Our next aim is to
identify this drift as a function of β and of the total densities.

As for the variance, we discuss in detail the contribution picked up in the first step of
the iteration. Indeed, again by translation invariance, each step of the iterations gives the
same contribution to the drift. Since u is of order ε

1
2 and the non-linear term N1 in (2.14) is

homogeneous of degree two, the latter gives a contribution of order εT to the infinitesimal
displacement ζT − ζ0. Therefore, it sums up to a finite contribution at time-scale ε−1.

By iterating once (2.15) we get

u(T ) = eT Lψ(0) + √
ε Wε(T ) + β

∫ T

0
ds e(T −s)L ∂

∂x
N1
(
esLψ(0) + √

εWε(s)
)+ · · ·

= √
ε Wε(T ) + βε

∫ T

0
ds e(T −s)L ∂

∂x
N1
(
Wε(s)

)+ · · ·
where we used again that the contribution from the initial condition is negligible for T 
 1.
Plugging the last displayed into (2.17) and taking expectation we obtain

〈ζT 〉 ≈ ζ0 − β γ ε

∫ T

0
dt

∫ 1

0
dx χ(x)

∂

∂x

〈
N1

(
Wε(x, t)

)〉

= ζ0 + βγ ε

∫ T

0
dt

∫ 1

0
dx χ ′(x)

〈
N1
(
Wε(x, t)

)〉
,

where we used that χ is a left eigenvector of L. Note also that the approximation in (2.13)
contributes to the displacement 〈ζT 〉 by a negligible amount. Replacing δε by the true Dirac’s
δ-function in (2.16) and recalling the form (2.14) of the nonlinearity,

〈ζT 〉 ≈ ζ0 + εTβγ
1

T

∫ T

0
dt

∫ t

0
ds

∫ 1

0
dx χ ′(x)

( KAA(x, s) + 2KAB(x, s)

−KBB(x, s) − 2KAB(x, s)

)
,

where

K(x, t) =
∫ 1

0
dy

∂G

∂y
(x, y, t)Σ(ρ;y, y)

∂G

∂y
(x, y, t)�. (2.18)
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The drift v = v(β; rA, rB) is thus given by

v(β; rA, rB) = βγ

∫ ∞

0
dt

∫ 1

0
dx χ ′(x)

( KAA(x, t) + 2KAB(x, t)

−KBB(x, t) − 2KAB(x, t)

)
. (2.19)

This formula is our first main result; in the next sections we show that its right-hand side is
finite and antisymmetric with respect to the exchange of the masses.

3 Boundedness of the Drift

The computations leading to the formula (2.19) for the drift have been carried out informally,
pretending the limits we took did exist. In fact, by looking at (2.19), it is not at all obvious
that the time integral on its right hand side is finite. Without discussing in detail the limiting
procedure performed before, in this section we show that such time integral is meaningful.
There are two potential problems: the singularity of the kernel K for t ↓ 0, which is the
effect of the ultraviolet singularities mention before, and the convergence of the integral at
infinity.

We start with the analysis of the singularity around the origin. For t small G(x,y, t)

behaves as the heat semigroup, i.e.,

G(x,y, t) = pt(x − y)

(
1 0
0 1

)
+ H(x, y, t),

where

pt(x − y) =
∑

n∈Z

1√
4πt

e− (x−y+n)2

4t

and H(x, y, t), ∂H
∂y

(x, y, t) are bounded as t ↓ 0. Therefore, by (2.18), the integrand on the

right hand side of (2.19) should have the non integrable singularity t−3/2 for t close to 0. As
we next show, this divergence disappears due to a cancellation. We compute the (dangerous)
contribution to the drift coming from the heat semigroup part of G(x,y, t), i.e.,

vs = βγ

∫ ∞

0
dt

∫ 1

0
dx χ ′(x)

( Ks
AA(x, t) + 2Ks

AB(x, t)

−Ks
BB(x, t) − 2Ks

AB(x, t)

)

with

Ks(x, t) =
∫ 1

0
dy

[
∂pt

∂y
(x − y)

]2

Σ(ρ;y, y) = 1

t3/2

∫ 1

0
dy gt (x − y)Σ(ρ;y, y),

where the function

gt (z) =
∑

n,k∈Z

(z + n)(z + k)

4πt3/2
e− (z+k)2+(z+n)2

4t

behaves like (4
√

π)−1δ(z) as t ↓ 0. Therefore,

Ks(x, t) = 1

t3/2

[
1

4
√

π
Σ(ρ;x, x) + O(t)

]
,

so that

vs = βγ

∫ ∞

0
dt

1

t3/2

∫ 1

0
dx χ ′(x)

[
1

4
√

π

(
ΣAA(ρ;x, x) + 2ΣAB(ρ;x, x)

−ΣBB(ρ;x, x) − 2ΣAB(ρ;x, x)

)
+ O(t)

]
.
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On the other hand,
∫ 1

0
dx χ ′(x)

(
ΣAA(ρ;x, x) + 2ΣAB(ρ;x, x)

−ΣBB(ρ;x, x) − 2ΣAB(ρ;x, x)

)

=
∫ 1

0
dx ρ ′

B

[
2ρA(ρA − 1) + 4ρAρB

]+ ρ ′
A

[
2ρB(ρB − 1) + 4ρAρB

]

= 2
∫ 1

0
dy
(
ρ2

AρB + ρAρ2
B − ρAρB

)′ = 0,

i.e., the coefficient in front of the non integrable singularity t−3/2 vanishes.
We now analyze the convergence of the integral (2.19) at infinity. We notice that, by our

assumptions on the spectrum of L,

G(x,y, t) = γ ρ ′(x)χ(y) + Ĝ(x, y, t),

where the 2 × 2 rank one matrix γ ρ ′(x)χ(y) is the projection on the null space of L,
while the remainder Ĝ(x, y, t) is exponentially small as t → ∞. Therefore, plugging this
decomposition in (2.18) we get,

K(x, t) = κρ ′(x)ρ ′(x)� + R(x, t), (3.1)

where κ = γ 2
∫ 1

0 dy χ ′(y)Σ(ρ;y, y)χ ′(y)�, while the remainder R(x, t) is integrable as
t → ∞.

By (2.14), inserting (3.1) in (2.19) and integrating by parts, we deduce that the drift v is
finite provided that

∫ 1

0
dx χ ′

(
(ρ ′

A)2 + 2ρ ′
Aρ ′

B

−(ρ ′
B)2 − 2ρ ′

Aρ ′
B

)
= 0. (3.2)

As χ = (ρB,−ρA), the above conditions reads,

3
∫ 1

0
dx
[(

ρ ′
A

)2
ρ ′

B + ρ ′
A

(
ρ ′

B

)2]= 0. (3.3)

To prove (3.3), we denote by I the integral on the left-hand side. Recalling that ρC = 1 −
ρA − ρB and integrating by parts, we then get

I = −3
∫ 1

0
dx ρ ′

Aρ ′
Bρ ′

C =
∫ 1

0
dx
[
ρA

(
ρ ′

Bρ ′
C

)′ + ρB

(
ρ ′

Aρ ′
C

)′ + ρC

(
ρ ′

Aρ ′
B

)′]

=
∫ 1

0
dx
[
(ρAρB)′ρ ′′

C + (ρAρC)′ρ ′′
B + (ρBρC)′ρ ′′

A

]
. (3.4)

On the other hand, (2.7) in term of the triple (ρA,ρB,ρC) reads,
⎧
⎪⎨

⎪⎩

ρ ′′
A = −β

[
(ρAρB)′ − (ρAρC)′],

ρ ′′
B = −β

[
(ρBρC)′ − (ρBρA)′],

ρ ′′
C = −β

[
(ρCρA)′ − (ρCρB)′].

Substituting the above relations in (3.4) the identity I = 0 follows.

4 Antisymmetry of the Drift

In this section we show that, as thought by Bodineau and Derrida [5, § 6], the drift is anti-
symmetric with respect to the exchange of the total densities. More precisely, with a slight



Drift of Phase Fluctuations in the ABC Model 25

abuse of notation, let v = v(β, rA, rB, rC) be the drift in (2.19). Then v(β, rτA, rτB, rτC) =
−v(β, rA, rB, rC) where τ is a transposition acting on {A,B,C}.

As a matter of fact, we present two independent arguments. The first relies on a direct
analysis on the expression (2.19), while in the second we exploit a symmetry of the under-
lying microscopic dynamics.

4.1 Macroscopic Computation

On the set of profiles ρ = ( ρA

ρB

)
we introduce the involution Θ defined by

(Θρ)(x) =
(

ρB(−x)

ρA(−x)

)
.

In the language of high energy physics one may interpret Θ as a CP symmetry.
We then observe that if we include the dependence on the total densities rA, rB in the

notation, the symmetry

Θρ(rA, rB) = ρ(rB, rA)

holds modulo a translation on the torus (look at (2.7)).
Denoting by L̃ the linear operator defined as L but with the matrix function B replaced

by

ΘB =
(

2(Θρ)A + 2(Θρ)B − 1 2(Θρ)A

−2(Θρ)B −2(Θρ)A − 2(Θρ)B + 1

)
(4.1)

it is easy to see that Θ ◦ L = L̃ ◦ Θ . This implies that if ψ(x, t) is solution to ∂tψ = Lψ

then ψ̃(x, t) = (Θψ(·, t))(x) is solution to ∂t ψ̃ = L̃ψ̃ . In particular,

G(x,y, t) =
(

0 1
1 0

)
G̃(−x,−y, t)

(
0 1
1 0

)
,

where G̃(x, y, t) = et L̃(x, y) denotes the fundamental solution associated to L̃. On the other
hand, recalling (2.6),

Σ̃(ρ;y, y) = Σ(Θρ;y, y) =
(

0 1
1 0

)
Σ(ρ;−y,−y)

(
0 1
1 0

)
,

whence, by (2.18),

K(x, t) =
(

0 1
1 0

)
K̃(−x, t)

(
0 1
1 0

)

where

K̃(x, t) =
∫ 1

0
dy

∂G̃

∂y
(x, y, t) Σ̃(ρ;y, y)

∂G̃

∂y
(x, y, t)�.

Therefore, by (2.19)

v(β; rA, rB) = βγ

∫ ∞

0
dt

∫ 1

0
dx χ ′(x)

( K̃BB(−x, t) + 2K̃AB(−x, t)

−K̃AA(−x, t) − 2K̃AB(−x, t)

)

= −βγ

∫ ∞

0
dt

∫ 1

0
dx
(
Θχ ′)(x)

( K̃AA(x, t) + 2K̃AB(x, t)

−K̃BB(x, t) − 2K̃AB(x, t)

)

= −βγ

∫ ∞

0
dt

∫ 1

0
dx χ̃ ′(x)

( K̃AA(x, t) + 2K̃AB(x, t)

−K̃BB(x, t) − 2K̃AB(x, t)

)
, (4.2)
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where χ̃ = (ΘρB,−ΘρA) is the left eigenvector of L̃ with zero eigenvalue and the identity
χ̃ ′ = Θχ ′ is straightforward. Recalling Θρ(rA, rB) = ρ(rB, rA) holds modulo a translation
on the torus, by (4.2) we conclude v(β; rA, rB) = −v(β; rB, rA). Note indeed that by arguing
as above (it is in fact easier) it holds γ (rA, rB) = γ (rB, rA). By the arbitrariness of the labels’
choice this shows the stated antisymmetry property.

4.2 A Microscopic Symmetry

From a mathematical point of view, the ABC model is a continuous time Markov chain
on the state space Ω = {A,B,C}ZL , where ZL = {0, . . . ,L − 1} is the ring of the integers
modulo L. Given ζ ∈ Ω , the species at site i is therefore ζ(i) ∈ {A,B,C}. For β ∈ R the
dynamical rules are specified by the generator Lβ that acts on observables f :Ω → R as

Lβf (ζ ) =
∑

i∈ZL

c
β

i (ζ )
[
f
(
ζ i,i+1

)− f (ζ )
]
, (4.3)

where ζ i,i+1 is the configuration obtained from ζ by exchanging the species at sites i and
i + 1 and the jump rates c

β

i are given by

c
β

i (ζ ) =
{

exp{ β

2L
} if (ζ(i), ζ(i + 1)) ∈ {(A,C), (C,B), (B,A)},

exp{− β

2L
} if (ζ(i), ζ(i + 1)) ∈ {(A,B), (B,C), (C,A)}. (4.4)

We next prove a symmetry property of the microscopic stochastic dynamics with respect
to a suitable involution defined on the state space Ω . The antisymmetry of the macroscopic
drift will be then shown to be a consequence of such symmetry. Let τ be a transposition of
the species’ labels and denote by τα ∈ {A,B,C} the image of α ∈ {A,B,C}. We associate
to each τ the involution Θτ :Ω → Ω defined by

Θτζ(i) = τζ(−i),

which induces a natural transformation on observables f :Ω → R by setting Θτf (ζ ) =
f (Θτ ζ ). We claim that the microscopic dynamics satisfies,

Θτ ◦ L−β = Lβ ◦ Θτ . (4.5)

To prove the relationship (4.5), observe that (α,α′) ∈ {(A,C), (C,B), (B,A)} if and only if
(τα, τα′) ∈ {(A,B), (B,C), (C,A)}. Whence, by (4.4),

c
−β

i (Θτ ζ ) = c
β

−(i+1)(ζ ).

Recalling (4.3) we deduce,

Θτ ◦ L−βf (ζ ) =
∑

i∈ZL

c
β

−(i+1)(ζ )
[
f
(
(Θτ ζ )i,i+1

)− f (Θτ ζ )
]
.

Therefore, as (Θτ ζ )i,i+1 = Θτζ
−(i+1),−i ,

Θτ ◦ L−βf (ζ ) =
∑

i∈ZL

c
β

−(i+1)(ζ )
[
f
(
Θτζ

−(i+1),−i
)− f (Θτ ζ )

]

=
∑

j∈ZL

c
β

j (ζ )
[
f
(
Θτζ

j,j+1
)− f (Θτ ζ )

]

= Lβ ◦ Θτf (ζ ).

The relationship (4.5) implies the corresponding symmetry on the statistics of the paths
of the ABC model. In particular, if the process has a macroscopic drift v = v(β; rA, rB, rC)

then it necessarily satisfies v(β; rA, rB, rC) = v(−β; rτA, rτB, rτC). The antisymmetry of the
drift with respect to the transposition of the species’ labels now holds provided v is an odd
function of β . Recalling that v is given by the expression (2.19), this can be easily verified.
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5 Critical Behavior

Consider values of the masses r = (rA, rB, rC) that satisfy the condition r2 > 1
2 and r2 <

2(r3
A + r3

B + r3
C). As discussed in [10, 11], in this case the transition at βr = 2π/

√
1 − 2r2 is

of second order. In particular, increasing β above the threshold βr , the homogeneous profile
(rA, rB, rC) looses its linear stability and bifurcates giving rise to the stationary solutions ρz,
z ∈ T. In this section we analyze the behavior of the drift v(β; rA, rB) in (2.19) as β ↓ βr .
The corresponding analysis for the variance σ 2 = σ 2(β; rA, rB) has been carried out in [5],
yielding σ 2 ≈ (β − βr)

−1.
We start by the expansion of the stationary profiles ρz as β ↓ βr . The first order correc-

tion is computed in [10], however we shall need also the second order. The details of this
computation are given in Appendix C.1.

Analogously to the notation in [10], we introduce the real parameters,

θ = β − βr

βr

, ψ(θ) = 1 − 2r2

√
2r2 − 4(r3

A + r3
B + r3

C)

θ1/2. (5.1)

By defining

φ = arg
(
1 − 2rA − 2rB − i

√
1 − 2r2

)
, (5.2)

the expansion of the stationary solution is

ρz(x) =
(

rA

rB

)
+ ψ(θ)

( √
rA√

rBeiφ

)
e2π i(x−z)

+ ψ(θ)2

1 − 2r2

(
rA(1 − 2rA)

rB(1 − 2rB)e2iφ

)
e4π i(x−z) + c.c. + O

(
θ3/2
)
. (5.3)

In particular, φ/(2π) represents the phase shift between the A and B species.
To compute the kernel of et Lz we regard the operator Lz as a perturbation of the dif-

ferential operator with constant coefficients that is obtained by linearizing (1.1) around the
homogeneous profile r . The corresponding perturbation theory is detailed in Appendix C.2
and yields the following. It is convenient to introduce the vectors,

Λ =
√

rA

1 − 2r2

( √
rA√

rB eiφ

)
, Υ = 2

1 − 2r2

√
rA

1 − 2r2

(
rA(1 − 2rA)

rB(1 − 2rB) e2iφ

)
. (5.4)

As already discussed, 0 is a simple eigenvalues of Lz and the corresponding right and left
eigenvectors are given by êz(x) = ê(x − z) and ŵz(x) = ŵ(x − z) where

ê(x) = 1

2
√

rA

(
iΛ e2π ix + ψ(θ) iΥ e4π ix

)+ c.c. + O(θ),

ŵ(x) =
√

1 − 2r2

rA

[
−
(

0 1
−1 0

)
Λ e2π ix + 1

2
ψ(θ)

(
0 1

−1 0

)
Υ e4π ix

]�
+ c.c. + O(θ).

Moreover, Lz has a small negative simple eigenvalue λ = −8π2θ + O(θ3/2); the corre-
sponding right and left eigenvectors are given by ez(x) = e(x − z) and wz(x) = w(x − z)

where

e(x) = Λ e2π ix + ψ(θ)Υ e4π ix + c.c. + O(θ),

w(x) =
√

1 − 2r2

2rA

[(
0 1

−1 0

)
iΛ e2π ix + 1

2
ψ(θ)

(
0 1

−1 0

)
iΥ e4π ix

]�
+ c.c. + O(θ).
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Finally, the other eigenvalues of Lz have negative real part, bounded away from zero uni-
formly in θ . As follows from the discussion in Sect. 2, the right and left eigenfunctions cor-
responding to the zero eigenvalue are given by ρ ′(x) and χ(x), see (2.10). Indeed, ê = ψγρ ′

and ŵ = ψ−1χ . Observe also that the above eigenvectors are bi-orthonormal. Namely, by
introducing the canonical pairing 〈u|v〉 = ∫ dy u(y)v(y) we have,

〈w|e〉 = 〈ŵ|ê〉 = 1, 〈w|ê〉 = 〈ŵ|e〉 = 0.

We now proceed to the expansion of the drift v(β; rA, rB) in (2.19). In view of the previ-
ous expansion,

∂G

∂y
(x, y, t) = ê(x)ŵ′(y) + eλt e(x)w′(y) + R(x, y, t), (5.5)

with

R(x, y, t) =
∑

n>1

eλnt en(x)w′
n(y),

where {λn}n>1 is the rest of the spectrum of L and en,wn are the corresponding eigenvectors.
In particular, R(x, y, t) = R0(x, y, t) + O(θ1/2e−ct ), where R0 is defined by computing the
above displayed expression for θ = 0 and c > 0 is independent of θ . Observe R0 does not
contain the Fourier modes e±2π ix . Note that we did not expand with respect to θ the first
term in the right-hand side of (5.5) as we already know it does not contribute to the drift, see
Sect. 3. We next observe that

Σ(ρ;x, x) = Σ0 + ψ(θ)Σ1e2π ix + O(θ) + c.c.,

Σ0 =
(

2rA(1 − rA) −2rArB

−2rArB 2rB(1 − rB)

)
,

for some matrix Σ1 with constant entries. Inserting the expansions in (2.18), we get

K(x, t) = K0ê(x)ê(x)� + K1eλt
[
e(x)ê(x)� + ê(x)e(x)�]+ K2 e2λt e(x)e(x)� + R(x, t),

where K0 = 〈ŵ′|Σ(ρ̄)(ŵ′)T 〉, and, by a computations, K1 = 〈ŵ′|Σ(ρ̄)(w′)T 〉 = O(θ), K2 =
12π2rBrC + O(θ). Finally, R(x, t) = R0(x, t) + O(θ1/2e−ct ), where R0 does not contain
the Fourier modes e±2π ix .

Therefore, by (2.19),

v(β; rA, rB) = βγ

∫ ∞

0
dt

〈
χ ′
∣
∣∣
∣

( KAA(·, t) + 2KAB(·, t)
−KBB(·, t) − 2KAB(·, t)

)〉

= βγ

[
−K1

U1

λ
− K2

U2

2λ
+ O(θ)

]
,

where, letting H(x) = e(x)ê(x)� + ê(x)e(x)�,

U1 =
〈
χ ′
∣
∣∣
∣

(
2HAA + 2HAB + 2HBA

−2HBB − 2HAB − 2HBA

)〉
, U2 =

〈
χ ′
∣
∣∣
∣

(
eAeA + 2eAeB

−eBeB − 2eAeB

)〉
.

In view of the expansions of the right eigenvalues ê(x), e(x),

H(x) = i√
rA

ΛΛ� e4π ix + c.c. + O(θ),

whence U1 = O(θ). Moreover,

e(x)e(x)� = ΛΛ� e4π ix + ψ(θ)
(
Υ Λ̄� + Λ̄Υ �) e2π ix + c.c. + · · ·
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where the remainder does not involve modes e±4π ix up to order θ3/2 (this follows from the
analysis in Appendix C.2). Whence, by an explicit computation that exploits a cancellation
due to the fact that ΥAΛ̄2

B +2ΥAΛ̄AΛ̄B +2ΥBΛ̄AΛ̄B +ΥBΛ̄2
A is real, we obtain U2 = O(θ2).

Recalling (2.11), by (5.3) we get γ −1 = −4πψ(θ)2
√

1 − 2r2 + O(θ3/2). Since λ =
−8π2θ + O(θ3/2) we finally deduce that the drift v(β; rA, rB) does not diverge as β ↓ βr .
Since the variance σ 2(β; rA, rB) diverges as (β − βr)

−1, we conclude that the drift of phase
fluctuations is not relevant in the critical regime.
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Appendix A: Nonexistence of Traveling Waves

In this appendix we prove that the system (1.1) does not admit traveling waves. Considering
the case relevant for the ABC dynamics in which ρA + ρB + ρC = 1, a traveling wave of
speed c is a solution of (1.1) of the form,

ρ(x, t) =
(

YA(x − ct)

YB(x − ct)

1 − YA(x − ct) − YB(x − ct)

)

,

where, recalling (2.4), Y = ( YA

YB

)
is a nonconstant one-periodic solution to

−cY ′ = Y ′′ + βN (Y )′. (A.1)

By integration, it follows that Y is a nonconstant one-periodic solution of the following first
order planar system,

Y ′ = FK(Y ), (A.2)

where FK(Y ) = K − cY − βN (Y ) for some constant vector K = (KA

KB

)
.

We claim that for c �= 0 the system (A.2) does not admit periodic nonconstant solutions.
In particular, there are not one-periodic solution, thus proving the absence of traveling waves
for the original system (1.1). The key observation is that the divergence of the vector field FK

has a definite sign for c �= 0, more precisely divFK = −2c. This turns out to be an obstruction
to the existence of nonconstant periodic solution to system (A.2), as shown by the following
argument (known in literature as Bendixson’s criterium, see, e.g., [22, § II.4.67]). Indeed,
assume by contradiction that such periodic solution exists and denote by Λ the bounded
region of the plane delimited by its orbit. Let n̂ be the outer normal to Λ. By the divergence
theorem,

∮

∂Λ

FK · n̂ =
∫

Λ

divFK = 2c|Λ|,
where |Λ| is the area of Λ. Since the boundary ∂Λ is an orbit of (A.2), the vector field FK

is tangential to it, i.e., FK ⊥ n̂ on ∂Λ. This implies
∮

∂Λ
FK · n̂ = 0, which yields the desired

contradiction for c �= 0.

Appendix B: How to Guess Fluctuating Hydrodynamics

We here briefly discuss, without even attempting any mathematical justification, how the
fluctuating hydrodynamics (2.1)–(2.3) can be inferred from the underlying microscopic
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Markovian dynamics. We just outline the basic computation involved, referring to [24] for
the general principles of fluctuating hydrodynamics. A somewhat alternative argument to
the one detailed below is presented in [5, 6, 10].

Recalling the notation for the ABC dynamics introduced in Sect. 4, the occupation num-
bers of the species are given by σα(i) = 1α(ζ(i)), α ∈ {A,B,C}, i ∈ ZL. From these vari-
ables we construct the empirical densities of the species as

πα = 1

L

∑

i∈ZL

σα(i)δi/L, α ∈ {A,B,C},

that we regard as a random measure on the unit torus T.
To infer the evolution of the empirical densities, we recall that if f :Ω → R is an observ-

able then, as follows from the theory of Markov chains, its expected infinitesimal increment
is Lβf , i.e., conditionally on ζ(t) it holds

〈
f
(
ζ(t + dt)

)− f
(
ζ(t)
)〉= Lβf

(
ζ(t)
)

dt + o(dt).

In order to perform this computation for the empirical densities it is convenient to introduce
smooth test functions Jα: T → R. By setting

〈πα,Jα〉 = 1

L

∑

i∈ZL

Jα

(
i

L

)
σα(i),

simple computations then show,

Lβ〈πα,Jα〉 = 1

L

∑

i∈ZL

[
Jα

(
i + 1

L

)
− Jα

(
i

L

)]{
σα(i)

[
e− β

2L σα+1(i + 1) + e
β

2L σα+2(i + 1)
]

− [e β
2L σα+1(i) + e− β

2L σα+2(i)
]
σα(i + 1)

}
,

where the summation in the species labels α is modulo three. By approximating discrete
gradients with continuous derivatives, expanding the exponential, and summing by parts,
we then obtain

Lβ〈πα,Jα〉 ≈ 1

L2

1

L

∑

i∈ZL

{
J ′′

α

(
i

L

)
σα+1(i) − βJ ′

α

(
i

L

)
σα(i)

[
σα+1(i + 1) − σα+2(i + 1)

]}
.

Provided that we could replace the local product σα(i)σα′(i + 1) above with the correspond-
ing product of the local densities, we then identify the drift term in the fluctuating hydro-
dynamic equation (2.1). While this factorization hypotheses has been widely used, see e.g.,
[6], we mention that it could be rigorously justified by the methods of the hydrodynamical
limits. More precisely, if we consider an initial configuration of the species that is associated
to some density profile ρ(0) = (ρA(0), ρB(0), ρC(0)) then the empirical densities at times
O(L2) converges as L → ∞ to the solution of the hydrodynamic equation (1.1) with initial
datum ρ(0).

We emphasize that in order to justify the use of the fluctuating hydrodynamics for the
computation of the drift of phase fluctuations, we would need the validity of the factoriza-
tion assumption up to times O(L3), certainly a most challenging issue in the context of
hydrodynamical limits.

To identify the fluctuations of the empirical densities, we recall that, according to the
general theory of Markov chains, if f,g:Ω → R are two observables then, conditionally
on ζ(t),



Drift of Phase Fluctuations in the ABC Model 31

〈[
f
(
ζ(t + dt)

)− f
(
ζ(t)
)− Lβf

(
ζ(t)
)

dt
] · [g(ζ(t + dt)

)− g
(
ζ(t)
)− Lβg

(
ζ(t)
)

dt
]〉

= [Lβfg
(
ζ(t)
)− f

(
ζ(t)
)
Lβg

(
ζ(t)
)− g

(
ζ(t)
)
Lβf

(
ζ(t)
)]

dt + o(dt).

The fluctuations of the empirical densities πα are therefore characterized by the quadratic
form,

Γα,α′(Jα, Jα′) = Lβ
[〈πα,Jα〉〈πα′ , Jα′ 〉]

− 〈πα,Jα〉Lβ〈πα′ , Jα′ 〉 − 〈πα′ , Jα′ 〉Lβ〈πα,Jα〉, α,α′ ∈ {A,B,C},
where as before Jα : T → R are smooth test functions. By straightforward computations, for
α′ = α,

Γα,α(Jα, Jα) = 1

L2

∑

i∈ZL

[
Jα

(
i + 1

L

)
− Jα

(
i

L

)]2{
σα(i)

[
e− β

2L σα+1(i + 1)

+ e
β

2L σα+2(i + 1)
]+ [e β

2L σα+1(i) + e− β
2L σα+2(i)

]
σα(i + 1)

}

≈ 1

L2

1

L2

∑

i∈ZL

J ′
α

(
i

L

)2

× {σα(i)
[
σα+1(i + 1) + σα+2(i + 1)

]+ [σα+1(i) + σα+2(i)
]
σα(i + 1)

}
,

while, for α′ = α + 1,

Γα,α+1(Jα, Jα+1) = − 1

L2

∑

i∈ZL

[
Jα

(
i + 1

L

)
− Jα

(
i

L

)][
Jα+1

(
i + 1

L

)
− Jα+1

(
i

L

)]

× {e− β
2L σα(i)σα+1(i + 1) + e

β
2L σα+1(i)σα(i + 1)

}

≈ − 1

L2

1

L2

∑

i∈ZL

J ′
α

(
i

L

)
J ′

α+1

(
i

L

){
σα(i)σα+1(i + 1) + σα+1(i)σα(i + 1)

}
,

and finally, for α′ = α + 2,

Γα,α+2(Jα, Jα+2) = − 1

L2

∑

i∈ZL

[
Jα

(
i + 1

L

)
− Jα

(
i

L

)][
Jα+2

(
i + 1

L

)
− Jα+2

(
i

L

)]

× {e β
2L σα(i)σα+2(i + 1) + e− β

2L σα+2(i)σα(i + 1)
}

≈ − 1

L2

1

L2

∑

i∈ZL

J ′
α

(
i

L

)
J ′

α+2

(
i

L

)
{
σα(i)σα+2(i + 1) + σα+2(i)σα(i + 1)

}
.

In view of the factorization assumption discussed before, the fluctuations of the empirical
densities agree with the correlation of the noise in (2.1). Compare in particular (2.2) and
(2.3) to the above expressions.

Appendix C: Expansions Near the Critical Point

C.1 The Steady State Close to the Second Order Phase Transition

Recalling βr = 2π/
√

1 − 2r2, θ = (β − βr)/βr , and setting ρα = rα + Ψα , α ∈ {A,B}, the
stationary equation (2.7) reads,

AβΨ + βQ(Ψ,Ψ ) = 0, (C.1)
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where

Aβf = f ′′ + β

(
2rA + 2rB − 1 2rA

−2rB −2rA − 2rB + 1

)
f ′

and

Q(u,v) =
( [uA(vA + 2vB)]′

−[vB(uB + 2uA)]′
)

.

It turns out that the solution to (C.1) can be expanded in powers of θ1/2 and the first order
term is explicitly given in [10]. Here we compute also the second order.

We regard Aβ as an operator on the space of mean zero functions f : T → R
2. The spec-

trum of Aβ is easily computed in Fourier basis, and its eigenvalues are given by

λ+
n = −4π2n(n + 1 + θ), λ−

n = −4π2n(n − 1 − θ), n ≥ 1, (C.2)

each one having multiplicity two. For θ ∈ (0,1) the unique positive eigenvalue is λ−
1 =

4π2θ . The associated family of right and left eigenvectors is

ez(x) = Λ e2π i(x−z) + c.c., wz(x) = Γ � e2π i(x−z) + c.c.,

where z ∈ [0,1), Λ is defined in (5.4), and

Γ =
√

rB

rA

e−iφ

(
0 1

−1 0

)
Λ =

√
rB

1 − 2r2

( √
rB

−√
rAe−iφ

)
, (C.3)

in which we recall the angle φ is defined in (5.2). Observe the above family can be obtained
by taking the linear span of two linearly independent vectors. Moreover, they are normalized
so that 〈wz|ez〉 = 1, where 〈u|v〉 = ∫ dy u(y)v(y) is the pairing introduced in Sect. 5.

Writing Ψ = ξez + Ψ 1 with

ξ = 〈wz|Ψ 〉, 〈
wz|Ψ 1

〉= 0,

the stationary equation becomes,

4π2θξez + AβΨ 1 + ξ 2βQ(ez, ez) + ξβ
[
Q
(
ez,Ψ

1
)+ Q

(
Ψ 1, ez

)]+ βQ
(
Ψ 1,Ψ 1

)= 0.

We observe that

Q(ez, ez) = E e4π i(x−z) + c.c.

with

E = 4π i

(
ΛA(ΛA + 2ΛB)

−ΛB(ΛB + 2ΛA)

)
.

In particular,
〈
wz

∣
∣Q(ez, ez)

〉= 0.

As also
〈
wz

∣∣AβΨ 1
〉= 4π2θ

〈
wz

∣∣Ψ 1
〉= 0,

the stationary equation can be recast in the form,
{

4π2θξ + ξβ
〈
wz

∣∣Q
(
ez,Ψ

1
)+ Q

(
Ψ 1, ez

)〉+ β
〈
wz

∣∣Q
(
Ψ 1,Ψ 1

)〉= 0,

AβΨ 1 + ξ 2βQ(ez, ez) + ξβ
[
Q
(
ez,Ψ

1
)+ Q

(
Ψ 1, ez

)]+ βQ
(
Ψ 1,Ψ 1

)= 0.
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Assuming Ψ 1 → 0 for θ ↓ 0, at the lower order in θ the above system reads,
{

4π2θξ + ξβr

〈
wz

∣
∣Q
(
ez,Ψ

1
)+ Q

(
Ψ 1, ez

)〉= 0,

Aβr Ψ 1 + ξ 2βrQ(ez, ez) = 0.

The second equation imposes that Ψ 1 = M e4π i(x−z) + c.c. with M solution to
{[−16π2 + 4π iβr(2rA + 2rB − 1)

]
MA + 8π iβrrAMB = −ξ 2βrEA,

−8π iβrrBMA − [16π2 + 4π iβr(2rA + 2rB − 1)
]
MB = −ξ 2βrEB,

which can be solved, yielding

M = ξ 2rA

(1 − 2r2)2

(
rA(1 − 2rA)

rB(1 − 2rB)e2iφ

)
.

Now, it is easy to check that

K := 〈wz

∣
∣Q
(
ez,Ψ

1
)+ Q

(
Ψ 1, ez

)〉

= 4π i(ΛAMA + ΛAMB + ΛBMA)Γ A − 4π i(ΛBMB + ΛBMA + ΛAMB)Γ B + c.c.

and therefore, by inserting the explicit expressions of Λ,Γ,M ,

βrK = 8π2ξ 2rA

(1 − 2r2)3
= 8π2ξ 2rA

(1 − 2r2)3

[
2
(
r3
A + r3

B + r3
C

)− r2
]
,

where we used the identity,

4r2
A + 4r2

B + 1 − 4rA − 4rB + 10rArB − 6r2
ArB − 6rAr2

B

= 2
(
r3
A + r3

B + r3
C

)− r2, (C.4)

which holds whenever rC = 1 − rA − rB . Plugging this expression in the scalar equation
4π2θξ + ξβrK = 0, we obtain the not zero solutions,

ξ = ± (1 − 2r2)3/2θ1/2

√
rA

√
2r2 − 4(r3

A + r3
B + r3

C)

= ±ψ(θ)

√
1 − 2r2

rA

,

where ψ(θ) is defined in (5.1). It is sufficient to consider only the positive solution, as the
opposite one gives rise to the same profile shifted by one half (i.e., with z + 1

2 instead of z).
In conclusion, neglecting terms of order θ3/2,

Ψ (x) = ψ(θ)

( √
rA√

rBeiφ

)
e2π i(x−z) + ψ(θ)2

1 − 2r2

(
rA(1 − 2rA)

rB(1 − 2rB)e2iφ

)
e4π i(x−z) + c.c.

which proves (5.3).

C.2 Linear Perturbation Theory

Here we compute the perturbative expansion, as θ ↓ 0, of the spectral gap of Lz defined in
(2.8) and of its associated eigenvectors. Without loss of generality, from now on we fix z = 0
and drop the subscript. As

Lf = f ′′ + (1 + θ)(Vf )′, V = βr

(
2ρA + 2ρB − 1 2ρA

−2ρB −2ρA − 2ρB + 1

)
,

we have,

Lf = Aβr f + (V 1f
)′ + θ V 0f ′ + (V 2f

)′ + O
(
θ3/2
)
,
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with

V 0 = 2π√
1 − 2r2

(
2rA + 2rB − 1 2rA

−2rB −2rA − 2rB + 1

)

and

V 1 = 4πψ(θ)
√

rA(1 − 2r2)
V (1)e2π ix + c.c., V 2 = 4πψ(θ)2

(1 − 2r2)3/2
V (2)e4π ix + c.c.,

where

V (1) =
(

rA + √
rArB eiφ rA

−√
rArB eiφ −rA − √

rArB eiφ

)

and

V (2) =
(

rA(1 − 2rA) + rB(1 − 2rB)e2iφ rA(1 − 2rA)

−rB(1 − 2rB)e2iφ −rA(1 − 2rA) − rB(1 − 2rB)e2iφ

)
.

For θ = 0 the operator L coincides with Aβr . As follows from (C.2), zero is an eigenvalue
of Aβr with multiplicity two. Accordingly, perturbation theory of linear operators implies
that for θ small L has two small eigenvalues that can be computed perturbatively. Since
we already know that for θ > 0 the operator L has zero as a simple eigenvalue, we can
compute the asymptotic expansion of the other (necessarily real) eigenvalue without really
using degenerate perturbation theory.

The right and left eigenvectors of Aβr associated to the zero eigenvalue and bi-
orthonormal (up to the order O(θ)) to ρ ′ and χ are

e0(x) = Λ e2π ix + c.c., w0(x) =
√

1 − 2r2

4rArB

i eiφΓ � e2π ix + c.c.,

where Λ and Γ are defined in (5.4) and (C.3). Let λ = λ(θ) be the small eigenvalue of L and
denote by e(x) and w(x) its right and left eigenvector. We expand λ = λ1 + λ2 + O(θ3/2) in
powers of θ1/2 and, accordingly,

e(x) = e0(x) + e1(x) + e2(x) + O
(
θ3/2
)
.

Plugging these expansions in the eigenvalue equation Le = λe we get,

Aβr e1 + (V 1e0

)′ = λ1e0,

Aβr e2 + (V 1e1

)′ + θ V 0e′
0 + (V 2e0

)′ = λ1e1 + λ2e0.

As 〈w0|Aβr e1〉 = 〈w0|Aβr e2〉 = 0, 〈w0|e0〉 = 1, and 〈w0|V 0e′
0〉 = 4π2, projecting onto w0

gives,
〈
w0

∣∣(V 1e0

)′〉= λ1,
〈
w0

∣∣(V 1e1

)′〉+ 4π2θ + 〈w0|
(

V 2e0

)′〉= λ1〈w0|e1〉 + λ2.

By an explicit computation, (V 1e0)
′ = Ce4π ix + c.c. with

C = 16π2i
√

rAψ(θ)

1 − 2r2

(
rA + 2

√
rArB eiφ

−2
√

rArB eiφ − rB e2iφ

)
.

It follows that λ1 = 0 and that e1 = ψ(θ)Υ e4π ix + c.c. with Υ solution to
{[−16π2 + 4π iβr(2rA + 2rB − 1)

]
ΥA + 8π iβrrAΥB = −ψ(θ)−1CA,

−8π iβrrBΥA − [16π2 + 4π iβr(2rA + 2rB − 1)
]
ΥB = −ψ(θ)−1CB,
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which can be solved, yielding Υ as in (5.4). Hence, λ = λ2 + O(θ3/2) with

λ2 = 4π2θ + 〈w0

∣
∣(V 1e1

)′ + (V 2e0

)′〉
.

It remains to compute the scalar product in the right-hand side. We have, for a suitable W ,

(
V 1e1

)′ + (V 2e0
)′ = 24π2iψ(θ)2

(1 − 2r2)2
Se2π ix + We6π ix + c.c.,

where

S =
(

r2
A(1 − 2rA) + rA(1 − 2rA)

√
rArBe−iφ + rArB(1 − 2rB)e2iφ

−rA(1 − 2rA)
√

rArBe−iφ − rB(1 − 2rB)
√

rArBeiφ − rArB(1 − 2rB)e2iφ

)
.

Therefore, after some explicit computation and using the identity (C.4),

〈
w0

∣∣(V 1e1

)′ + (V 2e0

)′〉= 12π2ψ(θ)2

(1 − 2r2)2

√
1 − 2r2

4rArB

e−iφ Γ
�
S + c.c.

= 24π2ψ(θ)2

(1 − 2r2)2

[
2
(
r3
A + r3

B + r3
C

)− r2
]
.

Recalling the definition of ψ(θ) in (5.1), we finally get,

λ2 = −8π2θ.

An evocative explanation of this result is the following. Consider the one dimensional
equation Fθ(x) = 0 with Fθ(x) = θx − αx3, α > 0. When θ crosses the threshold zero,
a pitchfork bifurcation takes place and the stable solutions are x±(θ) = ±√

θ/α. Then, irre-
spectively of α, F ′

θ (x±(θ)) = −2F ′
θ (0). Observe in fact that the stationary equation (C.1) in

the direction ez has an analogous structure near the bifurcation point.
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