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Abstract We consider the ABC dynamics, with equal density of the three species, on the
discrete ring with N sites. In this case, the process is reversible with respect to a Gibbs
measure with a mean field interaction that undergoes a second order phase transition. We
analyze the relaxation time of the dynamics and show that at high temperature it grows at
most as N2 while it grows at least as N° at low temperature.
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1 Introduction

The ABC model, introduced by Evans et al. [14, 15], is a one-dimensional stochastic conser-
vative dynamics with local jump rates whose invariant measure undergoes a phase transition.
It is a system consisting of three species of particles, traditionally labeled A, B, C, on a dis-
crete ring with N sites. The system evolves by nearest neighbor particles exchanges with
the following (asymmetric) rates: AB — BA, BC - CB, CA — AC withrate g € (0, 1]
and BA — AB, CB — BC, AC — CA with rate 1/q. In particular, the total numbers of
particles N,, a € {A, B, C}, of each species are conserved and satisfy Ny + Ng + Nc = N.
Observe that the case g = 1 corresponds to a three state version of the symmetric simple
exclusion process. When g € (0, 1), Evans et al. [14, 15] argued that in the thermodynamic
limit N — oo with N, /N — r, the system segregates into pure A, B, and C regions, with
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On the Dynamical Behavior of the ABC Model 1285

translationally invariant distribution of the phase boundaries. In the equal densities case
Nj = Np = N¢ = N/3 the dynamics is reversible and its invariant measure can be explic-
itly computed. As shown in [16, 17], the ABC model can be reformulated terms of a dynamic
of random walks on the triangular lattice.

As discussed by Clincy et al. [9], the natural scaling to investigate the asymptotic behav-
ior of the ABC model is the weakly asymmetric regime g = exp{— %}, where the parameter
B € [0, +00) plays the role of an inverse temperature. With this choice the reversible mea-
sure of the equal densities case r4 = rg = rc = 1/3 becomes a canonical Gibbs measure,
that we denote by vf,, with a mean field Hamiltonian. The measure Uf, undergoes a second
order phase transition at . = 277+/3 ~ 10.88. This phase transition has been further ana-

lyzed in [1] and it is described in terms of the free energy functional F4 associated to vf,.

The functional Fj is (apart an additive constant) the large deviations rate function for vf, in
the scaling limit in which the discrete ring with N sites is embedded in the one-dimensional
torus and the particles configuration is described in terms of the corresponding densities
profiles (o4, pg, pc). In this limit, Fg(pa, ps, pc) thus gives the asymptotic probability of
observing the density profile (04, pp, pc). In particular, the minimizer of Fg describes the
typical behavior of the system as N — oo. The phase transition of v,‘f, corresponds to the fol-
lowing behavior of the free energy functional [1, 9, 16]. For 8 € [0, B.] the minimum of Fy
is uniquely achieved at the homogeneous profile (1/3,1/3,1/3). For 8 > . the functional
Fp has a continuum of minimizers, parameterized by the translations, which describes the
phase segregation. As shown in [4], this phase transition can also be detected via the two-
point correlation functions of u,‘f, which become singular when the system approaches the
transition. As shown in [1, 16], for 8 > 28. the functional Fg has other critical points be-
sides the homogeneous profile and the one-parameter family of minimizers.

For unequal densities the invariant measure of the ABC dynamics on a ring is not re-
versible, that is the stationary state is no longer an equilibrium state, and cannot be com-
puted explicitly. As discussed in [4, 9], a stability analysis of the homogeneous density
profile shows that for 8 > 2 [1 — 2(r] +r3 +r2)]7"/? it becomes unstable. As stated there,
one however expects that the phase transition, at least for particular values of the parameters
ra, Ip, ¢, becomes of the first order. Again in [4, 9], the asymptotic of the two-point corre-
lation functions is computed in the homogeneous phase and the large deviation rate function
F has been calculated up to order 8. When the ABC dynamics is considered on an open
interval with reflecting endpoints, the corresponding invariant measure is reversible for all
values of the densities [1]. In particular, it has the same Gibbs form as the one in the ring for
the equal density case.

The main purpose of the present paper is the discussion of the phase transition of the
ABC model on a ring with N sites from a dynamical viewpoint. More precisely, we focus
on the asymptotic behavior, as N diverges, of the relaxation time rf; which measures the
time the dynamics needs to reach the stationary probability. Our analysis is restricted to
the equal density case r4 = rp = rc = 1/3 in which the invariant measure vf, is explicitly
known and reversible. As usual, the relaxation time ‘L'£ is defined as the inverse of the spec-
tral gap of the generator Lf, of the underlying Markov process. Observe that, in view of
the reversibility, Lf, is a selfadjoint operator on L?(d v,/f,). Our main result implies that the
asymptotic behavior of the relaxation time t f, reflects the phase transition of the correspond-
ing stationary measure vf,. We indeed show that for 8 small enough rﬁ is at most of order
N? while for B > B, it is at least of order N>.

The diffusive behavior rf, ~ N? is characteristic of conservative dynamics in the high
temperature regime, the typical example being the Kawasaki dynamics for the Ising model.
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Indeed, this has been proven by different techniques in several contexts, see e.g. [5, 7,
22]. We here follow the approach introduced in [5] which is based upon a perturbative
argument in B and can be directly applied to the case of mean field interactions. On the
other hand, the behavior T,e ~ N3 in the supercritical regime is characteristic of the system
under consideration; we briefly discuss the heuristic picture. As discussed in [9] and then
also in [4], at time O(N?) the densities profiles of the three species (p4, o5, pc) evolve
according to the hydrodynamic equations

doa+BV[paloc — pp)] = Apa,
d08+ BV [ps(pa — pc)] = Aps, (1.1)
doc + BV [pc(ps — pa)] = Doc,

where V and A denote the gradient and Laplacian on the continuous torus, respectively.
As follows from microscopic reversibility, the evolution (1.1) can be obtained as a suit-
able gradient flow of the free energy Fg. In particular, while the homogeneous profile
(1/3,1/3, 1/3) is the unique, globally attractive, stationary solution to (1.1) for 8 < 8., the
(one parameter family of) minimizers of Fz are stationary solutions to (1.1) when 8 > B..
According to the fluctuating hydrodynamic theory, we argue that, for large but finite N, the
hydrodynamic equation (1.1) gives an accurate description of the system provided one adds
in (1.1) a suitable noise term O (1/ V/N). At time O(N?) the ABC dynamics then behaves
as a Brownian motion on the set of minimizers of 5 with diffusion coefficient proportional
to 1/N, see [3]. The time to thermalize is thus O (N?).

The above scenario accounts for the correct asymptotics of the relaxation time as long
as there are no other local minima of Fg. As proven in [1], this is certainly the case for
B € (Bc, 2B:]. On the other hand, for 8 > 28. other critical points of 5 do appear but it
is not known if they correspond to local minima (this is indeed an open question in [1]).
Were they local minima the ABC model would exhibit a metastable behavior, i.e. starting in
a neighborhood of such local minima the process would spend a time exponential in N in
that neighborhood before reaching the global minimizer. Numerical evidences [18] suggest
such metastable behavior which would imply r,ﬁ ~exp{cN} for B > 28..

2 Notation and Results
2.1 The ABC Process

Given a positive integer N, we let Zy = {0, ..., N — 1} be the ring of the integers modulo N.
The configuration space with N sites is QN :={A, B, C}%¥, elements of Q y are denoted
by ¢, for x € Zy the species of the particle at the site x is thus {(x) € {A, B, C}. We also
let gy : QN — {0, 1}%7, o € {A, B, C}, be the « occupation numbers namely, [ (¢)](x) :=
1{1(¢(x)) in which 1 stands for the indicator function of the set E. Note that for each
x € Zy we have na(x) + ng(x) + nc(x) = 1. Whereas n = (94, ng, nc) is a function of the
configuration ¢ we shall omit to write explicitly the dependence on ¢.

Given x,y € Zy and ¢ € Qy we denote by ¥ the configuration obtained from ¢ by
exchanging the particles at the sites x and y, i.e.

¢(y) ifz=n,
()@= ite=y, e

£(z) otherwise.
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The ABC process is the continuous time Markov chain on the state space Qy whose gener-
ator Ly = Lﬁ, acts on functions f: Qy — R as

LY @)= F@Lre™ - f©)] 2.2)

XGZN

where, for 8 > 0 the jump rates c? = ¢V are given by

exp{—&} if C(x),¢(x + 1) €{(A,C),(C,B), (B, A)},

B.N —
Q) = .
¢ exp{ % } otherwise.

(2.3)

As follows from (2.2), the total number of particles of each species is conserved. There-
fore, given three positive integers N,, @ € {A, B, C} such that Ny + Ng + Nc = N, we have
a well defined process on the linear manifold ZXEZN Ne(x) =Ny, @ € {A, B, C}. The ABC
dynamics is irreducible when restricted to such manifold; hence the process is ergodic and
admits a unique invariant measure. In the case 8 = 0 this measure is the uniform probability.
On the other hand, when 8 > O the explicit expression of the invariant measure is in gen-
eral not known. However, as we next discuss, in the case Ny = Np = N the ABC process
satisfies the detailed balance condition with respect to a mean field Gibbs measure [14, 15].

2.2 Invariant Measure in the Equal Densities Case

We assume that N is a multiple of 3 and we restrict to the case in which Ny = Np = N¢.
We shall then consider the ABC process on

~ N
Q :={;eszN ) ) =) )= ch<x>=§}. 24)

xely xely xely

The Hamiltonian Hy : Q5 — R is defined by

1
Hy@ =5 3 [maConem) +ns0mam) +nc@nsm]. @25

O<x<y<N-1

In view of the equal densities constraint, an elementary computation shows that the right
hand side above does not depend on the choice of the origin. Equivalently, Hy is a translation
invariant function on Qy. Given g > 0, we denote by vff, the probability measure on Qy
defined by

1
Vi) = Z—ﬂexp{—ﬁNHN@)} (2.6)
N

where Z ,"(f, the partition function, is the proper normalization constant. In the sequel, given
a function f on Qy we denote respectively by vf,( f) and vf, (f, f) the expectation and
variance of f with respect to vf,.

As observed in [14, 15], the ABC process is reversible with respect to vfi,. In other worlds,
the generator Lﬁ, in (2.2) is a selfadjoint operator on L2(Qy, d vf,) and in particular vf, is

the invariant measure.
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2.3 Asymptotics of the Spectral Gap

The spectrum of L’; in (2.2), considered as a selfadjoint operator on L?(Qy, vf,), is a finite
subset of the negative real axes and, in view of the ergodicity of the associated process, zero
is a simple eigenvalue of L‘,f,. The spectral gap of L? , denoted by gap(Lﬁ,), is the absolute
value of the second largest eigenvalue. The spectral gap can be characterized in variational
terms as follows: gap(L,’i,) is largest constant A > 0 such that the Poincaré inequality

A ) <V (F(=LE) f) 2.7)

holds for any f € L?(Quy, dvf,). The spectral gap controls the speed of convergence to
equilibrium of the associated process in the following sense. For each f € L*(Qy, d vf,),

B B B
vf,(e’LNf, etLN f) < ef2gap(LN)tvl/\5/(f’ f)-

Our main result concerns the asymptotic behavior of gap(L,’i,) as N diverges. In particular
we show this behavior differs in the subcritical and supercritical regimes.

Theorem 2.1

(i) There exist constants By, Co > 0 such that for any B € [0, Bo] and any N
ﬂ 1
gap(Ly) = Co —- (2.8)
N
(i) Let B. :=2m /3. For each B > B there exists a constant C(B) > 0 such that for any N
1
gap(LY) < C(B) 15 2.9)

The above statement raises few natural issues. As discussed in the Introduction, the 1/N 2
asymptotic of the spectral gap is a common feature of conservative stochastic dynamics in
the high temperature regime. Indeed, as proven in [24] for the simple exclusion process and
in [7, 22] for high temperature Kawasaki dynamics, the spectral gap admits an upper bound
that matches (2.8). We expect that the diffusive behavior gap(L’,S\,) = O(1/N?) holds for any
B € [0, B.). The methods used in the present paper are based on a perturbation argument
around B = 0 and their extension to the whole subcritical regime does not appear feasible.
In principle, the techniques developed in [7, 22], which require as an input a strong spatial
mixing of the stationary probability, can be applied up to the critical temperature. Those
techniques have been however developed for short range interactions and they do not seem,
at least directly, applicable to mean field Hamiltonians.

Another, somehow more fundamental, issue is whether 1/N? is the right scaling of the
spectral gap in the supercritical regime. We expect that this is the correct scaling for 8 be-
tween . and 28.. We mention that this behavior is also the one expected for the Kawasaki
dynamics for the low temperature two dimensional Ising model with plus boundary condi-
tion (pure state) [6]. Indeed, in this case the heuristic picture presented in the Introduction
corresponds to the diffusion of the Wulff bubble. While the statement (ii) in Theorem 2.1
is proven by exhibiting a suitable slowly varying test function, a proof of a matching lower
bound appears considerably harder. The ABC model is however much simpler than short

@ Springer
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range models and it therefore might be a useful starting point toward the understanding of
conservative dynamics in the phase transition region.

For B larger than 28., a preliminary question is whether the other critical points of
Fp correspond to local minima. In such a case it is possible to construct a slowly vary-
ing test function which yields the upper bound gap(L‘,'i,) < exp{—cN} for some constant
¢ = c(B) > 0. Observe that the general argument in [6] gives for free the lower bound
gap(L%) > exp{—CN} for some C = C(B) < +oc.

We finally discuss the behavior of the spectral gap of the ABC process on an interval
with zero flux condition at the endpoints. As shown in [1], in such a case the process is
reversible with respect to a mean field Gibbs probability for all values of the densities. In
the high temperature regime 8 < 1, the methods here developed can be directly applied to
get the diffusive behavior 1/N2. As far as the low temperature regime is concerned, the case
of equal densities is the same as the one on the ring and we can therefore conclude that the
upper bound 1/N3 holds also in this setting.

3 Asymptotics of the Gibbs Measure

The upper bound on the spectral gap in the supercritical regime requires the law of large
numbers for the empirical density with respect to the Gibbs measure vf,. This result is proven
by combining the large deviations principle for v,f, with the analysis of the minimizers of the
free energy in [1]. As vf, is a Gibbs measure with a mean field interaction, the associated
large deviations principle can be proven by standard tools. The specific application to the
ABC model has not however been detailed in the literature, we thus present here the whole
argument.

3.1 Empirical Density

We let T := R/Z be the one-dimensional torus of side length one; the coordinate on T is
denoted by r € [0, 1). The inner product in L2(T, dr; R?) is denoted by (-, -). We set M :=
L>(T,dr; [0, 1]°) and denote by p = (p4, pg, oc) its elements. We consider M endowed
with the weak* topology. Namely, a sequence {p"} converges to p in Miff (p", ) = (p, &)
for any function ¢ € L' (T, dr; R?), equivalently for any smooth function ¢ € C*®(T; R?).
Note that M is a compact Polish space, i.e. separable, metrizable, and complete.

We introduce

. ! 1
M= {pEM :pA+,OB+PC=1»/ drpa(r)=§, ae{A,B,C}] 3.1
0

noticing it is a closed subset of M that we consider equipped with the relative topology and
the associated Borel o-algebra. The set of Borel probability measures on M, denoted by
P(M), is endowed with the topology induced by the weak convergence of probability mea-
sures; namely, P, — P iff for each continuous F': M — R we have f dP, F — f dPF.
Note that also P(M) is a compact Polish space.

We define the empirical density as the map 7y : Qy — M given by

AN () () = D @) Ly eenym (), reT, (3.2)

xely
recall n is the map defined at the beginning of Sect. 2. We set ’P,‘l;{, = u,’?, oy ! namely, 73,‘?, is
the law of 7ty when ¢ is distributed according to vf,. Note that {’Pf,} is a sequence in P(M).
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3.2 Large Deviations Principle

The entropy (with a sign convention opposite to the standard one in physical literature) is
the convex lower semicontinuous functional S: M — [0, +00) defined by

pa(r) pe(r) pc(r)
13 + pg(r)log 13 + pc(r)log 13

1
S(p) ;:/ dr [ﬂA(r) log ] (3.3)
0

and the energy is the continuous functional H: M — R defined by

1 1
H(p) :=/ dr/ dr/[pA(r)pc(r/)+pB(r)pA(r/)+pc(r),03(r/)}- (3.4)
0 r

For > 0 the free energy (in which we omit the prefactor 1/8) is finally the functional
Fg: M — R defined by

Theorem 3.1 The sequence {Pf,} satisfies a large deviation principle with rate function
Ip = Fp — inf Fg. Namely, for each closed set C C M and each open set O C M

— 1
g B .
Jim < logPy(C) = — infZy(p),

1
. 8 .
lim —logPy(0) = — inf Ty(p).

N—oo

Since the beautiful Lanford’s lectures [21], large deviations principles for Gibbs mea-
sures has become a basic topic in equilibrium statistical mechanics, see in particular [13] for
the case of mean field interactions. On the other hand, the current setting is not completely
standard as we are looking to large deviations of the empirical density for canonical Gibbs
measures. We therefore give a detailed proof of the above result. The first step is the large
deviations principle when B = 0; recall that P = v% o 711;] is the law of wy when ¢ is

distributed according to vg, which is the uniform probability on Q.

Lemma 3.2 The sequence {PY} satisfies a large deviation principle with rate function S.
Namely, for each closed set C C M and each open set O C M

Jim —logPy(C) < — infS(p), (3.6)
.1 .
IVIer;Nlong((’)) z — inf S(p). (3.7)

Proof The proof is split in few steps.

Step 1. Set

1 A (r) 1
o 1. 3y - ¢ _ L
A= {AEC (T,R)./O A o e = 3 ae{A,B,C}} (3.8)
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and let A : A — R be the functional
! 1
A = / dr 1og[§(e“<’> + 8" +e*f<’>)} (3.9)
0
we shall prove that for each A € A

lim %log/dp,?,(p) exp{N (L, p)} =AD). (3.10)

N—oo

Denote by A"V (x) the average of A in the interval [x/N, (x + 1)/N),

x+1

e
AV (x) ::N/ dri,(r), xely, ac{A,B,C}.
N
From the very definition of the measure P,

fdP%(p) exp (N o)} = D i@ exp{N (. 7V (@)

teQy

=Zv5¢<4>]‘[exp{ > ?»QV(X)na(X)}- (3.11)
aef

LeQy xeZy A,B,C}
We denote by [,Li”v the product measure on Qv ={A, B, C}%v with marginals /,L;‘V’x given by

o ()

Wy (o) = €A, B,C).

W) @) @

When A = 0 we drop the superscript A from the notation so that s is the uniform measure
on Qy. . . .
Set Ex(A) := erz,v (€™ + ™ et ™) As VY = uy (- |Qy), from (3.11) we get

Env(A) uhy(Q2n)
3N NN(QN)'

[aPior exo (N0 1} =

We claim that for each A € A it holds limy % log ), (Q2y) = 0. The proof of this step is then
completed by observing that % log[Ex(A)/3Y] — A(L).
To prove the claim, we write

1 1
1y (2n) = “?V<N Y ) = 3 @ €{4. B, C}>-
x€ely
In view of the smoothness of A and the constraints in (3.8), for each o € {A, B, C}

1 1
N Z M;Lv(na(x)) = N Z

xely xely

! et 1 1 1
:‘/0 d}" e)LA(V) +e)~B(r) +e)~C(r) + 0(ﬁ> = 5 + O(N)

M ()

Py (OIS SO NP CY)
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The claim now follows from an application of the local central limit theorem for triangular
arrays, see e.g. [23, Chap. VII].

Step 2. We here prove the large deviations upper bound (3.6). Given A € A, let 73‘2;A be the
probability on M defined by

Py = exp N[ (%) = Ax()]} a7} (3.12)

where
1
Ay = v log/dP,(\),(p)eN“’m.

Given a measurable subset B of M, we then have

dPy
PYB) = [ aPi ST < supexp (N[ o) = An(])
B dPN’ peB

In view of Step 1, Ay(A) — A(A) as N — oo. We thus get
— 1 0 .
Jim - log Py (B) s—glfg{(A,p) - AW}

By optimizing with respect to A € A and using a mini-max lemma, see e.g. Lemmata 3.2
and 3.3 in [20, App. 2], we deduce that for each compact K C M

— 1 0 . .
Jim 7 log Py (K) < — inf sup {(L.p) =AM} = — inf ()
where the last identity follows by Legendre duality. By the compactness of M this concludes
the proof of the upper bound.

Step 3. Given two probability measures P and @, we denote by Ent(Q|P) =
[dQ log[d Q/d P] the relative entropy of Q with respect to P. A simple computation based
on Jensen inequality, see e.g. [19, Prop. 4.1], shows that the large deviations lower bound
(3.7) can be deduced from the following statement. For each p € M there exists a sequence
of probability measures {Qf} such that

Qf —8, and Iim iEm(g" |PY) <S(p) (3.13)
N P Nosoo N N|"N) — . :

We here construct the sequence {Q} } when p is continuously differentiable and bounded

away from 0 and 1. For such a p let A = A(p) be such that
et
Pa = m7 aecf{A,B,C}.

Observe that A € A since p is continuously differentiable and bounded away from 0 and 1.
Recalling (3.12), we claim that {Py**”’} fulfills the condition (3.13). The law of large num-
bers P]?,’Mp '8 » can be indeed checked by the same computations of Step 1. Furthermore,
in view of such law of large numbers and Step 1,

1
lim —Ent(Py"7|P) = (. p) — AR = S(p)

N—o00
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where the last equality follows from the choice of A and Legendre duality.

Step 4. The proof of the lower bound is here concluded by an approximation argument [19,
Prop. 4.1]. Let M, be the subset of M given by the continuously differentiable profiles
bounded away from O and 1. The condition that a large deviation rate function is lower
semicontinuous is not restrictive. More precisely, if a sequence of probabilities satisfies the
large deviations lower bound for some rate function, then the lower bound still holds with the
lower semicontinuous envelope of such rate function. If we let S° be the functional equal to
S on M, and §°(p) = +oo otherwise, in view of Step 3, the proof of the lower bound (3.7)
is concluded if we show that the lower semicontinuous envelope of S° is S. This amounts
to prove that

S(p)=sup _inf S(p)

Osp PEONM,

where the first supremum is carried over all the open neighborhoods of p. The previous iden-
tity is easily proven by considering a sequence {p"} of continuously differentiable profiles
bounded away from 0 and 1 which converges to p a.e.in T. ]

In view of the continuity of the functional H on M, the large deviations principle for
the sequence {Pf,} is straightforward consequence of Lemma 3.2 and Laplace-Varadhan
theorem.

Proof of Theorem 3.1 Recalling definitions (2.5), (3.2) and (3.4), we claim that for each
L eQy

Hy(§) =H @Y (). (3.14)

It is indeed enough to notice that by writing explicitly the right hand side above the diagonal
terms vanish since n4(x) + np(x) + nc(x) =1, x € Zy.

Recall that v?, is the uniform probability on 2y and let 5 be a measurable subset of M.
From (3.14) and the definitions of the measures Pf, and u]‘f,, see (2.6)

PRB = Y vﬁmz'Z—Z' D @) e NI

14399% N  teQy
N )en aN(@)eB

N

0 —BNH
= dPy e NN,
N VB

In particular, by taking B = M,

7P

Since M is compact and H: M — R is continuous, by using Lemma 3.2 and Laplace-
Varadhan theorem, see e.g. [10, Thm. 4.3.1], we deduce

tim L 10g 2 {—BH(p) — S(p)} = — inf F(p)
m — 10 = Su — — = — 1n .
Voo N Q] T ek O O VN
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1294 L. Bertini et al.

Let C and O be respectively a closed and an open subset of M. Again from Lemma 3.2 and
Laplace-Varadhan theorem, see e.g. [10, Ex. 4.3.11], we deduce

— 1 0 N
- —BNH(N) .
lim N log/CdPNe < /l)Ielg Fg(p),

N—oo

1
lim —log/dP,(\), e PN HE™)
o

N—o00

A%

- 32(1; Fp(p)-
The theorem follows readily. g
3.3 Minimizers of the Free Energy

We here recall the results in [1] concerning the minimizers of the free energy 5 in (3.5)
that are needed in our analysis. As discussed in [1], the Euler-Lagrange equation § 7 =0
can be, equivalently, written as the system of ordinary differential equations

Py =B paloc — pr),
Py =Bprs(pa—pc), (3.15)
oc =B pc(ps — pa)-

Note that the above condition is equivalent to the statement that p = (p4, pg, pc) 1s a sta-
tionary solution to the hydrodynamic equation (1.1).

Let B, :=2m V3. In[1]itis proven that for 8 € [0, B.] the unique solution to (3.15) in M
is the homogeneous profile 7 := (3, 3, 3). On the other hand, when g > g there are non
trivial solutions. In particular, there exists a unique p € C*(R; R?) satisfying the following
conditions: (i) p solves (3.15), (ii) p is periodic with period 1, (iii) p satisfies the constraints
in (3.1) and can therefore be thought as an element in M, (iv) the center of mass of the B
species is 1/2, i.e. 3 foldr rpp(r) = 1/2. We shall denote this solution by p* = p*#. Note
that any translation of p*# satisfies conditions (i)—(iii) above but not (iv). We emphasize that
the condition (ii) requires the minimal period to be one. Indeed, as discussed in [1], when
B > nf. for some integer n > 2, there are solutions of (3.15) with period 1/n. These are the
other critical points of Fz which may lead to a metastable behavior.

Given s € T we denote by 7, : M — M the translation by s, namely (z;0)(r) = p(r —s).
If P is a probability on M, the corresponding translation is P o 7, The following statement
is a (partial) rewriting of Theorems 4.1 and 5.2 in [1].

Theorem 3.3
@) If B €10, B.] then

arginf Fg = {ﬁ};

namely, the unique minimizer of Fg is p.
@ii) If B € (Bc, +00) then

arginf Fg = {r,p*F, s € T};

namely, Fg has a one-parameter family of minimizers which are obtained by translating
B
[
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3.4 Law of Large Numbers for the Empirical Density

As a corollary of the previous statements, we here prove the law of large numbers for the
sequence {Pf,}. The corresponding limit point charges the set of minimizers of the free
energy only. In the supercritical case we show that each 7,0*#, s € T, is chosen with uniform
probability.

Theorem 3.4

(1) If B €10, B.] then the sequence {731/\3,} converges to 8.
(i) If B € (Bc, +00) then the sequence {Pf,} converges to folds 8r prb

Proof Item (i) follows immediately from the large deviations principle stated in Theorem 3.1
and the uniqueness of minimizers of F stated in item (i) of Theorem 3.3.

To prove item (ii), let ¥ : Qy — Qpy be the microscopic translation, i.e. ¥¢ is the con-
figuration defined by (9¢)(x) = ¢(x — 1), x € Zy. As follows from definition (2.6), the
probability vf, is translation invariant, i.e. vﬁ, ol = v,‘?,. This implies that the probabil-
ity ’Pf, is invariant by discrete translations: 731/3, o r;/i\, = 731’3, x € Zy. By the compactness
of M, there exists a probability P € P(M) and a subsequence {731’?,} such that 77][3, — P.
We claim that P is translation invariant. Indeed, fix a continuous function F on M and
s € T. Observe that, in view of the compactness of M, F is uniformly continuous. Pick
now a sequence {xy € Zy} such that xy /N — s. The uniform continuity of F implies that
T.y/n F converges uniformly to 7,F. Since [ de, TynF=[ de, F, by taking the limit
N — oo we deduce that f dPt, F = f dP F. In view of the arbitrariness of F we con-
clude P o TS" = P. Moreover, Theorem 3.1 and item (ii) in Theorem 3.3 imply that the
support of P is a subset of {t,0*#,s € T} =: T. Let now ¢: T — T be the bijection de-
fined by 7,p*f > s and set A :== P o ¢~!. Since P =P o 7!, s € T, we deduce that X is
a translation invariant probability measure on T. As the Lebesgue measure dr is the unique
translation invariant probability measure on T we deduce A(dr) = dr. The proof is now
completed by observing that for each continuous F: M — R the previous identity imply

JdP(p) F(p) = [y ds F(z,p"). O

4 Lower Bound on the Spectral Gap in the Subcritical Case

In this section we prove the first statement in Theorem 2.1. This result is derived from an
analysis of a perturbed interchange process, that is detailed in Appendix, and a comparison
of the corresponding Dirichlet forms. This method has been introduced in [24] and applied
in different contexts, see e.g. [5].

We start by defining the ABC process on the complete graph with N vertices. Given
a (unoriented) bond {x,y} C Zy, x # y, and a function f: Qy — R, we introduce the
gradient

(Vin £)(©) = FE*) = f(©) 4.1)

where, asin (2.1), {*¥ denotes the configuration obtained from ¢ exchanging the particles in
x and y. The ABC dynamics on the complete graph is then defined by the Markov generator

Lhf= Y oV ,f (4.2)

{x.y}CZyN
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where, recalling (2.5), the jump rates ¢f | =cfV: Qy — (0, 400) are given by

1 N
cf:;\’ = ﬁexp {—ﬂ? x,yHN}. (4.3)

In particular, the above rates satisfy the detailed balance with respect to the probability

measure vfs, defined in (2.6). Recalling (2.3) and (2.5), we also observe that N cf,’)](v+

In Appendix we prove that, provided 8 is small enough, the spectral gap of L‘,gv is of
order one uniformly in N.

— ~B.N
1 =6

Lemma 4.1 There exist constants By, C € (0, +00) such that for any 8 € [0, Byl and any
N=>3

1
gap (L}) = o

We denote by Df, and Dﬁ, the Dirichlet forms associated to the generators Lﬁ, and L,’i,,
respectively. That is, given f: Qy — R,

1 N
DR (f )= (f (LR ) = 5 D (e [Vewnn T). (44)
x=1
1
DUL N = (LN =5 D0 vilel, [VersT). “.5)
(x.y}CZy

Lemma 4.2 The inequality
DR (f, f) <26 N> DY(f, f)

holds for any B > 0 and any function f: Qy — R.

Proof Given {x,y} C Zy welet T, ,: Qy — Qy be the involution defined by T ,¢ :=¢*7.
We use the same notation for the corresponding linear map on the set of functions f: Qy —
R,ie. (T¢, /() = f(T:y¢) = f(&¥”). As it is simple to check, the long jump 7 , can
be decomposed in terms of nearest neighbor jumps as follows

Toy=Tc1xTiponq1 - Tyory2Ty_1y Ty—ay—1 -+ Togix2 T xg1-
We then write the telescopic sum
Toyf—f
=[Tews1 Tyyot - Teprart Tegrn [ = Tevsr - Tyymt - Tegonst f]
+[Texsr - Tyyot o T2 Tosanit = Tert o Tyymr - Tegansn f]
oA [Tewsr o Ty 1 Tyt f = Tern - Ty oy f]
+---+ [Tx,x+1f - f]

‘Whence

vx,yf(;) = (Vx.x+1f)(TX+l,x e Ty—l,y e Tx+1,x+2§)
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+ (Vx+l,x+2f)(Tx+l,x e Tyfl,y e Tx+2,x+3§)
+ -+ (Vy—l.yf)(Tx+1,x e T)’—Z,y—lé‘) +-+ (Vx,x+1f)(§)- (46)

In view of (2.5) and (2.6), for any 8 € R;, any z € Zy, and any positive function
g: Qy—> R,

Vi (T, .418) < exp [NBIV. .+1Hy oo} v (8) < e#N i (9) 4.7)

where || - || o denotes the uniform norm. By Schwarz inequality in (4.6) and using recursively
the previous estimate we then get, for 1 <x <y <N

y—1

W ([Veu £T) <220 =0 = 11 > i ([Vezar £1)- 4.8)

=x

Indeed, in the generic term on the right hand side of (4.6) there is the composition of nearest
neighbor exchanges Ty y+k+1 Whose number is at most 2(y — x) — 2 < 2N. In view of
(4.7) this yields the factor ¢?#. As the number of terms on the right hand side of (4.6) is
2(y —x) —land each bond {z,z+ 1}, z=x, ..., y — 1 is used at most two times, the bound
(4.8) follows.

To conclude the proof of the lemma it is now enough to observe that the jump rates
in the Dirichlet forms (4.4) and (4.5) respectively satisfy the bounds c# > ¢=#/®N) and
N cf’ y = P2 In view of (4.8) elementary computations now yield the statement. |

Proof of Theorem 2.1, item (i) Recall the Rayleigh-Ritz variational characterization of the
spectral gap (2.7). By Lemmata 4.1 and 4.2 we then deduce the statement with S, as in
Lemma 4.1 and Cy = %e’wUCl. O

5 Upper Bound on the Spectral Gap in the Supercritical Case

We discuss here the upper bound on the spectral gap when 8 > f.. In view of the Rayleigh-
Ritz variational characterization (2.7), the proof will be achieved by exhibiting a suitable test
function. The naive picture is the following. When 8 > . and N is large, the ABC process
essentially performs a random walk on the set of minimizers of the free energy Fz, which
in the supercritical case is homeomorphic to the one-dimensional torus. We thus choose as
test function the one that corresponds to the slow mode of such random walk and conclude
the argument.

Proof of Theorem 2.1, item (ii) Pick a Lipschitz function ¢: T — R such that foldr ¢(r)=0
to be chosen later and let fy: 2y — R be the function

N
1 X
fv= M ; UB(X)¢<N>~
By the Rayleigh-Ritz principle,

DY (fv, fa)

5.1
Ve (s )

gap(Lh) <
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where the Dirichlet form fo, has been defined in (4.4). We next estimate from below the
denominator and from above the numerator.

To bound the variance of fy, we first observe that, since ¢ has mean zero, we have
limy Vo (fy) = %foldm&(r) =0. Recall (3.1) and let F: M — R be defined by

1
Fo = [ dros o).
0
The continuity of ¢ implies
Jim sup | fy(£) = F(7n (©))] =0,
—00 eQy

where the empirical density 7y : 2y — M has been defined in (3.2). By assumption, 8 > f.
and therefore Theorem 3.4, item (ii) implies

1 1 2
1220\;]@(]013):52201)5(1?(@)2):[0 ds UO dr,o;’ﬁ(r—s)¢(r)i| :

N

We can choose ¢ such that the right hand side above is strictly positive. It is indeed enough
to observe that, since p*# is not constant, there exists a Lipschitz, mean zero, function ¢
such that foldr pZ”S (r)¢(r) # 0. For such choice of ¢ we deduce there exists a constant

C(pB) € (0, +00) such that vf,(fN, fnv) = C(B) for any N > 3.
We next bound the Dirichlet form. A straightforward computation yields

1 1
Versi fv = NMX; ) - ¢<%)} [15(x) — np(x + D).

Since ¢#V < exp{%}, we then get

Bl 1 « x+1 x\71
phee o =g 2[o(5) -#(5)]

Therefore, letting Cy be the Lipschitz constant of ¢,
lim N° D% (fy, f )<lc2
N—o0 NAN>INT = 2 4
which concludes the proof. O
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Appendix: Spectral Gap for Perturbed Interchange Processes
We prove here a general result on the spectral gap on suitable Markov chains on the set

of permutations of {1,..., N}. The jumps of this chain are obtained by randomly choos-
ing a transposition. As reference process we consider the so-called interchange process
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on {1,..., N}, see [8, 11]. This process can be realized as the simple random walk on
the graph with vertex set given by the symmetric group Sy and edges given by the pairs
(01,072) € Sy x Sy such that the composition al_l o 0, is a transposition. The reference
invariant measure is thus the uniform probability on the symmetric group. We then per-
turb this measure according to the standard Gibbs formalism and consider an associated
reversible chain. Under general conditions on the energy, we show that—at high enough
temperature—the relaxation time of perturbed chain behaves, for large N, as the one of the
reference random walk. The ABC dynamics on the complete graph (4.2) can be realized
by looking at the previous chain in a colorblind way, that is resolving only 3 out of the N
colors.

Let Vy :={1,..., N} and By :={b C Vy : |b| =2}. The complete graph on N vertices
is Gy := (Vy, By) and Sy := {0 : Vy — Vy, bijective} is the set of permutations on V.
For o € Sy, {x,y} € By let 0"} € Sy be the permutation obtained by composing ¢ with
the transposition which exchanges x and y

o(y) ifz=ux,
o= o) ifz=y,

o(z) otherwise.

Given an energy function Ey: Sy — R and 8 > 0, we define the probability on Sy by
ﬁ 1
T (0) =7y(0) = — exp {-BEN(o)}.
N

where Zﬁ is the normalization constant. For f: Sy — R, a € By define f%(o0) := f(c¢),
V. f = f* — f and the Markov generator Gy = gﬁ by

Onfi=) caVaf (AD)
aeBy
where the transition rates are
1 B
=N = — —=V,Ey}. A2
ca=ch W €XP { 5 N} (A2)

The associated Markov chain satisfies the detailed balance with respect to the probability
Ty, 1.€.,

nN(Cag):T[N(caga)' (A3)

The operator Gy is selfadjoint in L2(Sy, dmy), the corresponding Dirichlet form is

Exf ) =mn(F-G0 ) =5 3 mwfea (Vuf 7]

acBy

We next show that for g small enough the spectral gap of G 1’3, is strictly positive uniformly
in N.

Theorem A.1 Assume supy, sup, ||V,EN|leo < 4-00. Then there exist By, Ko > 0 such that
forany B €0, Byl and any N

1
— =ap(Gy) = Ko. (A4)
0
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Proof of the upper bound In view of the variational characterization (2.7) of the spectral
gap Gy, it is enough to exhibit a suitable test function. We next show that by choosing
f (o) =1(;(o (1)), the upper bound in (A.4) follows.

The variance of f is ny(f, f) = an(o (1) = D[l — wy(o(1) = 1)]. To compute the
Dirichlet form, we first observe that V,, fy vanishes if 1 ¢ a. On the other hand, if a = {1, y}
for some y € {2,..., N}

[Viy v @] =100 (1) + 10 ().

Whence, in view of (A.2),

1
En(f. ) =5 (e[l @ ) + 1@ ()
y

= eXp{é%lp IIVaENlloc}ﬂN(G(l) =1).

Therefore

exp{ 5 supy , |V Exlloo}
[—my(e(D)=1)

gap(gn) <

It remains to show that the denominator above is bounded away from O uniformly in N. We
claim that

1 1
~exp{—Bsup|VoExlla} <my(o()=1) = —exp|BsupIVuEyl). (A5
N N.,a N N.a

Indeed, fix x € Vy and observe

wy(o (1) =1) va(a)l o ()= IN > an (@1 (x))
M CARD) a .
=z nn(o )Tlm(a(x)) =y (e PVI0EN 1y (0 (x))).
This yields
exp {~psup IV, £l < TUEH= <exp [sup I Vx|
Summing over x € Vy and observing that 3 7y (o (x) = 1) = 1 we get (A.5). O

Proof of the lower bound The proof is based on the I'; approach, see e.g. [2], as adapted
to the context of interacting particles systems in [5]. The starting point is the observation,
which follows from the spectral theorem, that gap(Gy) is the largest constant £ such that for
any f: Sy > R

k
v [@y ) zkEn(f ) =5 D anlea(Vaf ). (A.6)

aeBy
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To prove the lower bound in (A.4) it is therefore enough to show there exist a constant k
independent of N such that (A.6) holds. We proceed in two steps. We first show that

v [Gn )]
1 a
> 3 mn[cacsVa Vs f]+ 3 > nN[cach(l—Z—f)vafvbf] (A7)
ot et

Then we prove there exists a constant k independent of N such that

k
5 > anfea(Vaf)?]

aeBy
1 c
< Y mlcavVafVifl+5 Y nN[cach(l——b)vafvbf] (A.8)
a.beBy a.beBy €b
anb#y anb=y

While the inequality (A.7) can be obtained as a consequence of Corollary 2.3 and Propo-
sition 2.4 in [5], we next give a direct proof in the present setting. Observe that

|Gy )] = Z v [cacsVa f Vb f]

a,beBy
= > av[casVaf Vo f]+ D an[cacsVaf Vo] (A9)
anb#y) anb=y

‘We rewrite the last term as

> anleacsVaf Vi f]

anb=y

3 -G 5 e+

anb=y anb=y

We claim that the last term on the right hand side above is positive. This statement together
with (A.9) trivially implies (A.7). To prove the previous claim, fix a, b € By, withaNb =0
and observe that in this case (V, f)*(V, f)* = =V, fV, f¢. The detailed balance condition
(A.3) now implies

TN [cacb<1 + z—';)Vabef] =nmylcaley +c3)Va Vs f1

= 7ty [ea(ch +cs) (Va ) (Vi £)°]
= —ny[ea(ct + ) Va f Vi f4].

Then
a 1
9% [cacb(l + %)Vafvbf} = EWN[Ca(Cb + ) (Vaf Vo f =Vaf Vs f?)]
1
= —Em\,[ca(cb + &)V fVaVi f]. (A.10)
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Furthermore, by direct computation,
ca(cb—i-c‘bl) :cb(ca+cZ). (A.11)

By using (A.10), (A.11), detailed balance (A.3), and (A.11) again we obtain

nN[cacb<1+ )V bef]

=—%ﬂN[ca(cb+cZ)VafVabe] —%ﬂN[Cb(Ca-l—C )V fV, be]

1 1
= EnN[cb(Ca +CZ)VafbVavbf] = EnN[Ca(cb +CZ)Vathavhf]'

By averaging the previous equation and (A.10) we get
1 a b
TIN | CaCh 1+ Vi fvbf ZﬂN[Ca(Cb'i_cb)(Vaf _Vaf)vavbf]

1
= erN[ca(cb +cZ)(Vabe)2] >0

which concludes the proof of the claim.
In order to prove (A.8) we observe that

Y mwleesVaf Vo f] =D an[ Va1 + D mnlcaesVaf Vo] (A12)
anb#i a gr;fzgw

Furthermore, given a, b € By such that a N'b # ) and a # b there exists a unique triangle
T such that a, b € T. A triangle here is an element of

TN :={{a,b,c}CBN:|{a,b,c}|=3,aﬂb7é(7),aﬂc;£(7),bﬂc;é®}.

Therefore
> anleaesVaf Vi f]= Y Y wn[eacsVaf Vi f].
anb#y TeTy a,beT
a#b a#b
Note that
Z Z v [cacsVaf Vi f]
TeTy a,beT
a#b
=YY an[eacsVaf Vi f]= Y D wn[ci(Vaf)?]
TeTy a,beT TeTy acT
=Y > av[cacsVafVif] - Z|{T €Ty :T 3 a}|ny[c2(Vaf)?]
TeTy a,beT
=Y Y wn[eacsVaf Vo f]— (N - 2>ZnN & (Vaf)?]-
TeTy a,beT
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By plugging this result in (A.12) we get

D anlcasVaf Vo f]= Y Y wn[eacsVaf Vi f]— (N — 3>ZnN 2 (Va )]

anb#y TeTy a,beT

For any T € Ty define the set of vertexes of T as T := Uy a. Then
Z wy[cacsVa Vb f] = nN|: Z mv[cacsVa Vs f o) 2 ¢ f]] (A.13)
a,beT a,beT

We prove in Lemma A.2 below that there exists a constant C;(B) > 0 satisfying
limg o C(B) = 1 such that forany N > 3, any f: Sy — R, and any o € Sy

Y mlaeVarViflo@:eg 11z S Y myfeVan? o 2 ¢ 7]

a,beT aeT

By plugging this bound into (A.13), we deduce

> wnfeacsVa Vi f]

anb#y)
3C1(,3) ZZ”N ca(V, f) (N—3)Z7TN (V f)
TeTy acT
3Ci1(B)(N =2)
=N ;nN [ca(Vaf)?] = (N =3) ;”N [c2(Va )]
3C N -2
> (% — (N =3)sup ||ca||oo> ;w [caVa?] (A4
In view of (A.2),
1
supucanoosﬁexp{gsNup||vaEan}. (A.15)

Recalling the hypotheses supy sup, |V, Enlleo < 400, from (A.14) we then deduce there
exists a constant C(8) > 0 satisfying limg o C>(8) = 1 such that

C
> anfeasVa Vs ]2 A S i feavan?] (A16)

anb#y a

To conclude the proof of (A.8) we show that the second term on its right hand side is, for
B small enough, of order 8. By Schwarz inequality and (A.11)

’% Z nN|:cac;,<l - Z—i)vafvhf:H

a,beBy
anb=y

5% > 7TN|:CaCb

anb=y

a

)
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1
z{ Y n[ R P
anb=y anb=y
1 2 <h
5 Z 7TN|:CaCb ]= EZ”N[Ca(Vaf) D el o ]
aﬁh /) a b:bNa=P

The hypotheses of the theorem implies supy sup, ;, Ve Vi Enllco < +00. Recalling
(A.15), for B small enough we then have

a

C B
D ofl= 2l =suplelle Yo [1—em 2]
b:bNa=p b a b:bNa=p
<Bswllcalle Y |VaViEn|<CsB
¢ b:bNa=y

for some constant C3 independent of N. Therefore

1
5 2 nN[cacb(l - —)v e ——ZnN ca(Vaf)’],
a,beBy
anb=y
which together with (A.16) completes the proof of (A.8). ]

Lemma A.2 Assume supy sup, |V En|lec < 4+00. Then there exists a constant Ci(B) sat-
isfying limg o C1(B) = 1 such that for any N > 3, any T € Ty, any f: Sy — R, and any
[ SN

3 Y mlaeVasViflo@:cg Tz 2 Y mifeVan? o0 ¢ 7]

a,beT aeT
where we recall T := | .7 a.

Proof The argument relies on two ingredients. The first is that, given a triangle T’ € 7y,
the conditional probability N[ lo(z):z ¢ T is, for B small enough, close to the uniform
measure. Namely, there exist C4(B) satisfying limg o C4(8) = 1 independent of N, T' € Ty,
and o € Sy, such that

1 ﬂf,[a|a(z):z¢7~“]
= C4(B). A.17
C4(ﬂ)5ng[a|a(z):z¢T]§ 4(B) (A.17)

The second ingredient is that the spectral gap of the interchange process on a graph with 3
vertices is equal to 1. This statement readily implies

mylfflo@izgT] < ZRN VofP|o@:z¢T) (A.18)

(IET

We first show that (A.17) and (A.18) imply the thesis. Since n,?, (lo(z):z ¢ T) is the
uniform measure on a set of cardinality 6, in view of (A.18)

N[ f flo@) z¢T)
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<CiB’my[f. flo@:z2¢T]
C 2 -
< SO S (Vo) 2 ¢ 7]

aeT

< %C4(ﬂ)3NegsuPN,n IVaENlloo %Z”}é[ca(vaf)z | U(Z) ‘7 ¢ 7"'«]

aeT

Whence, by using the characterization of the spectral gap given in (A.6),

Z whlcacsVaf Vo f o) 1z ¢ T)

a,beT

B 1 B
= m exp [_5 A}IEHV(;EN“oo} E an’[ca(vaf)z‘(f(z) iz ¢ T]

aeT

which, for a suitable C;(8), is the thesis of the lemma.
The estimate (A.17) follows from standard arguments. Firstly note that for any a € T

nf,[a“ lo(z):z¢ 7]

-— = _ vaE )
n£[0|0(z);Z¢T] exp{ B N(O‘)}

Therefore, by observing that any two given permutations in S3 can be connected at most by
two transpositions, a telescopic argument yields that for any o, 0’ € Sy such that o (z) =
o'(z)forz¢T

Br i~/ () - T
exp [ -28 sup IV x| < 0OV LRI < op o sup 9, Byl ).
N.a wylolo(z):z2¢T] N.a
By averaging the above inequality over ¢’ the bound (A.17) follows.
The spectral gap of the interchange process on {1, 2, 3} can be deduced from the general
results in [8, 11]. An elementary proof can however also be obtained by writing out the 6 x 6
matrix corresponding to the generator and computing its eigenvalues, as in the example at

page 50 of [12]. We order the 6 permutations of S5 as ( 152). (1) (3:)- (553)- (513)- and
( 123

o ). With this choice, the generator of the interchange process is represented by the matrix

1 1 1
3 03 03
1-1+04%o
O R T B |
0 4 -1 0
3 005150
0 46 41
3 0 3 0 3 —1
whose eigenvalues are 0 (simple), —1 (with multiplicity four), and —2 (simple). O

We finally show, as a corollary of the previous result, that the spectral gap of the ABC
dynamics on the complete graph is of order one.
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Proof of Lemma 4.1 Fix N multiple of three and let y : Sy — Q) be the projection defined

by

A ifo(x)=1 mod 3,
(xyo)(x): =1 B ifo(x)=2 mod 3,
C ifo(x)=3 mod3.

Namely, xy resolves only three out of the original N colors. Recalling (2.5), let Ey: Sy —
R be defined by Ey := N Hy o xy. For this choice the ABC dynamics with long jumps,
i.e. the process with the generator (4.2), can be realized as the xy-projection of the process
with generator (A.1). In particular, vf, = nf, oxy' and gap(L’:,) > gap(gf,). Since Hy o xn
satisfies the hypotheses in Theorem A.1, the statement follows. ]
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