BOUNDARY EFFECTS IN THE GRADIENT THEORY OF PHASE TRANSITIONS*

LORENZO BERTINI[†], PAOLO BUTTÀ[†], AND ADRIANA GARRONI[†]

Abstract. We consider the van der Waals' free energy functional, with scaling parameter ε , in the plane domain $\mathbb{R}_+ \times \mathbb{R}_+$, with inhomogeneous Dirichlet boundary conditions. We impose the two stable phases on the horizontal boundaries $\mathbb{R}_+ \times \{0\}$ and $\mathbb{R}_+ \times \{+\infty\}$, and free boundary conditions on $\{+\infty\} \times \mathbb{R}_+$. Finally, the datum on $\{0\} \times \mathbb{R}_+$ is chosen in such a way that the interface between the pure phases is pinned at some point (0, y). We show that there exists a critical scaling, $y = y_{\varepsilon}$, such that, as $\varepsilon \to 0$, the competing effects of repulsion from the boundary and penalization of gradients play a role in determining the optimal shape of the (properly rescaled) interface. This result is achieved by means of an asymptotic development of the free energy functional. As a consequence, such analysis is not restricted to minimizers but also encodes the asymptotic probability of fluctuations.

Key words. gradient theory of phase transitions, development by Γ -convergence, boundary layers

AMS subject classifications. 82B26, 49J45, 35J20, 82B24

DOI. 10.1137/110821469

1. Introduction. The van der Waals' theory of phase transitions [9, 14] is based on the functional

(1.1)
$$E(u) = \int \left[\left| \nabla u \right|^2 + V(u) \right] \mathrm{d}r \,,$$

where the scalar field u = u(r), $r \in \mathbb{R}^d$, represents the local order parameter and V(u) is a smooth, symmetric, double well potential whose minimum value, chosen to be zero, is attained at u_{\pm} ; we also assume $V''(u_{\pm}) > 0$. By introducing a scaling parameter $\varepsilon > 0$, which is interpreted as the ratio between the microscopic and the macroscopic scales, a most relevant issue is the asymptotic behavior of the sequence of functionals

(1.2)
$$E_{\varepsilon}(u) = \int \left[\varepsilon |\nabla u|^2 + \frac{1}{\varepsilon} V(u) \right] \, \mathrm{d}r \,,$$

in the sharp interface limit $\varepsilon \to 0$. This was first analyzed in [12] and extensively studied afterwards; see [1] for a review. The limiting functional turns out to be finite only if u is a function of bounded variation taking values in $\{u_-, u_+\}$. For u in this set, the limiting functional is furthermore given by $C_V \mathcal{H}^{d-1}(\mathcal{S}_u)$, where \mathcal{S}_u denotes the jump set of u and $\mathcal{H}^{d-1}(\mathcal{S}_u)$ is its (d-1)-dimensional Hausdorff measure. The surface energy density $C_V > 0$ is finally given by

(1.3)
$$C_V = \int_{u_-}^{u_+} 2\sqrt{V(a)} \,\mathrm{d}a \,.$$

^{*}Received by the editors June 28, 2011; accepted for publication (in revised form) January 30, 2012; published electronically April 3, 2012.

http://www.siam.org/journals/sima/44-2/82146.html

[†]Dipartimento di Matematica, SAPIENZA Università di Roma, P.le Aldo Moro 5, 00185 Roma, Italy (bertini@mat.uniroma1.it, butta@mat.uniroma1.it, garroni@mat.uniroma1.it).

FIG. 1.1. The domain Ω^R and the corresponding boundary conditions. The zero of v_{ε} is y_{ε} , and γ_{ε} is the interface.

For any given limiting configuration an optimal sequence can be constructed by making the transition from the value u_{-} to the value u_{+} in the direction ν orthogonal to the interface with a one-dimensional profile $\overline{m}(\frac{r\cdot\nu}{\varepsilon})$. Here \overline{m} , the so-called instanton, is the minimizer of the one-dimensional van der Waals' energy (1.1) with boundary conditions u_{\pm} at $\pm\infty$, satisfying $\overline{m}(0) = 0$.

As proved in [11], when E_{ε} is considered together with Dirichlet boundary conditions, the latter contribute to the limiting functional with a term taking into account the discrepancy between the pure phases $\{u_{-}, u_{+}\}$ in the interior of the domain and the prescribed boundary data. We can regard this term as the cost associated with an interface localized at the boundary. In particular, when the boundary data take values in the pure phases $\{u_{-}, u_{+}\}$, this cost coincides with the one in the bulk.

Consider a geometry in which the minimizer of the limiting functional is obtained with an interface localized at the boundary. Of course, when ε is small but strictly positive, the minimizer of E_{ε} is smooth and the transition between the pure phases takes place in a thin layer close to the boundary. The purpose of the present paper is a detailed description, in the two-dimensional case, of such a boundary effect by means of an asymptotic development of E_{ε} . In particular, such analysis is not restricted to minimizers but also encodes the asymptotic probability of fluctuations.

We consider the following geometry; see Figure 1. As basic domain we choose $\Omega^R = (0, R) \times (0, +\infty), R > 0$, and denote by x and y the horizontal and the vertical coordinates. We impose the phase u_- on $(0, R) \times \{0\}$, the phase u_+ on $(0, R) \times \{+\infty\}$, and free boundary conditions on $\{R\} \times (0, +\infty)$. Finally, the trace on $\{0\} \times (0, +\infty)$ is given by a suitable (e.g., monotone) continuous function $v_{\varepsilon} \colon [0, +\infty) \to [u_-, u_+]$ satisfying $v_{\varepsilon}(0) = u_-, v_{\varepsilon}(+\infty) = u_+$.

We denote by $E_{\varepsilon}(\cdot, \Omega^R)$ the functional in (1.2) on the domain Ω^R with these boundary conditions and let u_{ε}^* be a minimizer of $E_{\varepsilon}(\cdot, \Omega^R)$. Assume that v_{ε} has a unique zero at y_{ε} and let γ_{ε} be the zero level set of u_{ε}^* . Observe that γ_{ε} is a subset of the closure of Ω^R . We shall refer to it as the *interface*, and in the following heuristic discussion we assume that it is the graph of some function on [0, R], still denoted by γ_{ε} . The boundary condition on $\{0\} \times (0, +\infty)$ pins the interface at the point $(0, y_{\varepsilon})$, i.e., $\gamma_{\varepsilon}(0) = y_{\varepsilon}$. We assume that y_{ε} converges to zero as $\varepsilon \to 0$. The result in [11] then implies that the interface approaches the interval $[0, R] \times \{0\}$ in the limit $\varepsilon \to 0$, i.e., $\gamma_{\varepsilon} \to 0$. Our aim is a detailed analysis of this convergence, which includes the correction for finite ε due to the boundary condition. There are two competing effects. The boundary datum u_{-} on $(0, R) \times \{0\}$ effectively repels γ_{ε} ; indeed, in order

927

to minimize the energy along the one-dimensional sections $\{x\} \times (0, +\infty), x \in (0, R)$, the zero of $u_{\varepsilon}^*(x, \cdot)$ should be as large as possible. On the other hand, the convergence of γ_{ε} to the flat interface penalizes the gradient of γ_{ε} . We show that there exists a critical scaling for y_{ε} such that γ_{ε} , properly rescaled, converges to a nontrivial profile for which both effects play a role.

In the spirit of the developments by Γ -convergence [3, 6, 7], we introduce the excess energy

(1.4)
$$\widetilde{E}_{\varepsilon}(u,\Omega^R) = K_{\varepsilon} \left[E_{\varepsilon}(u,\Omega^R) - C_V R \right]$$

and look for a sequence $K_{\varepsilon} \to +\infty$ for which \tilde{E}_{ε} has a nontrivial limit. In order to complete this program, however, we need to properly rescale the variables. The identification of the correct scaling is based on the following ansatz, which is suggested by the construction of the optimal sequence in the sharp interface limit of E_{ε} . The interface γ_{ε} satisfies $\gamma_{\varepsilon}(x) \approx y_{\varepsilon} + \varepsilon \phi(x)$, and on each vertical section the function $u_{\varepsilon}^{*}(x, \cdot)$ minimizes the corresponding energy with the constraint $u_{\varepsilon}^{*}(x, \gamma_{\varepsilon}(x)) = 0$. We thus perform the change of variable $y \mapsto (y - y_{\varepsilon})/\varepsilon$, getting

(1.5)

$$F_{\varepsilon,R}(u) = K_{\varepsilon} \left\{ \varepsilon^{2} \int_{0}^{R} \int_{-\frac{y_{\varepsilon}}{\varepsilon}}^{+\infty} (\partial_{x}u)^{2} \mathrm{d}y \,\mathrm{d}x + \int_{0}^{R} \left[\int_{-\frac{y_{\varepsilon}}{\varepsilon}}^{+\infty} \left((\partial_{y}u)^{2} + V(u) \right) \mathrm{d}y - C_{V} \right] \mathrm{d}x \right\}.$$

The above expression suggests that in order to appreciate the variations in the horizontal direction we have to choose $K_{\varepsilon} = \varepsilon^{-2}$. Moreover, the analysis of the onedimensional case in [5] implies that the second term on the right-hand side of (1.5) is of the order $\exp\{-\beta_V \varepsilon^{-1} y_{\varepsilon}\}$, where $\beta_V = \sqrt{2V''(u_+)}$. We therefore conclude that the critical scaling for y_{ε} is given by $y_{\varepsilon} \approx \frac{2}{\beta_V} \varepsilon \log \varepsilon^{-1}$.

The functional $F_{\varepsilon,R}$ in (1.5) also makes sense when $R = +\infty$, i.e., Ω^R is the quadrant $\mathbb{R}_+ \times \mathbb{R}_+$. In this case we denote it simply by F_{ε} . The asymptotic analysis of $F_{\varepsilon,R}$ for any R > 0 is then formulated directly in terms of F_{ε} with a local topology in the horizontal variable. In this paper we prove a Γ -convergence result for F_{ε} ; referring to the next section for the precise statement, here we discuss informally our results.

If $y_{\varepsilon} \gg \frac{2}{\beta_V} \varepsilon \log \varepsilon^{-1}$, we show that the repulsion due to the boundary is not seen in the limiting functional (see Remark 2.2 for the precise statement). In particular, the rescaled profile corresponding to the minimizer u_{ε}^* is asymptotically flat, i.e., $\phi = 0$. In the critical scaling $y_{\varepsilon} = \frac{2}{\beta_V} \varepsilon \log \varepsilon^{-1}$, we prove that the Γ -limit of the functionals F_{ε} is finite only on functions u of the form $u(x, y) = \overline{m}(y - \phi(x))$, with $\phi(0) = 0$. On these functions the limiting functional is furthermore given by

(1.6)
$$\int_{0}^{+\infty} \left[\frac{C_V}{2} \phi'(x)^2 + B_V e^{-\beta_V \phi(x)} \right] dx$$

for a suitable constant $B_V > 0$ that can be computed explicitly. As a consequence of this Γ -convergence result, we deduce the sharp asymptotic, as $\varepsilon \to 0$ and $R \to +\infty$, for the minimizer u_{ε}^* of the original functional $E_{\varepsilon}(\cdot, \Omega^R)$. Namely,

(1.7)
$$u_{\varepsilon}^{*}(x,y) \approx \overline{m}\left(\frac{y-\gamma_{\varepsilon}(x)}{\varepsilon}\right), \qquad \gamma_{\varepsilon}(x) \approx y_{\varepsilon} + \varepsilon \,\phi^{*}(x) \,,$$

where ϕ^* is the minimizer of the energy (1.6) with the boundary condition $\phi(0) = 0$. The function ϕ^* can be computed explicitly. Indeed, as follows by simple calculations,

(1.8)
$$\phi^*(x) = \frac{2}{\beta_V} \log\left(1 + \beta_V \sqrt{\frac{B_V}{2C_V}} x\right).$$

In the case $y_{\varepsilon} \ll \frac{2}{\beta_V} \varepsilon \log \varepsilon^{-1}$, when x is close to zero, the repulsion from the boundary is much stronger than the penalization on the gradients of γ_{ε} . This implies that for each fixed x close to zero we have $\gamma_{\varepsilon}(x) - y_{\varepsilon} \gg \varepsilon$. On the other hand, if x is such that $\gamma_{\varepsilon}(x) \approx \frac{2}{\beta_V} \varepsilon \log \varepsilon^{-1}$, we are back in the situation described by the critical scaling. We therefore expect, but do not prove here, that in this regime the asymptotic expression of the interface γ_{ε} for x bounded away from 0 still has the form $\gamma_{\varepsilon}(x) \approx \frac{2}{\beta_V} \varepsilon \log \varepsilon^{-1} + \varepsilon \phi(x)$ for some function ϕ satisfying $\phi(0) = -\infty$.

We conclude with a few remarks on the relationship of the problem considered here with some (microscopic) statistical mechanics models. In the context of shortrange, Ising-like models, the statistical properties of an interface above a wall have been studied mostly for the so-called *effective interface models*; see [10] for a review. These models are obtained by assuming that the interface can be described as the graph of some function $\phi: \Lambda \to \mathbb{R}_+$, where Λ is a finite subset of the lattice \mathbb{Z}^{d-1} . One then introduces a Gibbs measure on the set of the interface configurations, with a short-range energy term penalizing the gradients of ϕ , and analyzes the asymptotic behavior of this measure as Λ invades \mathbb{Z}^{d-1} . While the energy is minimized by an interface localized at the wall, i.e., $\phi = 0$, the presence of the fluctuations induces a repulsion; e.g., the expected value of ϕ diverges as $\Lambda \uparrow \mathbb{Z}^{d-1}$. This effect is referred to as *entropic repulsion*: for the interface it is more convenient to have some room to fluctuate rather than to minimize the energy.

The asymptotic (1.7) does not reflect an entropic repulsion effect. In the case of the van der Waals' functional, the repulsion from the wall is in fact due to an energetic effect induced by the boundary conditions. The case of long-range, Kac-like models is, on the other hand, much closer to the problem considered here. Indeed, on a suitable mesoscopic scale the behavior of those models is well described by a free energy functional which, although nonlocal, has features similar to (1.2); see [13]. In particular, the corresponding sharp interface limit has been analyzed in [2], where it is shown that the Γ -limit of the free energy functional is proportional to the perimeter of the interface between the pure phases, the proportionality constant identifying the surface tension. As far as we know, the asymptotic behavior of an interface close to a wall has not been analyzed in detail for systems with Kac-type interactions, but it seems reasonable that the effects discussed here are also relevant in such a situation.

2. The main result. For the sake of concreteness, we restrict the analysis to the paradigmatic case of the symmetric double well potential; i.e., we choose

(2.1)
$$V(u) = (u^2 - 1)^2,$$

which attains its minimum at $u_{\pm} = \pm 1$. With this choice, the instanton \overline{m} is given by $\overline{m}(y) = \tanh y$, and elementary computations show $C_V = \frac{8}{3}$, $\beta_V = 4$, and $B_V = 16$ [5, Appendix A].

As reference domain we choose the quadrant of \mathbb{R}^2 given by $\Omega_{\ell} = (0, +\infty) \times (-\ell, +\infty), \ell > 0$. The parameter ℓ has been introduced in such a way that the zero of the trace on $\{0\} \times (-\ell, +\infty)$ approaches zero as $\varepsilon \to 0$. Accordingly, the asymptotic

expansion of the functional will be discussed in the fine tuning $\ell = \frac{1}{2} \log \varepsilon^{-1} + O(1)$, which corresponds to the critical scaling discussed in the introduction.

Given $m: (-\ell, +\infty) \to \mathbb{R}$, we introduce the one-dimensional functional

(2.2)
$$\mathcal{F}_{\ell}(m) := \int_{-\ell}^{+\infty} \left[(m')^2 + V(m) \right] \mathrm{d}y$$

With this notation, we can rewrite the functional in (1.5) for $R = +\infty$ as

(2.3)
$$F_{\varepsilon}(u) := \int_{0}^{+\infty} \int_{-\ell_{\varepsilon}}^{+\infty} (\partial_{x} u)^{2} \, \mathrm{d}y \, \mathrm{d}x + \varepsilon^{-2} \int_{0}^{+\infty} \left[\mathcal{F}_{\ell_{\varepsilon}}(u(x, \cdot)) - \frac{8}{3} \right] \, \mathrm{d}x \,,$$

where $\ell_{\varepsilon} \to +\infty$ as $\varepsilon \to 0$. We will study the asymptotic behavior, in terms of Γ -convergence, of F_{ε} subject to the following boundary conditions:

(2.4)
$$\begin{cases} u(0,y) = w_{\varepsilon}(y), & y \in [-\ell_{\varepsilon}, +\infty) \\ u(x, -\ell_{\varepsilon}) = -1, & x \in (0, +\infty), \\ u(x, \cdot) - 1 \in L^2((-\ell_{\varepsilon}, +\infty)), & x \in (0, +\infty), \end{cases}$$

for a suitable continuous function $w_{\varepsilon} : [-\ell_{\varepsilon}, +\infty) \to \mathbb{R}$ with $w_{\varepsilon}(-\ell_{\varepsilon}) = -1$. We shall regard u as a function on $[0, +\infty) \times \mathbb{R}$ by setting u = -1 on $[0, +\infty) \times (-\infty, -\ell_{\varepsilon})$. Accordingly, w_{ε} is also regarded as a function in \mathbb{R} by setting $w_{\varepsilon} = -1$ on $(-\infty, -\ell_{\varepsilon})$.

We set $\chi(x, y) = \chi(y) := \operatorname{sgn}(y)$ and define the affine space

$$X := \left\{ u : u - \chi \in L^2((0, R) \times \mathbb{R}) \text{ for any } R > 0 \right\},\$$

endowed with the metric

$$d_X(u,v) = \sum_n 2^{-n} \left(1 \wedge ||u - v||_{L^2((0,n) \times \mathbb{R})} \right).$$

We shall then regard F_{ε} as a functional on X, which takes value $+\infty$ whenever u does not satisfy the boundary conditions (2.4) or u is not identically equal to -1 on $[0, +\infty) \times (-\infty, -\ell_{\varepsilon})$. Note that $F_{\varepsilon}(u) < +\infty$ implies $u \in H^1((0, R) \times (-L, L))$ for any R, L > 0, and therefore the condition $u(0, \cdot) = w_{\varepsilon}$ can be understood in terms of traces. It turns out that the Γ -limit of F_{ε} depends on

$$\alpha := \lim_{\varepsilon \to 0} \left[\ell_{\varepsilon} - \frac{1}{2} \log \varepsilon^{-1} \right].$$

First we introduce the limiting functional. Given $\alpha \in \mathbb{R}$, we let $\mathcal{G}^{\alpha} : C([0, +\infty)) \to [0, +\infty]$ be the lower semicontinuous—with respect to the uniform convergence on compact subsets of $[0, +\infty)$ —functional defined by

(2.5)
$$\mathcal{G}^{\alpha}(\phi) = \int_{0}^{+\infty} \left[\frac{4}{3}\phi'(x)^{2} + 16\,e^{-4\alpha}\,\mathrm{e}^{-4\phi(x)}\right]\,\mathrm{d}x$$

Recall that \overline{m} is the minimizer of the one-dimensional van der Waals' energy (1.1) with boundary conditions ± 1 at $\pm \infty$ satisfying $\overline{m}(0) = 0$, and denote by \overline{m}_z its translation by $z \in \mathbb{R}$, i.e., $\overline{m}_z(y) := \overline{m}(y-z)$ for $y \in \mathbb{R}$. We then let $F^{\alpha} \colon X \to [0, +\infty]$ be defined by

(2.6)
$$F^{\alpha}(u) := \begin{cases} \mathcal{G}^{\alpha}(\phi) & \text{if } u = \overline{m}_{\phi} \text{ for some } \phi \in C([0, +\infty)), \text{ with } \phi(0) = 0, \\ +\infty & \text{otherwise,} \end{cases}$$

where we understand that $\overline{m}_{\phi}(x, y) = \overline{m}_{\phi(x)}(y)$.

THEOREM 2.1. Assume $\lim_{\varepsilon \to 0} \left[\ell_{\varepsilon} - \frac{1}{2} \log \varepsilon^{-1} \right] = \alpha$,

(2.7)
$$\lim_{\varepsilon \to 0} \varepsilon^{-1} \left(\mathcal{F}_{\ell_{\varepsilon}}(w_{\varepsilon}) - \frac{8}{3} \right) = 0, \quad and \quad \lim_{\varepsilon \to 0} w_{\varepsilon}(0) = 0.$$

The following statements hold.

(Compactness). If a sequence u_{ε} satisfies $\limsup_{\varepsilon} F_{\varepsilon}(u_{\varepsilon}) < +\infty$, then for any R > 0,

(2.8)
$$\lim_{\varepsilon \to 0} \left\| u_{\varepsilon} - \overline{m}_{\phi_{\varepsilon}} \right\|_{L^{2}((0,R) \times \mathbb{R})}^{2} = 0$$

for some sequence ϕ_{ε} precompact in $C([0, +\infty))$, satisfying $\phi_{\varepsilon}(0) \to 0$ as $\varepsilon \to 0$. In particular, the sequence F_{ε} is equicoercive in X.

(Γ -convergence). The sequence F_{ε} Γ -converges to F^{α} as $\varepsilon \to 0$; i.e., for any $\phi \in C([0, +\infty))$ with $\phi(0) = 0$, we have the following:

(i) (Γ -liminf). If $u_{\varepsilon} \to \overline{m}_{\phi}$ in X, then

$$\liminf_{\varepsilon \to 0} F_{\varepsilon}(u_{\varepsilon}) \ge \mathcal{G}^{\alpha}(\phi).$$

(ii) (Γ -limsup). There exists $u_{\varepsilon} \to \overline{m}_{\phi}$ in X such that

$$\lim_{\varepsilon \to 0} F_{\varepsilon}(u_{\varepsilon}) = \mathcal{G}^{\alpha}(\phi)$$

Remark 2.2. The above result also holds in the case $\alpha = +\infty$. More precisely, if ℓ_{ε} satisfies $\lim_{\varepsilon \to 0} \left[\ell_{\varepsilon} - \frac{1}{2}\log \varepsilon^{-1}\right] = +\infty$ and w_{ε} satisfies (2.7), the statements in Theorem 2.1 hold true with $\mathcal{G}^{\alpha}(\phi)$ replaced by $\frac{4}{3} \int_{0}^{+\infty} |\phi'|^2 dx$. This is due to the fact that the relevant estimates needed in the proof of Theorem 2.1 are uniform with respect to $\alpha \in [\alpha_0, +\infty), \alpha_0 \in \mathbb{R}$.

By standard properties of Γ -convergence (see, e.g., [6, Theorem 1.21]), the above results imply the convergence of the minimizers of F_{ε} to the (unique) minimizer of the corresponding limiting functionals. In particular, in the critical scaling, the repulsion of the boundary conditions on $\partial \Omega_{\ell_{\varepsilon}}$ competes with the tendency of being flat, and the minimizers of F_{ε} converge in X to $\overline{m}_{\phi_{\alpha}^{*}}$, where $\phi_{\alpha}^{*}(x) = \frac{1}{2}\log\left(1 + e^{-2\alpha} 4\sqrt{3}x\right)$ is the minimizer of \mathcal{G}^{α} with the boundary condition $\phi(0) = 0$. On the other hand, when $\ell_{\varepsilon} \gg$ $\frac{1}{2}\log\varepsilon^{-1}$, the repulsion of the boundary conditions on $\partial\Omega_{\ell_{\varepsilon}}$ is not felt, and the optimal interface is flat. This is consistent with the fact that as $\alpha \to +\infty$ we have $\phi_{\alpha}^{*}(x) \to 0$, $x \geq 0$. To illustrate the difficulties in analyzing the asymptotic behavior of F_{ε} in the subcritical case $\ell_{\varepsilon} - \frac{1}{2}\log\varepsilon^{-1} \to -\infty$, it is instructive to discuss the asymptotics of \mathcal{G}^{α} as $\alpha \to -\infty$. We first observe that in this case $\phi_{\alpha}^{*}(x) + \alpha \to \frac{1}{2}\log\left(4\sqrt{3}x\right)$, x > 0. However, the limit of $\phi_{\alpha}^{*} + \alpha$ cannot be characterized in variational terms as a minimizer of a suitable limiting functional for \mathcal{G}^{α} . Indeed, the amount of energy of ϕ_{α}^{*} stored in any neighborhood of zero diverges as $\alpha \to -\infty$, while the energy stored in any interval not containing zero remains finite and strictly positive.

The rest of the paper is organized in the following way. Section 3 and the appendix are devoted to a detailed study of the asymptotic expansion by Γ -convergence of the one-dimensional functional \mathcal{F}_{ℓ} in (2.2) as $\ell \to +\infty$. Such analysis is a preliminary tool for the proof of Theorem 2.1, which is the content of section 4 (compactness) and section 5 (Γ -convergence). **3. One-dimensional problem.** In this section we analyze the one-dimensional functional \mathcal{F}_{ℓ} defined in (2.2). The development by Γ -convergence of \mathcal{F}_{ℓ} as $\ell \to +\infty$ is studied in [5]. Here we prove quantitative estimates related to that asymptotic expansion. Hereafter we denote $L^2(\mathbb{R})$ and $H^1(\mathbb{R})$ by L^2 and H^1 , respectively.

Recalling $\chi(y) = \operatorname{sgn}(y)$, we set $\mathcal{X} := \{m \colon m - \chi \in L^2\}$, which we consider endowed with the strong L^2 -topology. Given $\ell > 0$, we let $\mathcal{X}_{\ell} \subset \mathcal{X}$ be the closed subspace defined by

(3.1)
$$\mathcal{X}_{\ell} = \{ m \in \mathcal{X} : m(y) = -1 \text{ if } y \in (-\infty, -\ell) \}.$$

We then regard \mathcal{F}_{ℓ} as a functional on \mathcal{X} which takes value $+\infty$ whenever $m \notin \mathcal{X}_{\ell}$. It is simple to show that the sequence of functionals \mathcal{F}_{ℓ} Γ -converges to the functional $\mathcal{F}: \mathcal{X} \to [0, +\infty]$, defined by

(3.2)
$$\mathcal{F}(m) := \int_{-\infty}^{+\infty} \left[(m')^2 + V(m) \right] \mathrm{d}y$$

By the well-known Modica–Mortola trick [12],

(3.3)
$$\min \mathcal{F} = C_V = \frac{8}{3}, \qquad \arg \min \mathcal{F} = \{\overline{m}_z, \, z \in \mathbb{R}\}$$

Given $z \in (-\ell, +\infty)$, we define

(3.4)
$$m_z^{\ell} = \arg\min\left\{\mathcal{F}_{\ell}(m): \ m \in \mathcal{X}_{\ell}, \ m(z) = 0\right\},$$

observing that the minimizer is unique. We introduce the one-dimensional manifold $\mathcal{M}^{\ell} := \{m_z^{\ell} : z \in (-\ell, +\infty)\}$ in \mathcal{X} . Sometimes, we will use the notation $m_z^{\ell}(\cdot) = m^{\ell}(\cdot, z)$. If y > z, then $m_z^{\ell}(y) = \overline{m}_z(y)$. Moreover, for $y \in (-\ell, z)$, m_z^{ℓ} coincides with the (unique) solution to the following boundary value problem:

(3.5)
$$\begin{cases} -2m'' + V'(m) = 0 & \text{in } (-\ell, z), \\ m(-\ell) = -1, \ m(z) = 0. \end{cases}$$

We next state, referring the reader to the appendix for the proof, sharp estimates concerning m_z^{ℓ} and its convergence to \overline{m}_z .

PROPOSITION 3.1. There exists a constant A such that, for any $\ell > 0$ and $z \in \mathbb{R}$ satisfying $\ell + z \ge 1$,

(3.6)
$$\sup_{y \in (-\ell,z)} |m_z^{\ell}(y) - \overline{m}_z(y)| \le A e^{-2(\ell+z)},$$

(3.7)
$$\sup_{y \in (-\ell,z)} |\partial_z m_z^{\ell}(y) + \overline{m}_z'(y)| \le A e^{-2(\ell+z)}$$

(3.8)
$$\sup_{y \in (-\ell,z)} |\partial_{zz} m_z^{\ell}(y) - \overline{m}_z''(y)| \le A \mathrm{e}^{-2(\ell+z)}$$

(3.9)
$$[(m_z^{\ell})'](z) + [\partial_z m_z^{\ell}](z) = 0, \quad |[(m_z^{\ell})'](z)| \le A e^{-4(\ell+z)},$$

where [f](z) denotes the jump of the function f at z. Moreover, for any ℓ , z_1 , and z_2 such that $(z_1 + \ell) \land (z_2 + \ell) \ge 1$,

(3.10)
$$\frac{1}{A}(|z_1 - z_2|^2 \wedge |z_1 - z_2|) \le ||m_{z_1}^{\ell} - m_{z_2}^{\ell}||_{L^2}^2 \le A(|z_1 - z_2|^2 \wedge |z_1 - z_2|).$$

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Remark 3.2. Since $m_z^{\ell}(y) = \overline{m}_z(y)$ for y > z and $m_z^{\ell}(y) = -1$ for $y < -\ell$, the above bounds and (3.5) yield that m_z^{ℓ} converges to \overline{m}_z in H^2 . In particular,

(3.11)
$$\lim_{\ell \to +\infty} \int_{-\ell}^{+\infty} (\partial_z m_z^{\ell})^2 \, \mathrm{d}y = \int_{-\infty}^{+\infty} \overline{m}'_z(y)^2 \, \mathrm{d}y = \frac{4}{3} \,,$$

uniformly with respect to $z \in [\bar{z}_{\ell}, +\infty)$ with $\ell + \bar{z}_{\ell} \to +\infty$.

The following lemma is proved in [5, Lemma A.1]. It is the key ingredient in studying the development by Γ -convergence of the functionals \mathcal{F}_{ℓ} .

LEMMA 3.3. Let $z \in \mathbb{R}$ and let z_{ℓ} be a sequence converging to z. Then

$$\lim_{\ell \to +\infty} e^{4\ell} \left[\mathcal{F}_{\ell}(m_{z_{\ell}}^{\ell}) - \frac{8}{3} \right] = 16 e^{-4z}$$

and, given $\bar{z} \in \mathbb{R}$, this limit is uniform for $z \in [\bar{z}, +\infty)$.

The notion of center for functions in \mathcal{X}_{ℓ} , introduced in [8], will play an important role in our analysis.

DEFINITION 3.4. Given $m \in \mathcal{X}_{\ell}$, we say that $\zeta \in (-\ell, +\infty)$ is a center of m if

$$\zeta \in \arg\min\left\{\|m - m_z^\ell\|_{L^2}^2 \colon z \in (-\ell, +\infty)\right\}.$$

In particular, the function m_{ζ}^{ℓ} is an L^2 -projection of m on the manifold \mathcal{M}^{ℓ} .

Referring to [4] for a dynamical interpretation of the above definition, we simply note that if ζ is a center of m, then the following orthogonality condition holds:

(3.12)
$$\int_{-\ell}^{+\infty} \left[m(y) - m_{\zeta}^{\ell}(y) \right] \partial_z m_{\zeta}^{\ell}(y) \, \mathrm{d}y = 0 \,,$$

where $\partial_z m_{\zeta}^{\ell}(y) = \partial_z m_z^{\ell}(y) \big|_{z=\zeta}$. We next introduce a suitable neighborhood of the manifold \mathcal{M}^{ℓ} , which takes into account the boundary conditions (3.1). More precisely, given $\delta > 0$ and k > 0, we set

$$(3.13) \qquad \mathcal{T}^{\ell}(\delta,k) := \left\{ m \in \mathcal{X}_{\ell} \colon \exists z \in (-\ell+k,+\infty) \text{ such that } \|m - m_z^{\ell}\|_{H^1} < \delta \right\}.$$

The following result shows, in particular, that if m is such that $\mathcal{F}_{\ell}(m)$ is close to its minimum, then m is close to the manifold \mathcal{M}^{ℓ} .

THEOREM 3.5. The following statements hold.

- (i) For each $\delta > 0$ and $\kappa > 0$ there exist $\eta > 0$ and $\ell_0 > 0$ such that if $\mathcal{F}_{\ell}(m) \frac{8}{3} < \eta$ for some $\ell \geq \ell_0$, then $m \in \mathcal{T}^{\ell}(\delta, \kappa)$.
- (ii) There exist constants ℓ_1 , δ_1 , κ_1 , and C_1 such that, for all $\ell \geq \ell_1$, $\delta \leq \delta_1$, and $\kappa \geq \kappa_1$, if $m \in \mathcal{T}^{\ell}(\delta, \kappa)$, then the center ζ of m is unique and satisfies $\zeta > -\ell + \kappa - 2\delta$, and

(3.14)
$$\|m - m_{\zeta}^{\ell}\|_{H^{1}}^{2} \leq C_{1} \left[\mathcal{F}_{\ell}(m) - \mathcal{F}_{\ell}(m_{\zeta}^{\ell}) + e^{-4(\ell+\zeta)} \|m - m_{\zeta}^{\ell}\|_{H^{1}} \right].$$

(iii) For each $\overline{z} \in \mathbb{R}$ there exist two positive constants C_2 and ℓ_2 such that, for any $\ell > \ell_2$ and $z \in [\overline{z}, +\infty)$,

$$\mathcal{F}_{\ell}(m) - \mathcal{F}_{\ell}(m_{z}^{\ell}) \leq C_{2} \left(\|m - m_{z}^{\ell}\|_{H^{1}}^{2} + \|m - m_{z}^{\ell}\|_{H^{1}}^{4} + e^{-4\ell} \|m - m_{z}^{\ell}\|_{H^{1}}^{4} \right)$$

for all $m \in \mathcal{X}_{\ell}$.

We emphasize that while in statement (ii) of the above theorem ζ denotes the center of m, in statement (iii) z is arbitrary.

Remark 3.6. As a consequence of (3.14) and Lemma 3.3, there exist constants ℓ_0 , δ , κ , and C_0 such that, for all $\ell \geq \ell_0$, if $m \in \mathcal{T}^{\ell}(\delta, \kappa)$, then the center ζ of m is unique and

(3.15)
$$\|m - m_{\zeta}^{\ell}\|_{H^{1}}^{2} + e^{-4(\ell+\zeta)} \le C_{0} \left[\mathcal{F}_{\ell}(m) - \frac{8}{3} \right].$$

Proof of Theorem 3.5. The proof is split into separate arguments. In what follows we denote by C a strictly positive constant, independent of ℓ and ζ , whose numerical value may change from line to line.

Proof of statement (i), step 1. Here we prove that for each $\delta > 0$ there exist $\eta > 0$ and $\ell_0 > 0$ such that if $\mathcal{F}_{\ell}(m) - \frac{8}{3} < \eta$ for some $\ell \geq \ell_0$, then $\operatorname{dist}_{H^1}(m, \mathcal{M}^{\ell}) < \delta$. We argue by contradiction and assume that there exist $\delta_0 > 0$ and a sequence m_{ℓ} with

(3.16)
$$\liminf_{\ell \to +\infty} \operatorname{dist}_{H^1}(m_\ell, \mathcal{M}^\ell) \ge \delta_0$$

such that

(3.17)
$$\limsup_{\ell \to +\infty} \mathcal{F}_{\ell}(m_{\ell}) \le \frac{\delta}{3}$$

Note that by (3.17) the function m_{ℓ} satisfies the boundary conditions (3.1). We set $z_{\ell} = \inf\{y: m_{\ell}(y) = 0\}$ and define $\tilde{m}_{\ell}(y) = m_{\ell}(y + z_{\ell})$, so that $\tilde{m}_{\ell}(0) = 0$. The boundedness of the energy implies that \tilde{m}_{ℓ} converges, up to a subsequence, to some continuous function m_0 , uniformly in compact subsets of $[0, +\infty)$. We will show that $m_0 = \bar{m}$ and that $\tilde{m}_{\ell} - \bar{m}$ actually converges to zero in H^1 .

Given $\sigma > 0$, we set

$$a_{\ell} = \sup\{y < z_{\ell} : m_{\ell}(y) > -1 + \sigma\},\ b_{\ell} = \inf\{y > z_{\ell} : m_{\ell}(y) < 1 - \sigma\}.$$

The boundedness of $\int_{-\infty}^{+\infty} V(m_{\ell}) dy$ implies that $b_{\ell} - a_{\ell} \leq C_{\sigma}$ for some constant C_{σ} independent of ℓ . This guarantees that the energy of \widetilde{m}_{ℓ} does not escape to infinity. More precisely, using the Modica–Mortola trick,

$$\begin{split} \int_{-C_{\sigma}}^{C_{\sigma}} \left[|\widetilde{m}_{\ell}'|^2 + V(\widetilde{m}_{\ell}) \right] \, \mathrm{d}y &\geq 2 \int_{a_{\ell}-z_{\ell}}^{b_{\ell}-z_{\ell}} |\widetilde{m}_{\ell}'| \sqrt{V(\widetilde{m}_{\ell})} \, \mathrm{d}y \\ &= 2 \int_{-1+\sigma}^{1-\sigma} \sqrt{V(m)} \, \mathrm{d}m = \frac{8}{3} - 4\sigma^2 \left(1 - \frac{\sigma}{3}\right), \end{split}$$

we deduce, taking into account (3.17), that

(3.18)
$$\lim_{\ell \to +\infty} \mathcal{F}_{\ell}(m_{\ell}) = \frac{8}{3}$$

and thence

(3.19)
$$\lim_{\sigma \to 0} \limsup_{\ell \to +\infty} \int_{[-C_{\sigma}, C_{\sigma}]^{\mathfrak{c}}} \left[|\widetilde{m}_{\ell}'|^{2} + V(\widetilde{m}_{\ell}) \right] \, \mathrm{d}y = 0 \, .$$

Therefore, up to a subsequence,

$$\lim_{\ell \to +\infty} \int_{-\infty}^{+\infty} V(\widetilde{m}_{\ell}) \, \mathrm{d}y = \int_{-\infty}^{+\infty} V(m_0) \, \mathrm{d}y$$

so that

(3.20)
$$\lim_{\ell \to +\infty} \int_{-\infty}^{+\infty} |\widetilde{m}_{\ell}'|^2 \, \mathrm{d}y = \int_{-\infty}^{+\infty} |m_0'|^2 \, \mathrm{d}y \, .$$

In particular, by (3.18), $\mathcal{F}(m_0) = \frac{8}{3}$. Since $m_0(0) = 0$, by the uniqueness up to translations of the minimizer of \mathcal{F} (recall (3.3)), $m_0 = \overline{m}$. Now, using (3.19) and the definition of a_ℓ and b_ℓ , we get the convergence of \widetilde{m}_ℓ to \overline{m} in L^2 . This, together with (3.20) and Remark 3.2, contradicts (3.16) and then concludes the proof of the step.

Proof of statement (i), step 2. Here we conclude the proof. Again we argue by contradiction and assume that there exist $\delta, \kappa > 0$ and a sequence $m_{\ell} \notin \mathcal{T}^{\ell}(\delta, \kappa)$ such that $\mathcal{F}_{\ell}(m_{\ell}) \to \frac{8}{3}$. By step 1 it is enough to consider the case when there exists a sequence $z_{\ell} \in (-\ell, -\ell + \kappa)$ such that $||m_{\ell} - m_{z_{\ell}}^{\ell}||_{H^{1}} < \delta$. This yields $||m_{\ell} - m_{z_{\ell}}^{\ell}||_{L^{\infty}} < C\delta$, and hence, if z'_{ℓ} is any zero of m_{ℓ} , then $|m_{z_{\ell}}(z'_{\ell})| < C\delta$. By Proposition 3.1, this implies $|z_{\ell} - z'_{\ell}| < C\delta$. On the other hand, it is easy to see that

$$\min \{ \mathcal{F}(m) \colon m(a) = -1, \ m(b) = 0 \} > \frac{4}{3} \qquad \forall a, b \colon -\infty < a < b < +\infty \,.$$

Therefore,

$$\liminf_{\ell \to +\infty} \mathcal{F}_{\ell}(m_{\ell}) \ge \min \left\{ \mathcal{F}(m) \colon m(0) = -1, \ m(\kappa + C\delta) = 0 \right\} + \frac{4}{3} > \frac{8}{3}.$$

This is a contradiction and concludes the proof of statement (i).

Proof of statement (ii). The uniqueness of the center, for δ_1 small enough and κ_1 large enough, is stated in [4, Proposition 3.1]. The proof follows by a standard implicit function argument [8]. That proposition also guarantees that the center ζ satisfies the bound $\zeta > -\ell + \kappa - 2\delta$.

Let $m \in \mathcal{T}^{\ell}(\delta, \kappa)$ and let $\zeta \geq -\ell + \kappa - 2\delta$ be the unique center of m. Recalling that $m(y) - m_{\zeta}^{\ell}(y) = 0$ for $y \in (-\infty, -\ell]$, we decompose

$$\mathcal{F}_{\ell}(m) = \mathcal{F}_{\ell}(m_{\zeta}^{\ell}) + I_{\ell}^1 + I_{\ell}^2 + I_{\ell}^3 ,$$

where

$$\begin{split} I_{\ell}^{1} &= \int_{-\infty}^{+\infty} \left[2 \partial_{y} m_{\zeta}^{\ell} \partial_{y} (m - m_{\zeta}^{\ell}) + V'(m_{\zeta}^{\ell})(m - m_{\zeta}^{\ell}) \right] \, \mathrm{d}y \,, \\ I_{\ell}^{2} &= \int_{-\infty}^{+\infty} \left[(\partial_{y} (m - m_{\zeta}^{\ell}))^{2} + \frac{1}{2} V''(m_{\zeta}^{\ell})(m - m_{\zeta}^{\ell})^{2} \right] \, \mathrm{d}y \,, \\ I_{\ell}^{3} &= \int_{-\infty}^{+\infty} \left[\frac{1}{6} V'''(m_{\zeta}^{\ell})(m - m_{\zeta}^{\ell})^{3} + \frac{1}{24} V''''(m_{\zeta}^{\ell})(m - m_{\zeta}^{\ell})^{4} \right] \, \mathrm{d}y \end{split}$$

The proof will be achieved by analyzing in detail the quadratic form in I_{ℓ}^2 and showing that it can be bounded from below by $||m - m_{\zeta}^{\ell}||_{H^1}^2$, while the other two terms will be bounded in absolute value.

We first estimate I_{ℓ}^1 . By integration by parts, using (3.5) and (3.9) we get

(3.21)
$$|I_{\ell}^{1}| = 2 \left| (m(\zeta) - m_{\zeta}^{\ell}(\zeta)) \left[\partial_{y} m_{\zeta}^{\ell} \right] (\zeta) \right|$$

$$\leq C e^{-4(\ell+\zeta)} |m(\zeta) - m_{\zeta}^{\ell}(\zeta)| \leq C e^{-4(\ell+\zeta)} ||m - m_{\zeta}^{\ell}||_{H^{1}},$$

where we have used the Sobolev embedding. As for the term I_{ℓ}^1 , the application of the Sobolev embedding yields

(3.22)
$$|I_{\ell}^{3}| \leq C \left(||m - m_{\zeta}^{\ell}||_{H^{1}}^{3} + ||m - m_{\zeta}^{\ell}||_{H^{1}}^{4} \right)$$

Finally, it remains to estimate I_{ℓ}^2 . We will show that

(3.23)
$$I_{\ell}^2 \ge \frac{1}{C} \|m - m_{\zeta}^{\ell}\|_{H^1}^2.$$

We denote by $\mathcal{H}^{\ell}_{\mathcal{L}}$ the Schrödinger operator on $L^2((-\ell, +\infty))$ defined as

$$\mathcal{H}^{\ell}_{\zeta} = -\frac{\mathrm{d}^2}{\mathrm{d}y^2} + V''(\overline{m}_{\zeta})\,,$$

with domain $H^2((-\ell, +\infty)) \cap H^1_0((-\ell, +\infty))$. In what follows, we shall regard the space $L^2((-\ell, +\infty))$ as a subset of L^2 by setting, for every function $\psi \in L^2((-\ell, +\infty))$, $\psi(y) = 0$ if $y \in (-\infty, -\ell]$. Let us also set $\varphi = \varphi_{\ell,\zeta} = m - m^{\ell}_{\zeta}$. With this notation we rewrite I^2_{ℓ} as the quadratic form

(3.24)
$$I_{\ell}^{2} = \langle \varphi, \mathcal{H}_{\zeta}^{\ell} \varphi \rangle_{L^{2}} + \langle \varphi, (V''(m_{\zeta}^{\ell}) - V''(\overline{m}_{\zeta})) \varphi \rangle_{L^{2}},$$

where $\langle \cdot, \cdot \rangle_{L^2}$ denotes the L^2 -inner product. By (3.6), the second term on the righthand side of the above equality is bounded in absolute value by $Ce^{-2(\ell+\zeta)} \|\varphi\|_{L^2}^2$.

It remains to estimate the first term on the right-hand side of (3.24). As shown in [4, Theorem 3.2] the first eigenvalue $\lambda_{\zeta}^{\ell} > 0$ of the operator $\mathcal{H}_{\zeta}^{\ell}$ is exponentially small as $\ell \to +\infty$, while the remaining part of the spectrum is bounded away from zero uniformly in ℓ and ζ (since $\ell + \zeta > \kappa_1 - 2\delta_1$). We denote by Ψ_{ζ}^{ℓ} the eigenfunction corresponding to the eigenvalue λ_{ζ}^{ℓ} . From these results it follows that there exists a constant $g_1 > 0$, independent of ℓ and ζ , such that for any $\psi \in L^2((-\ell, +\infty))$, $\psi \perp \Psi_{\zeta}^{\ell}$, i.e., satisfying $\langle \psi, \Psi_{\zeta}^{\ell} \rangle_{L^2} = 0$,

(3.25)
$$\langle \psi, \mathcal{H}^{\ell}_{\zeta} \psi \rangle_{L^2} \ge g_1 \langle \psi, \psi \rangle_{L^2}.$$

We next improve the above bound with the H^1 -norm. More precisely, we prove that there exists a constant $\bar{g}_1 > 0$ independent of ℓ and ζ , such that

(3.26)
$$J_{\ell,\zeta} := \inf_{\psi \perp \Psi_{\zeta}^{\ell}} \frac{\langle \psi, \mathcal{H}_{\zeta}^{\ell} \psi \rangle_{L^{2}}}{\|\psi\|_{H^{1}}^{2}} \ge \bar{g}_{1}.$$

Since $J_{\ell,\zeta} = J_{\ell+\zeta,0}$ it is enough to show that

(3.27)
$$\liminf_{\ell \to +\infty} \inf_{\psi \perp \Psi_0^\ell} \frac{\langle \psi, \mathcal{H}_0^\ell \psi \rangle_{L^2}}{\|\psi\|_{H^1}^2} > 0.$$

We argue by contradiction. If (3.27) does not hold, there exists a sequence ψ_{ℓ} with $\|\psi_{\ell}\|_{H^1} = 1$ and $\psi_{\ell} \perp \Psi_0^{\ell}$ such that

$$\langle \psi_{\ell}, \mathcal{H}_{0}^{\ell} \psi_{\ell} \rangle_{L^{2}} = \int_{-\ell}^{+\infty} \left(|\psi_{\ell}'|^{2} + V''(\overline{m})\psi_{\ell}^{2} \right) \mathrm{d}y \to 0.$$

By (3.25) we necessarily have $\psi_{\ell} \to 0$ in L^2 . In view of the boundedness of $V''(\overline{m})$ the formula above gives the required contradiction.

By writing $\varphi = \langle \varphi, \Psi_{\zeta}^{\ell} \rangle_{L^2} \Psi_{\zeta}^{\ell} + \varphi^{\perp}$, from (3.26) and Young's inequality we have, for each $\gamma > 0$,

(3.28)
$$\langle \varphi, \mathcal{H}^{\ell}_{\zeta} \varphi \rangle_{L^{2}} = \langle \varphi, \Psi^{\ell}_{\zeta} \rangle^{2}_{L^{2}} \lambda^{\ell}_{\zeta} + \langle \varphi^{\perp}, \mathcal{H}^{\ell}_{\zeta} \varphi^{\perp} \rangle_{L^{2}}$$
$$\geq \bar{g}_{1} \left(\|\varphi\|^{2}_{H^{1}} - 2\langle \varphi, \Psi^{\ell}_{\zeta} \rangle_{L^{2}} \langle \varphi^{\perp}, \Psi^{\ell}_{\zeta} \rangle_{H^{1}} - \langle \varphi, \Psi^{\ell}_{\zeta} \rangle^{2}_{L^{2}} \|\Psi^{\ell}_{\zeta}\|^{2}_{H^{1}} \right)$$
$$\geq \bar{g}_{1} \left(\|\varphi\|^{2}_{H^{1}} - \gamma \langle \varphi^{\perp}, \Psi^{\ell}_{\zeta} \rangle^{2}_{H^{1}} - \langle \varphi, \Psi^{\ell}_{\zeta} \rangle^{2}_{L^{2}} (\|\Psi^{\ell}_{\zeta}\|^{2}_{H^{1}} + \gamma^{-1}) \right).$$

Since $\mathcal{H}_z^{\ell} \Psi_{\zeta}^{\ell} = \lambda_z^{\ell} \Psi_{\zeta}^{\ell}$, we easily deduce that $\|\Psi_{\zeta}^{\ell}\|_{H^1}^2$ is bounded uniformly in ℓ and ζ . Moreover, by Schwarz's inequality and the orthogonality between φ^{\perp} and Ψ_{ζ}^{ℓ} , choosing γ small enough in (3.28), we obtain

(3.29)
$$\langle \varphi, \mathcal{H}^{\ell}_{\zeta} \varphi \rangle_{L^2} \ge C \left(\|\varphi\|_{H^1}^2 - \langle \varphi, \Psi^{\ell}_{\zeta} \rangle_{L^2}^2 \right)$$

Using (3.12), we get

$$\begin{split} |\langle \varphi, \Psi_{\zeta}^{\ell} \rangle_{L^{2}}| &= \left| \left\langle \varphi, \Psi_{\zeta}^{\ell} + \frac{\partial_{z} m_{\zeta}^{\ell}}{\|\partial_{z} m_{\zeta}^{\ell}\|_{L^{2}}} \right\rangle_{L^{2}} \right| \\ &\leq \|\varphi\|_{H^{1}} \left(\left\| \Psi_{\zeta}^{\ell} - \frac{\overline{m}_{\zeta}^{\prime}}{\|\overline{m}_{\zeta}^{\prime}\|_{L^{2}}} \right\|_{L^{2}} + \left\| \frac{\overline{m}_{\zeta}^{\prime}}{\|\overline{m}_{\zeta}^{\prime}\|_{L^{2}}} + \frac{\partial_{z} m_{\zeta}^{\ell}}{\|\partial_{z} m_{\zeta}^{\ell}\|_{L^{2}}} \right\|_{L^{2}} \right). \end{split}$$

In order to bound the right-hand side, we first claim that

(3.30)
$$\left\|\Psi_{\zeta}^{\ell} - \frac{\overline{m}_{\zeta}^{\prime}}{\|\overline{m}_{\zeta}^{\prime}\|_{L^{2}}}\right\|_{L^{2}} \leq C e^{-2(\ell+\zeta)}$$

Indeed, a slightly weaker estimate is stated in [4, Theorem 3.2]. However, it is straightforward to modify the argument of the proof to get (3.30); see in particular [4, page 336]. The second term on the right-hand side can be easily estimated using (3.7) which gives, taking into account that $m_{\zeta}^{\ell}(y) = \overline{m}_{\zeta}(y)$ if $y > \zeta$ and that $\ell + \zeta > \kappa_1 - 2\delta_1$,

$$\left\|\frac{\overline{m}_{\zeta}'}{\|\overline{m}_{\zeta}'\|_{L^2}} + \frac{\partial_z m_{\zeta}^{\ell}}{\|\partial_z m_{\zeta}^{\ell}\|_{L^2}}\right\|_{L^2} \le C\kappa_1 \mathrm{e}^{-2\kappa_1}.$$

In conclusion, choosing κ_1 large enough, the previous bounds, together with (3.29), give (3.23), which completes the proof of statement (ii).

Proof of statement (iii). We notice that in the proof of statement (ii) the estimates of the terms I_{ℓ}^1 and I_{ℓ}^3 do not require ζ to be the center of m, while I_{ℓ}^2 can be easily estimated from above by the H^1 -norm of $m - m_{\zeta}^{\ell}$.

4. Compactness. We are now ready to analyze the two-dimensional functional. In this section we prove the compactness statement in Theorem 2.1. Let us consider a sequence u_{ε} in X such that $F_{\varepsilon}(u_{\varepsilon}) \leq C_3$, namely

(4.1)
$$\int_0^{+\infty} \int_{-\ell_{\varepsilon}}^{+\infty} (\partial_x u_{\varepsilon})^2 \, \mathrm{d}y \, \mathrm{d}x + \int_0^{+\infty} \varepsilon^{-2} \left[\mathcal{F}_{\ell_{\varepsilon}}(u_{\varepsilon}(x,\cdot)) - \frac{8}{3} \right] \, \mathrm{d}x \le C_3 \,,$$

where $\ell_{\varepsilon} - \frac{1}{2}\log \varepsilon^{-1} \to \alpha$ and u_{ε} satisfies the boundary conditions (2.4) for some w_{ε} such that (2.7) holds.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Remark 4.1. By Schwarz's inequality and the bound (4.1), for any x_1, x_2 in $[0, +\infty)$,

(4.2)
$$\|u_{\varepsilon}(x_1,\cdot) - u_{\varepsilon}(x_2,\cdot)\|_{L^2}^2 = \int_{-\ell_{\varepsilon}}^{+\infty} \left(\int_{x_1}^{x_2} \partial_x u_{\varepsilon}(x,y) \mathrm{d}x\right)^2 \mathrm{d}y \le C_3 |x_1 - x_2|.$$

Given a sequence $M_{\varepsilon} \to +\infty$ such that $M_{\varepsilon}\varepsilon^2 \to 0$ as $\varepsilon \to 0$, we define the set of good points in $(0, +\infty)$ as

(4.3)
$$B_{\varepsilon} = \left\{ x \in (0, +\infty) : \mathcal{F}_{\ell_{\varepsilon}}(u_{\varepsilon}(x, \cdot)) - \frac{8}{3} \le M_{\varepsilon} \varepsilon^2 \right\}.$$

The bound (4.1) yields $|B_{\varepsilon}^{\complement}| \leq C_3/M_{\varepsilon}$ (here |B| is the Lebesgue measure of the Borel set $B \subset \mathbb{R}$). Moreover, since the bound (4.2) guarantees that the map $x \mapsto u_{\varepsilon}(x, \cdot)$ is continuous from $(0, +\infty)$ to \mathcal{X} (see the previous section for the definition of \mathcal{X}), the lower semicontinuity of \mathcal{F}_{ℓ} on \mathcal{X} implies that the map $x \mapsto \mathcal{F}_{\ell_{\varepsilon}}(u_{\varepsilon}(x, \cdot))$ is lower semicontinuous and hence the set B_{ε} is closed.

We now show how to construct the sequence ϕ_{ε} . Recalling the assumption (2.7) on the boundary datum, Theorem 3.5 implies that if ε is small enough and $x \in B_{\varepsilon} \cup \{0\}$, then there exists a unique center of $u_{\varepsilon}(x, \cdot)$, which we denote by $\phi_{\varepsilon}(x)$. Let us note that the function ϕ_{ε} is measurable on B_{ε} . This can be easily deduced by the continuity in the uniform topology of the map which to each function in the set $\mathcal{T}^{\ell}(\delta, \kappa)$ associates its center (see [8, Proposition 3.2]) and the measurability of the map $B_{\varepsilon} \ni x \mapsto u(x, \cdot)$ with respect to the Borel σ -algebra associated to the uniform topology.

Since $\ell_{\varepsilon} - \frac{1}{2}\log \varepsilon^{-1} \to \alpha$, in view of (3.15), there exists a constant $C_4 > 0$, depending on α , such that the following bounds hold:

(4.4)
$$\phi_{\varepsilon}(x) \ge -\frac{1}{4} \log(C_4 M_{\varepsilon}) \qquad \forall x \in B_{\varepsilon} \\ \|u_{\varepsilon}(x, \cdot) - m^{\ell_{\varepsilon}}(\cdot, \phi_{\varepsilon}(x))\|_{H^1}^2 \le C_0 M_{\varepsilon} \varepsilon^2$$

and

(4.5)
$$\lim_{\varepsilon \to 0} \phi_{\varepsilon}(0) = 0, \qquad \|u_{\varepsilon}(0, \cdot) - m^{\ell_{\varepsilon}}(\cdot, \phi_{\varepsilon}(0))\|_{H^{1}}^{2} \le \varepsilon \eta_{\varepsilon},$$

where, in view of (2.7),

(4.6)
$$\eta_{\varepsilon} := \varepsilon^{-1} \left(\mathcal{F}_{\ell_{\varepsilon}}(w_{\varepsilon}) - \frac{8}{3} \right) \to 0.$$

Since $B_{\varepsilon}^{\complement}$ is a countable union of disjoint open intervals, we extend ϕ_{ε} to a function on $[0, +\infty)$ by defining it in each interval of $B_{\varepsilon}^{\complement}$ as the affine interpolation of the values of ϕ_{ε} at the endpoints.

The compactness stated in Theorem 2.1 is a consequence of the following two lemmas. Indeed, Lemma 4.2 yields the precompactness of ϕ_{ε} in the uniform topology, while Lemma 4.3 together with (3.6) implies (2.8).

LEMMA 4.2. Let ϕ_{ε} be defined as above. Then there exists a positive constant C_5 such that, for any $x_1, x_2 \in [0, +\infty)$,

$$4.7) \qquad |\phi_{\varepsilon}(x_1) - \phi_{\varepsilon}(x_2)| \wedge |\phi_{\varepsilon}(x_1) - \phi_{\varepsilon}(x_2)|^2 \le C_5 \left(|x_1 - x_2| + \frac{1}{M_{\varepsilon}} + M_{\varepsilon}\varepsilon^2 + \varepsilon\eta_{\varepsilon}\right),$$

where M_{ε} is the sequence in (4.3) and η_{ε} is the sequence defined in (4.6).

Proof. Since ϕ_{ε} is affine outside B_{ε} and $|B_{\varepsilon}^{\complement}| \leq C_3/M_{\varepsilon}$, it is enough to prove that there exists $C_6 > 0$ such that for any $x_1, x_2 \in B_{\varepsilon} \cup \{0\}$,

$$|\phi_{\varepsilon}(x_1) - \phi_{\varepsilon}(x_2)| \wedge |\phi_{\varepsilon}(x_1) - \phi_{\varepsilon}(x_2)|^2 \le C_6(|x_1 - x_2| + M_{\varepsilon}\varepsilon^2 + \varepsilon\eta_{\varepsilon}).$$

If $x_1, x_2 \in B_{\varepsilon} \cup \{0\}$, the bound (3.10) implies

(4.9)

$$\begin{aligned} |\phi_{\varepsilon}(x_{1}) - \phi_{\varepsilon}(x_{2})| \wedge |\phi_{\varepsilon}(x_{1}) - \phi_{\varepsilon}(x_{2})|^{2} \\ &\leq A \|m^{\ell_{\varepsilon}}(\cdot, \phi_{\varepsilon}(x_{1})) - m^{\ell_{\varepsilon}}(\cdot, \phi_{\varepsilon}(x_{2}))\|_{L^{2}}^{2} \\ &\leq 2A \big(\|u_{\varepsilon}(x_{1}, \cdot) - u_{\varepsilon}(x_{2}, \cdot)\|_{L^{2}}^{2} + \|\widetilde{u}_{\varepsilon}(x_{1}, \cdot) - \widetilde{u}_{\varepsilon}(x_{2}, \cdot)\|_{L^{2}}^{2} \big), \end{aligned}$$

where $\widetilde{u}_{\varepsilon}(x,y) := u_{\varepsilon}(x,y) - m^{\ell_{\varepsilon}}(y,\phi_{\varepsilon}(x))$. By using (4.2), (4.4), and (4.5) the bound (4.8) follows.

Recall that $m_z^{\ell}(\cdot) \equiv m^{\ell}(\cdot, z)$ is defined in (3.4).

LEMMA 4.3. Let u_{ε} be a sequence satisfying the bound (4.1), let ϕ_{ε} be defined as above, and set $\widetilde{u}_{\varepsilon}(x,y) := u_{\varepsilon}(x,y) - m^{\ell_{\varepsilon}}(y,\phi_{\varepsilon}(x)), (x,y) \in [0,+\infty) \times \mathbb{R}$. For each R > 0 the sequence $\widetilde{u}_{\varepsilon}$ converges to 0, as $\varepsilon \to 0$, in $L^2((0,R) \times \mathbb{R})$.

Proof. The estimate (4.4) trivially implies that, for any R > 0,

(4.10)
$$\lim_{\varepsilon \to 0} \int_{[0,R) \cap B_{\varepsilon}} \int_{-\infty}^{+\infty} |\widetilde{u}_{\varepsilon}|^2 \, \mathrm{d}y \, \mathrm{d}x = 0 \, .$$

By (4.2), (3.10), and Lemma 4.2, for a suitable constant $C_7 > 0$ we get, for any x_1, x_2 in $[0, +\infty)$,

$$\|\widetilde{u}_{\varepsilon}(x_1,\cdot) - \widetilde{u}_{\varepsilon}(x_2,\cdot)\|_{L^2}^2 \le C_7 \Big(|x_1 - x_2| + \frac{1}{M_{\varepsilon}} + M_{\varepsilon}\varepsilon^2 + \varepsilon\eta_{\varepsilon}\Big).$$

This, together with (4.10) and the fact that $|B_{\varepsilon}^{\complement}| \leq C_3/M_{\varepsilon}$, concludes the proof.

5. **\Gamma-convergence**. In this section we conclude the proof of the main result by proving the Γ -convergence of the functionals F_{ε} .

Proof of Theorem 2.1: Γ -liminf. The formal statement of the Γ -liminf inequality is the following. For each $u \in X$ and each sequence u_{ε} converging to u in X, it holds that $\liminf_{\varepsilon \to 0} F_{\varepsilon}(u_{\varepsilon}) \geq F^{\alpha}(u)$. In view of the compactness result, the Γ -liminf is achieved once we show that, for each $\phi \in C([0, +\infty))$ and each sequence u_{ε} converging to \overline{m}_{ϕ} in X,

(5.1)
$$\liminf_{\varepsilon \to 0} F_{\varepsilon}(u_{\varepsilon}) \ge \mathcal{G}^{\alpha}(\phi)$$

Fix $\phi \in C([0, +\infty))$ and a sequence u_{ε} converging to \overline{m}_{ϕ} . Without loss of generality we can assume that $F_{\varepsilon}(u_{\varepsilon}) \leq C_8$. Therefore, in view of Lemmas 4.2 and 4.3, by extracting, if necessary, a subsequence, there exists a sequence ϕ_{ε} converging to ϕ in $C([0, +\infty))$ such that $u_{\varepsilon} = m^{\ell_{\varepsilon}}(\cdot, \phi_{\varepsilon}) + \widetilde{u}_{\varepsilon}$, with $\widetilde{u}_{\varepsilon}$ converging to zero in $L^2((0, R) \times \mathbb{R})$ for any R > 0. Let B_{ε} be the set of good points as defined in (4.3). Then

(5.2)
$$F_{\varepsilon}(u_{\varepsilon}) \geq \int_{0}^{+\infty} \int_{-\infty}^{+\infty} (\partial_{x} u_{\varepsilon})^{2} \, \mathrm{d}y \, \mathrm{d}x + \int_{B_{\varepsilon}}^{\varepsilon} \varepsilon^{-2} \left[\mathcal{F}_{\ell_{\varepsilon}}(u_{\varepsilon}(x,\cdot)) - \frac{8}{3} \right] \, \mathrm{d}x \\ = \int_{0}^{+\infty} \int_{-\infty}^{+\infty} (\partial_{x} u_{\varepsilon})^{2} \, \mathrm{d}y \, \mathrm{d}x + \int_{B_{\varepsilon}}^{\varepsilon} \varepsilon^{-2} \left[\mathcal{F}_{\ell_{\varepsilon}}(m^{\ell_{\varepsilon}}(\cdot,\phi_{\varepsilon}(x))) - \frac{8}{3} \right] \, \mathrm{d}x + \mathcal{R}_{\varepsilon}$$

Since, for each R > 0, $u_{\varepsilon} \to \overline{m}_{\phi}$ in $L^2((0, R) \times \mathbb{R})$, the lower semicontinuity of the map $u \mapsto \|\partial_x u\|_{L^2((0, R) \times \mathbb{R})}^2$ with respect to the L^2 -convergence gives

(5.3)
$$\lim_{\varepsilon \to 0} \inf \int_0^R \int_{-\infty}^{+\infty} (\partial_x u_\varepsilon(x, y))^2 \, \mathrm{d}x \, \mathrm{d}y$$
$$\geq \int_0^R \int_{-\infty}^{+\infty} (\partial_x \overline{m}_{\phi(x)}(y))^2 \, \mathrm{d}y \, \mathrm{d}x = \frac{4}{3} \int_0^R \phi'(x)^2 \, \mathrm{d}x$$

The estimate of the second term on the right-hand side of (5.2) is a direct consequence of Lemma 3.3. Indeed, since $\varepsilon^{-2}e^{-4\ell_{\varepsilon}} \to e^{-4\alpha}$, by Fatou's lemma and the fact that $|B_{\varepsilon}^{\complement}| \to 0$, we get

(5.4)
$$\liminf_{\varepsilon \to 0} \int_{B_{\varepsilon} \cap (0,R)} \varepsilon^{-2} \Big[\mathcal{F}_{\ell_{\varepsilon}}(m^{\ell_{\varepsilon}}(\cdot,\phi_{\varepsilon}(x))) - \frac{8}{3} \Big] \,\mathrm{d}x \ge 16 \, e^{-4\alpha} \, \int_{0}^{R} \mathrm{e}^{-4\phi(x)} \,\mathrm{d}x$$

for any R > 0.

940

Finally, we need to estimate $\mathcal{R}_{\varepsilon}$ as defined in (5.2), i.e.,

$$\mathcal{R}_{\varepsilon} = \int_{B_{\varepsilon}} \varepsilon^{-2} \left[\mathcal{F}_{\ell_{\varepsilon}}(u_{\varepsilon}(x,\cdot)) - \mathcal{F}_{\ell_{\varepsilon}}(m^{\ell_{\varepsilon}}(\cdot,\phi_{\varepsilon}(x))) \right] \, \mathrm{d}x$$

By (4.4), for any $x \in B_{\varepsilon}$,

$$e^{-4\phi_{\varepsilon}(x)} \|\widetilde{u}_{\varepsilon}(x,\cdot)\|_{H^{1}} \leq C_{4}C_{0}^{\frac{1}{2}}M_{\varepsilon}^{\frac{3}{2}}\varepsilon$$

Thus, if we further choose M_{ε} such that $M_{\varepsilon}^3 \varepsilon^2 \to 0$ as $\varepsilon \to 0$, from (3.14) we get

(5.5)
$$\liminf_{\varepsilon \to 0} \mathcal{R}_{\varepsilon} \ge \frac{1}{C_1} \lim_{\varepsilon \to 0} \int_{B_{\varepsilon}} \varepsilon^{-2} \|\widetilde{u}_{\varepsilon}(x, \cdot)\|_{H^1}^2 \, \mathrm{d}x.$$

The bound (5.1) follows by (5.2), (5.3), (5.4), and (5.5).

We note that the previous arguments show that if the energy of the sequence u_{ε} converges to $\mathcal{G}^{\alpha}(\phi)$, then $u_{\varepsilon}(x, \cdot), x \in B_{\varepsilon}$, is actually close in $H^1(\mathbb{R})$ topology to the "right" one-dimensional profile, with an explicit control on the norm. The precise statement is given in the following remark.

Remark 5.1. Take a sequence u_{ε} with $F_{\varepsilon}(u_{\varepsilon}) \leq C_3$ and decompose u_{ε} as $u_{\varepsilon} = m^{\ell_{\varepsilon}}(\cdot, \phi_{\varepsilon}) + \tilde{u}_{\varepsilon}$, where ϕ_{ε} is the sequence constructed in section 4. If $u_{\varepsilon} \to \overline{m}_{\phi}$ for some $\phi \in C([0, +\infty))$ and satisfies

$$\liminf_{\varepsilon \to 0} F_{\varepsilon}(u_{\varepsilon}) = \mathcal{G}^{\alpha}(\phi) < +\infty \,,$$

then from (5.5) we easily deduce that

$$\lim_{\varepsilon \to 0} \int_{B_{\varepsilon}} \varepsilon^{-2} \| \widetilde{u}_{\varepsilon}(x, \cdot) \|_{H^{1}}^{2} \, \mathrm{d}x = 0 \, .$$

Proof of Theorem 2.1: Γ -limsup. We now show that for any function $u \in X$ of the form $u = \overline{m}_{\phi}$, with $\phi \in C([0, +\infty))$, we can construct a sequence $\overline{u}_{\varepsilon}$ such that

(5.6)
$$\lim_{\varepsilon \to 0} F_{\varepsilon}(\bar{u}_{\varepsilon}) = \mathcal{G}^{\alpha}(\phi)$$

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

We observe that for each $\phi \in C([0, +\infty))$ such that $\phi(0) = 0$ and $\mathcal{G}^{\alpha}(\phi) < +\infty$, we can find a sequence ϕ_n , with $\operatorname{supp} \phi_n \subset (n^{-1}, +\infty)$ and $\phi_n \geq -n$, converging to ϕ and satisfying $\lim_n \mathcal{G}^{\alpha}(\phi_n) = \mathcal{G}^{\alpha}(\phi)$ (e.g., $\phi_n(x) = \phi(x - n^{-1}) \vee (-n)$ if $x \geq n^{-1}$). By standard properties of the Γ -limsup (see, e.g., [6, Remark 1.29]), it is therefore enough to construct the recovery sequence for $\phi \in C([0, +\infty))$ bounded from below and with $\operatorname{supp} \phi \subset (\delta, +\infty), \delta > 0$.

Let ζ_{ε} be a center of the boundary condition w_{ε} . In view of (2.7) and Theorem 3.5, ζ_{ε} is in fact the unique center of w_{ε} . Moreover, by (3.6), the real sequence ζ_{ε} converges to zero as $\varepsilon \to 0$. By redefining ℓ_{ε} we can thus assume, and do so now, that $\zeta_{\varepsilon} = 0$.

We claim that the following sequence does the job:

(5.7)
$$\bar{u}_{\varepsilon}(x,y) := \begin{cases} m^{\ell_{\varepsilon}}(y,\phi(x)) & \text{if } (x,y) \in [\varepsilon,+\infty) \times \mathbb{R}, \\ m^{\ell_{\varepsilon}}(y,0) + \frac{\varepsilon-x}{\varepsilon} \widetilde{w}_{\varepsilon}(y) & \text{if } (x,y) \in [0,\varepsilon) \times \mathbb{R}, \end{cases}$$

where $\widetilde{w}_{\varepsilon} := w_{\varepsilon} - m_0^{\ell_{\varepsilon}}$.

In what follows we use the notation $F_{\varepsilon}(\cdot, A)$ for the localization of the functional F_{ε} on the set $A \subset (0, +\infty) \times \mathbb{R}$. Since $m_z^{\ell} = m_0^{\ell+z}$, by Lemma 3.3 it follows that for each $\bar{z} \in \mathbb{R}$ there exists $\bar{\ell} > 0$ such that

$$e^{-4\ell} \left[\mathcal{F}_{\ell}(m_z^{\ell}) - \frac{8}{3} \right] \le 17 e^{-4z} \qquad \forall z \in [\bar{z}, +\infty), \quad \forall \ell > \bar{\ell}.$$

Since we assumed ϕ to be bounded from below, by Lemma 3.3, dominated convergence, and (3.11), we deduce

(5.8)
$$\lim_{\varepsilon \to 0} F_{\varepsilon}(\bar{u}_{\varepsilon}, (\delta, +\infty) \times (-\ell_{\varepsilon}, +\infty)) = \int_{\delta}^{+\infty} \left[\frac{4}{3}\phi'(x)^2 + 16\,e^{-4\alpha}\,\mathrm{e}^{-4\phi(x)}\right] \mathrm{d}x \,.$$

We now show that

(5.9)
$$\lim_{\varepsilon \to 0} F_{\varepsilon}(\bar{u}_{\varepsilon}, (0, \delta) \times (-\ell_{\varepsilon}, +\infty)) = 16 e^{-4\alpha} \delta.$$

Since supp $\phi \subset (\delta, +\infty)$, (5.6) is a straightforward consequence of (5.8) and (5.9).

To conclude, we are left with the proof of (5.9). As follows from (2.7) and (3.14), $\lim_{\varepsilon \to 0} \varepsilon^{-1} \|\widetilde{w}_{\varepsilon}\|_{H^1}^2 = 0$ and therefore

$$\lim_{\varepsilon \to 0} \int_0^\delta \int_{-\ell_\varepsilon}^{+\infty} |\partial_x \bar{u}_\varepsilon|^2 \, \mathrm{d}y \, \mathrm{d}x = \lim_{\varepsilon \to 0} \int_0^\varepsilon \int_{-\ell_\varepsilon}^{+\infty} \varepsilon^{-2} |\widetilde{w}_\varepsilon(y)|^2 \, \mathrm{d}y \, \mathrm{d}x = 0$$

On the other hand, since $\phi(x) = 0$ for $x \in [0, \delta]$, $\bar{u}_{\varepsilon}(x, \cdot) = m_0^{\ell_{\varepsilon}}(\cdot)$ in (ε, δ) ; then

$$\int_0^\delta \varepsilon^{-2} \Big[\mathcal{F}_\varepsilon(\bar{u}_\varepsilon(x,\cdot)) - \frac{8}{3} \Big] \,\mathrm{d}x = \int_0^\delta \varepsilon^{-2} \Big[\mathcal{F}_\varepsilon(m_0^{\ell_\varepsilon}) - \frac{8}{3} \Big] \,\mathrm{d}x + \int_0^\varepsilon \varepsilon^{-2} \Big[\mathcal{F}_\varepsilon(\bar{u}_\varepsilon(x,\cdot)) - \mathcal{F}_\varepsilon(m_0^{\ell_\varepsilon}) \Big] \,\mathrm{d}x \,.$$

As $\ell_{\varepsilon} - \frac{1}{2}\log \varepsilon^{-1} \to \alpha$, by Lemma 3.3,

$$\limsup_{\varepsilon \to 0} \int_0^{\delta} \varepsilon^{-2} \Big[\mathcal{F}_{\varepsilon}(m_0^{\ell_{\varepsilon}}) - \frac{8}{3} \Big] \, \mathrm{d}x = 16 \,\mathrm{e}^{-4\alpha} \,\delta \,.$$

As noted before, $\lim_{\varepsilon \to 0} \varepsilon^{-1} \| \widetilde{w}_{\varepsilon} \|_{H^1}^2 = 0$; therefore by Theorem 3.5(iii),

$$\lim_{\varepsilon \to 0} \int_0^\varepsilon \varepsilon^{-2} \left[\mathcal{F}_\varepsilon(\bar{u}_\varepsilon(x,\cdot)) - \mathcal{F}_\varepsilon(m_0^{\ell_\varepsilon}) \right] \, \mathrm{d}x = 0,$$

which completes the proof of (5.9).

Appendix. Sharp estimates on the constrained minimizer. In this appendix we prove the sharp estimates concerning m_z^{ℓ} and its convergence to \overline{m}_z . We regard the boundary value problem (3.5) as a one-dimensional Newtonian system with potential -V and mass equal to 2. Accordingly, the space variable y is interpreted as the time and denoted by t.

Proof of Proposition 3.1. Given T > 0, we denote by $m_T(t)$, $t \in [-T, 0]$, the solution to the boundary value problem

(A.1)
$$\begin{cases} -2m'' + V'(m) = 0 & \text{in } (-T, 0), \\ m(-T) = -1, \ m(0) = 0. \end{cases}$$

Integrating (A.1) by using the conservation of the Newtonian energy, we get that $m_T(t)$ is the strictly increasing function on [-T, 0] such that

(A.2)
$$-t = \int_{m_T(t)}^0 \frac{\mathrm{d}a}{\sqrt{V(a) + E_T}} \qquad \forall t \in [-T, 0],$$

where E_T is implicitly defined by the condition

(A.3)
$$T = \int_{-1}^{0} \frac{\mathrm{d}a}{\sqrt{V(a) + E_T}}$$

In what follows we denote by C a strictly positive constant, independent of T, whose numerical value may change from line to line. By [5, Lemma A.1],

(A.4)
$$\lim_{T \to \infty} e^{4T} E_T = 64$$

and

(A.5)
$$\sup_{t \in (-T,0)} \left| m_T(t) - \overline{m}(t) \right| \le C \mathrm{e}^{-2T} \qquad \forall T \ge 1 \,.$$

We now observe that, for any $y \in (-\ell, z)$,

0 ()

(A.6)
$$m_{z}'(y) = m_{\ell+z}(y-z), \partial_{z}m_{z}^{\ell}(y) = \partial_{T}m_{\ell+z}(y-z) - m_{\ell+z}'(y-z), \partial_{zz}m_{z}^{\ell}(y) = \partial_{TT}m_{\ell+z}(y-z) - 2\partial_{T}m_{\ell+z}'(y-z) + m_{\ell+z}''(y-z).$$

The bound (3.6) follows by (A.5). We next show that

(A.7)
$$\sup_{t \in (-T,0)} \left| m_T'(t) - \overline{m}'(t) \right| \le C e^{-2T} \quad \forall T \ge 1,$$

(A.8)
$$\sup_{t \in (-T,0)} \left| m_T''(t) - \overline{m}''(t) \right| \le C e^{-2T} \quad \forall T \ge 1.$$

(A.8)
$$\sup_{t \in (-T,0)} |m_T(t) - m(t)| \le Ce \quad \forall T \ge 1,$$

(A.9)
$$\sup_{t \in (-T,0)} \left\{ \left| \partial_T m_T(t) \right| + \left| \partial_T m_T'(t) \right| + \left| \partial_{TT} m_T(t) \right| \right\} \le Ce^{-2T} \quad \forall T \ge 1,$$

which imply the estimates (3.7) and (3.8).

Proof of (A.7). Since $\overline{m}'(t) = \sqrt{V(\overline{m}(t))}$, $m'_T(t) = \sqrt{V(m_T(t)) + E_T}$, and $\overline{m}(0) = m_T(0) = 0$, we have

$$-1 < m_T(t) < \overline{m}(t) < 0 \qquad \forall t \in (-T, 0).$$

Hence, for any $t \in (-T, 0)$,

(A.10)
$$|m'_T(t) - \overline{m}'(t)| \le \sqrt{E_T} + \frac{V(\overline{m}(t)) - V(m_T(t))}{\sqrt{V(\overline{m}(t))}} \le \sqrt{E_T} + 4|m_T(t) - \overline{m}(t)|,$$

where, in the last inequality, we used that, by the explicit expression (2.1) of V, $V(b) - V(a) \leq 4\sqrt{V(b)}(b-a)$ for -1 < a < b < 0. The bound (A.7) now follows by (A.4), (A.5), and (A.10).

Proof of (A.8). Since $m''_T(t) - \overline{m}''(t) = V'(m_T(t)) - V'(\overline{m}(t))$ and $|V''(a)| \le 16$ for -1 < a < 0, the bound (A.8) is an immediate consequence of (A.5).

Proof of (A.9). Taking the derivatives with respect to the variable T in the identities (A.2), (A.3) and $m'_T(t) = \sqrt{V(m_T(t)) + E_T}$, we compute

$$E'_{T} := \frac{dE_{T}}{dT} = -2 \left[\int_{-1}^{0} \frac{da}{\left[V(a) + E_{T} \right]^{3/2}} \right]^{-1},$$

$$E''_{T} := \frac{d^{2}E_{T}}{dT^{2}} = -\frac{3}{4} (E'_{T})^{3} \int_{-1}^{0} \frac{da}{\left[V(a) + E_{T} \right]^{5/2}},$$
(A.11)
$$\partial_{T}m_{T}(t) = -\frac{E'_{T}}{2} \sqrt{V(m_{T}(t)) + E_{T}} \int_{m_{T}(t)}^{0} \frac{da}{\left[V(a) + E_{T} \right]^{3/2}},$$

$$\partial_{TT}m_{T}(t) = \left[\frac{1}{2} \frac{V'(m_{T}(t)) \partial_{T}m_{T}(t) + 2E'_{T}}{V(m_{T}(t)) + E_{T}} + \frac{E''_{T}}{E'_{T}} \right] \partial_{T}m_{T}(t)$$

$$+ \frac{3}{4} (E'_{T})^{2} \sqrt{V(m_{T}(t)) + E_{T}} \int_{m_{T}(t)}^{0} \frac{da}{\left[V(a) + E_{T} \right]^{5/2}},$$

$$\partial_{T}m'_{T}(t) = \frac{1}{2} \frac{V'(m_{T}(t)) \partial_{T}m_{T}(t) + E'_{T}}{\sqrt{V(m_{T}(t)) + E_{T}}}.$$

By the change of variable b = 1 + a it is straightforward to check that, for any integer $n \ge 1$,

$$\int_{0}^{1} \frac{\mathrm{d}b}{\left[4b^{2} + E_{T}\right]^{n/2}} \leq \int_{-1}^{0} \frac{\mathrm{d}a}{\left[V(a) + E_{T}\right]^{n/2}} \leq \int_{0}^{1} \frac{\mathrm{d}b}{\left[b^{2} + E_{T}\right]^{n/2}} db$$

Therefore,

(A.12)
$$\frac{g_n(E_T)}{C} \le \int_{-1}^0 \frac{\mathrm{d}a}{\left[V(a) + E_T\right]^{n/2}} \le C g_n(E_T) \qquad \forall T \ge 1 \,,$$

where

$$g_n(E_T) = \begin{cases} |\log E_T| & \text{if } n = 1, \\ E_T^{(1-n)/2} & \text{if } n = 3, 5 \end{cases}$$

Downloaded 05/02/13 to 151.100.50.165. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

By (A.12) and (A.11) it follows that

(A.13)
$$\frac{E_T}{C} \le |E_T'| \le C E_T, \qquad |E_T''| \le C E_T \qquad \forall T \ge 1.$$

Since $V(a) \ge V(m_T(t))$ for $a \in [m_T(t)), 0]$, using (A.12) and (A.13), from (A.11) we get

(A.14)
$$\left| \partial_T m_T(t) \right| \leq \frac{|E'_T|}{2} \int_{m_T(t)}^0 \frac{\mathrm{d}a}{\left[V(a) + E_T \right]^{1/2}} \leq C E_T \left| \log E_T \right|.$$

Analogously, also using the explicit form (2.1) of V,

(A.15)
$$\left|\partial_{TT}m_{T}(t)\right| \leq \left[\frac{2\left|\partial_{T}m_{T}(t)\right| + \left|E_{T}'\right|}{E_{T}} + \frac{\left|E_{T}''\right|}{\left|E_{T}'\right|}\right] \left|\partial_{T}m_{T}(t)\right| + C\frac{\left|E_{T}'\right|^{2}}{E_{T}} \leq CE_{T}$$

Finally,

(A.16)
$$\left|\partial_T m'_T(t)\right| \le \frac{1}{2} \frac{4\left|\partial_T m_T(t)\right| + |E'_T|}{\sqrt{E_T}} \le C \sqrt{E_T}.$$

The bound (A.9) now follows by (A.4), (A.14), (A.15), and (A.16).

Proof of (3.9). Recall that $m_z^{\ell}(y) = \overline{m}_z(y)$ for $y \ge z$, whence $(m_z^{\ell})'(y) + \partial_z m_z^{\ell}(y) = 0$ for y > z. Therefore, by (A.6) and (A.11),

$$\left[(m_z^\ell)' \right](z) + \left[\partial_z m_z^\ell \right](z) = \lim_{y \uparrow z} \left\{ (m_z^\ell)'(y) + \partial_z m_z^\ell(y) \right\} = \lim_{y \uparrow z} \partial_T m_T(y-z) \Big|_{T=\ell+z} = 0.$$

On the other hand, since $\overline{m}'(0) = 1$,

$$\left| \left[(m_{z}^{\ell})' \right](z) \right| = \left| 1 - \sqrt{V(m_{\ell+z}(0)) + E_{\ell+z}} \right| = \left| 1 - \sqrt{1 + E_{\ell+z}} \right| \le E_{\ell+z}$$

By (A.4), this concludes the proof of (3.9).

Proof of (3.10). Without loss of generality we assume $z_1 < z_2$. Since

$$m_{z_2}^{\ell}(y) < 0 < m_{z_1}^{\ell}(y) = \overline{m}_{z_1}(y) \qquad \forall y \in (z_1, z_2),$$

we have

(A.17)
$$\|m_{z_1}^{\ell} - m_{z_2}^{\ell}\|_{L^2}^2 \ge \int_{z_2}^{+\infty} |\overline{m}_{z_1}(y) - \overline{m}_{z_2}(y)|^2 \, \mathrm{d}y$$
$$= \int_0^{+\infty} |\overline{m}(y+z) - \overline{m}(y)|^2 \, \mathrm{d}y =: G(z) \,,$$

with $z = z_2 - z_1$. By differentiating,

$$G'(z) = 2 \int_0^{+\infty} \overline{m}'(y+z)(\overline{m}(y+z) - \overline{m}(y)) \,\mathrm{d}y \,,$$

whence G'(0) = 0 and, since \overline{m} is strictly increasing, G' is strictly increasing. Moreover,

$$G''(0) = 2 \int_0^{+\infty} |\overline{m}'(y)|^2 \, \mathrm{d}y = \frac{4}{3} \,.$$

The above properties of the function G imply $G(z) \ge C z^2 \wedge z$ for any $z \ge 0$. In view of (A.17), this yields the lower bound of the estimate (3.10).

To prove the upper bound we analyze separately the cases $z_2 - z_1 \leq 1$ and $z_2 - z_1 > 1$. In the first case, we use Schwarz's inequality and (3.8) to write

$$\|m_{z_1}^{\ell} - m_{z_2}^{\ell}\|_{L^2}^2 = \left\|\int_{z_1}^{z_2} \partial_z m_z^{\ell} \,\mathrm{d}z\right\|_{L^2}^2 \le (z_2 - z_1) \int_{z_1}^{z_2} \left\|\partial_z m_z^{\ell}\right\|_{L^2}^2 \,\mathrm{d}z$$
$$\le \left(2\|\overline{m}'\|_{L^2}^2 + 2A^2(\ell + z_2)\mathrm{e}^{-4(\ell + z_1)}\right) (z_2 - z_1)^2.$$

In the second case, recalling the definition of $m_{z_i}^{\ell}$ outside $(-\ell, z_i)$ and using (3.6), we have

$$\begin{split} \|m_{z_1}^{\ell} - m_{z_2}^{\ell}\|_{L^2}^2 &\leq \int_{-\ell}^{+\infty} 2\left[\overline{m}_{z_1}(y) - \overline{m}_{z_2}(y)\right]^2 \mathrm{d}y + 8A^2(\ell + z_2)\mathrm{e}^{-4(\ell + z_1)} \\ &\leq C\left(z_2 - z_1\right). \end{split}$$

The proposition is thus proved.

REFERENCES

- G. ALBERTI, Variational models for phase transitions, an approach via Γ-convergence, in Calculus of Variations and Partial Differential Equations (Pisa, 1996), Springer, Berlin, 2000, pp. 95–114.
- [2] G. ALBERTI, G. BELLETTINI, M. CASSANDRO, AND E. PRESUTTI, Surface tension in Ising systems with Kac potentials, J. Statist. Phys., 82 (1996), pp. 743–796.
- [3] G. ANZELLOTTI AND S. BALDO, Asymptotic development by Γ-convergence, Appl. Math. Optim., 27 (1993), pp. 105–123.
- [4] L. BERTINI, S. BRASSESCO, AND P. BUTTÀ, Soft and hard wall in a stochastic reaction diffusion equation, Arch. Ration. Mech. Anal., 190 (2008), pp. 307–345.
- [5] L. BERTINI, S. BRASSESCO, AND P. BUTTÀ, Dobrushin states in the \$\phi_1^4\$ model, Arch. Ration. Mech. Anal., 190 (2008), pp. 477–516.
- [6] A. BRAIDES, Γ-Convergence for Beginners, Oxford Lecture Ser. Math. Appl. 22, Oxford University Press, Oxford, UK, 2002.
- [7] A. BRAIDES AND L. TRUSKINOVSKY, Asymptotic expansions by Γ-convergence, Contin. Mech. Thermodyn., 20 (2008), pp. 21–62.
- [8] S. BRASSESCO, A. DE MASI, AND E. PRESUTTI, Brownian fluctuations of the interface in the d = 1 Ginzburg-Landau equation with noise, Ann. Inst. H. Poincaré Probab. Statist., 31 (1995), pp. 81–118.
- [9] J. W. CAHN AND J. E. HILLIARD, Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys., 28 (1958), pp. 258–267.
- [10] T. FUNAKI, Stochastic interface models, in Lectures on Probability Theory and Statistics, Lecture Notes in Math. 1869, Springer, Berlin, 2005, pp. 103–274.
- [11] L. MODICA, Gradient theory of phase transitions with boundary contact energy, Ann. Inst. H. Poincaré Anal. Non Linéaire, 4 (1987), pp. 487–512.
- [12] L. MODICA AND S. MORTOLA, Un esempio di Γ-convergenza, Boll. Un. Mat. Ital. B (5), 14 (1977), pp. 285–299.
- [13] E. PRESUTTI, Scaling Limits in Statistical Mechanics and Microstructures in Continuum Mechanics, Springer-Verlag, Berlin, 2009.
- [14] J. D. VAN DER WAALS, The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density, J. Statist. Phys., 20 (1979), pp. 200–244.