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Abstract

Consider the viscous Burgers equation utCf .u/x D " uxx on the interval Œ0; 1�

with the inhomogeneous Dirichlet boundary conditions u.t; 0/ D �0, u.t; 1/ D
�1. The flux f is the function f .u/ D u.1 � u/, " > 0 is the viscosity, and

the boundary data satisfy 0 < �0 < �1 < 1. We examine the quasi-potential

corresponding to an action functional arising from nonequilibrium statistical me-

chanical models associated with the above equation. We provide a static varia-

tional formula for the quasi-potential and characterize the optimal paths for the

dynamical problem. In contrast with previous cases, for small enough viscosity,

the variational problem defining the quasi-potential admits more than one mini-

mizer. This phenomenon is interpreted as a nonequilibrium phase transition and

corresponds to points where the superdifferential of the quasi-potential is not a

singleton. © 2010 Wiley Periodicals, Inc.

1 Introduction

We consider an infinite-dimensional version of the classical Freidlin-Wentzell

variational problem for the quasi-potential. We first briefly recall this topic in the

context of diffusion processes in R
n [23]. Let b be a smooth vector field in R

n and

consider the stochastic perturbation of the dynamical systems Px D b.x/ given by

PX� D b.X� /C
p
2� Pw;

where Pw is a white noise. Under suitable assumptions on b, the process X� has a

unique invariant measure �� . The Freidlin-Wentzell theory provides a variational
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expression for the asymptotics of this invariant measure in the weak noise limit

� # 0. To each path X W .�1; 0� ! R
n associate the action

(1.1) I.X/ D 1

4

Z 0

�1

j PX.t/ � b.X.t//j2 dt:

In what follows we assume that the vector field b has a unique, globally attractive

equilibrium point x. The quasi-potential V W R
n ! Œ0;C1/ is defined by

(1.2) V.x/ D inffI.X/; X.0/ D x; X.t/ ! x as t ! �1gI
namely, V.x/ is the minimal action to reach x starting from the equilibrium point x.

For each Borel set B � R
n we then have, as � # 0,

�� .B/ � exp
˚���1 inf

x2B
V.x/

�
:

If the vector field b is conservative, namely b D �rU for some U W R
n ! R,

then V.x/ D U.x/�U.x/; i.e., the quasi-potential coincides with the potential. In

general, though, there is no simple expression for the quasi-potential.

In this finite-dimensional setting, the quasi-potential V is Lipschitz [23]; in par-

ticular, it is a.e. differentiable. As discussed in [14], for some “special” points x 2
R
n, the function V might however have “corners,” namely, the superdifferential

of V might not be a singleton. From a dynamical point of view, for such points x

there would exist more than a single minimizer for the variational problem (1.2).

We refer to the examples considered in the physical literature [24, 25, 30] for a dis-

cussion on the physical interpretation of this lack of uniqueness. In this article we

show that this phenomenon occurs for an infinite-dimensional dynamical system.

As far as we know, this is the first concrete example in which such a result has been

analytically proven.

As shown in [13, 14, 32], if H denotes the Hamiltonian associated to the action

(1.1), then the quasi-potential V is a viscosity solution, the correct PDE formula-

tion of the variational problem (1.2) in the presence of “corners,” to the Hamilton-

Jacobi equation H.x;DV / D 0; x 2 R
n.

We examine in this article an infinite-dimensional version of the previous varia-

tional problem. As the basic dynamical system, we consider the following nonlin-

ear parabolic equation on the interval Œ0; 1�:

(1.3) ut C f .u/x D ".D.u/ux/x

with the inhomogeneous Dirichlet boundary condition u.t; 0/ D �0, u.t; 1/ D
�1. In the above equation, f is the flux, D > 0 the diffusion coefficient, and

" > 0 the viscosity. To introduce the associated action functional, add an external

“controlling” field E D E.t; x/ to obtain the perturbed equation

(1.4) ut C f .u/x C 2".�.u/E/x D ".D.u/ux/x ;



BURGERS EQUATION IN A BOUNDED INTERVAL 651

where �.u/ � 0 is the mobility. Denote by uE the solution of this equation. The

action of a path u W .�1; 0� � Œ0; 1� ! R is given by

(1.5) I ".u/ D inf "

Z 0

�1

Z 1

0

�.u/E2 dx dt;

where the infimum is carried over all E such that uE D u. The quasi-potential is

then introduced as in the finite-dimensional setting; namely, V" is the functional on

the set of functions � W Œ0; 1� ! R defined by

(1.6) V".�/ D inffI ".u/ W u.0/ D �; u.t/ ! �" as t ! �1g;
where �" is the unique stationary solution of (1.3).

Informally, as in the Freidlin-Wentzell theory, one can add a stochastic pertur-

bation to (1.3),

(1.7) u
�
t C f .u� /x D ".D.u� /u�x/x C �p

2 " � �.u� / Pw�
�
x
;

where Pw� is a white noise in time that also becomes white in space as � # 0.

Then, informally, the finite-dimensional theory carries over to the present setting.

In particular, the quasi-potential V" in (1.6) describes the asymptotics for the in-

variant measure of the process u� as � # 0. We refer to [31] for an analysis of

the large-deviation properties of the stochastic PDE (1.7), with periodic boundary

conditions, in the joint limit � # 0 and " # 0.

Our main motivation for the analysis of the action functional (1.5) and the quasi-

potential (1.6) comes, however, from nonequilibrium statistical mechanics. For a

class of interacting particle systems, the so-called stochastic lattice gases, it has

been shown that equation (1.3) describes the typical evolution of the empirical

density in the diffusive scaling limit [26]. Moreover, the functional I ", as in the

Freidlin-Wentzell theory, gives the corresponding asymptotic probability of ob-

serving deviations from the typical behavior [10, 26, 27].

In the case of equilibrium models, the flux f vanishes and the boundary con-

ditions are equal. For such models, which are analogous to gradient vector fields

in the finite-dimensional situation, the quasi-potential (1.6) does not depend on the

viscosity " and coincides with the thermodynamic free energy functional of the

underlying microscopic model, whose invariant measure has the standard Gibbs

form. If the flux f does not vanish but the boundary data are still equal, �0 D �1,

the quasi-potential does not depend on f and is equal to that of the correspond-

ing equilibrium model; see [4, 7] for the analogous result in the case of periodic

boundary conditions.

On the other hand, if the boundary data are not equal, in general there is no sim-

ple expression for the invariant measure of the microscopic dynamics, often called

the stationary nonequilibrium state. In order to analyze the behavior of such an

invariant measure in the thermodynamic limit, in [5] we introduced the dynami-

cal/variational approach outlined above. In particular, the quasi-potential V" plays
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an analogous role to the free energy for equilibrium systems. This gives a natural

way to extend the notion of thermodynamic potential to nonequilibrium systems.

As has been shown by concrete examples [5, 6, 8, 9, 16, 20], for nonequilib-

rium models the quasi-potential (1.6) presents peculiar features. While for equilib-

rium models V" is always a convex local functional, i.e., of the form V".�/ DR 1
0 v.�.x//dx for some convex real function v, for nonequilibrium models V"

might be nonlocal and nonconvex. In terms of the underlying microscopic model,

the nonlocality of the quasi-potential corresponds to the presence of long-range

correlations that are believed to be a generic feature of stationary nonequilibrium

states [18]. In these examples, which have the common feature that the diffusion

coefficient D is constant and the mobility � is quadratic, the quasi-potential can be

expressed in terms of a one-dimensional boundary value problem.

The main purpose of the present paper is to show, by a concrete example, that for

nonequilibrium models the quasi-potential might have “corners,” equivalently, that

the minimizer for the variational problem (1.6) is not unique. We shall analyze the

model defined by a constant diffusion coefficient D D 1, while the flux and mobil-

ity are given by f .u/ D �.u/ D u.1� u/, u 2 Œ0; 1�. Then the parabolic equation

(1.3) becomes the viscous Burgers equation and the action functional I " in (1.5)

can be obtained as the large-deviation rate functional of the so-called weakly asym-

metric simple exclusion process [10, 27]. As shown in [11, 21], the quasi-potential

(1.6) is also the large-deviation rate function for the invariant measure.

When �0 > �1, so that both the boundary conditions and the flux f “push”

the density u 2 Œ0; 1� to the right, the behavior of the invariant measure has been

discussed in [20] by combinatorial techniques. In particular, in [20] a static vari-

ational characterization for the rate function of the invariant measure is derived

in terms of a one-dimensional boundary value problem. More recently the same

model is analyzed in [8], where it is shown that the quasi-potential (1.6) can be

written in terms of the variational expression derived in [20] and the optimal paths

for (1.6) are characterized. We emphasize that in this case, i.e., for �0 > �1, the

quasi-potential has no corners and the minimizer for (1.6) is unique.

In this paper we examine the same model but in the more interesting situation in

which �0 < �1, so that there is an effective competition between the flux and the

boundary conditions. Our main results are summarized as follows. By analyzing

the variational problem (1.6), we establish a static variational characterization of V"
analogous to the one in [8, 20]. We emphasize that in the case discussed here

there is no uniqueness for the minimizer of (1.6); this leads to new conceptual

features that require a novel approach. In particular, the Hamiltonian formulation

discussed in Section 3 gives a natural interpretation of the representations of the

quasi-potential obtained in [5, 6, 8, 9, 16, 20]. We then discuss the variational

convergence of the quasi-potential V" in the inviscid limit " # 0. In particular,

we show that in this limit we recover the functional derived in [17] in the context

of the boundary-driven asymmetric exclusion process. As shown in [17], if we

restrict the limiting functional V0 to constant profiles, V0 has a corner. Here we
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consider V0 on the whole function space and characterize the profiles � where

the superdifferential of V0 is not a singleton. By a perturbation argument with

respect to this limiting case, we prove that, for a class of nonconstant profiles �,

this phenomenon persists when the viscosity " is small enough. Moreover, for the

profiles � in which the superdifferential of V" is not a singleton, the minimizer of

(1.6) is not unique. Finally, we discuss the connection of the quasi-potential V"
to the Hamilton-Jacobi equation H".�;DV / D 0, where H" is the Hamiltonian

associated with the action (1.5).

In the context of equilibrium statistical mechanics, the existence of more than a

single tangent functional to the quasi-potential, which in this case coincides with

the free energy functional, is due to the occurrence of phase transitions. We there-

fore interpret the fact that the superdifferential of V" is not a singleton as a nonequi-

librium phase transition. In this paper we consider a special model, but the exis-

tence of these nonequilibrium phase transitions should be a generic phenomenon.

2 Notation and Results

2.1 Viscous Burgers Equation

Consider the viscous Burgers equation on the interval Œ0; 1�with inhomogeneous

Dirichlet boundary conditions at the endpoints, namely,

(2.1)

(
ut C f .u/x D "uxx ;

u.t; 0/ D �0; u.t; 1/ D �1;

where u D u.t; x/ is a scalar function; hereafter we denote partial derivatives with

subscripts. The flux f is the function f .u/ D u.1� u/, " > 0 is the viscosity, and

the boundary data, fixed throughout the paper, satisfy 0 < �0 < �1 < 1.

Simple computations show that the unique stationary solution �" of the viscous

Burgers equation (2.1) can be described as follows. Let J0 D J0.�0; �1/ WD
minr2Œ�0;�1� f .r/. For each " > 0 there exists a unique J" 2 .�1; J0/ such thatZ �1

�0

"

f .r/� J"
dr D 1:

The function �" is then obtained by integrating f .�"/ � ".�"/x D J" with the

boundary condition �".0/ D �0. In particular, the function �" is strictly increasing.

We remark that the constant J" can be interpreted as the current maintained by

the stationary solution �". Let 'i WD logŒ�i=.1 � �i /� 2 R, i D 0; 1, and set

"0 WD 1=.'1 � '0/. Clearly J" is increasing as " decreases and J"0 D 0; therefore

0 < J" < J0 for 0 < " < "0 and J" < 0 for " > "0. A simple computation also

shows that lim"#0 J" D J0.

By standard arguments for parabolic equations (see, e.g., the more sophisticated

analysis in [15]), the stationary solution �" is globally attractive for the flow defined

by (2.1). More precisely, fix " > 0, let u.t I �/, t � 0, be the solution to (2.1)

with initial condition u.0; � I �/ D �. � /, and assume that � W Œ0; 1� ! R is a
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continuous function satisfying the boundary conditions �.0/ D �0, �.1/ D �1.

Then u.t I �/ converges in the C 1-topology to �" as t ! 1. Furthermore, this

convergence is uniform with respect to � in a bounded set of C.Œ0; 1�/ and holds

with an exponential rate.

2.2 The Action Functional

To define rigorously the action functional informally introduced in (1.5), we

need to introduce some notation. Given T > 0, the inner products inL2.Œ0; 1�/ and

L2.Œ�T; 0�� Œ0; 1�/ are denoted by h � ; � i and hh � ; � ii, respectively. We consider the

space L1.Œ0; 1�/ equipped with the weak-* topology and let M be the set

M D f� 2 L1.Œ0; 1�/ W 0 � � � 1g
equipped with the relative topology. Then M is a compact Polish space, i.e., com-

plete, metrizable, and separable. Recall that, by definition of the weak-* topology,

a sequence f�ng � M converges to � in M if and only if h�n; gi ! h�; gi for any

g 2 L1.Œ0; 1�/. For T > 0, we let C.Œ�T; 0�IM/ be the set of continuous paths

u W Œ�T; 0� ! M equipped with the topology of uniform convergence.

Let C1
0 .Œ�T; 0��Œ0; 1�/ be the space of smooth functions H W Œ�T; 0��Œ0; 1� !

R satisfying H.t; 0/ D H.t; 1/ D 0 for t 2 Œ�T; 0� and H.�T; x/ D H.0; x/ D 0

for x 2 Œ0; 1�. Given u 2 C.Œ�T; 0�IM/, let L"u W C1
0 .Œ�T; 0� � Œ0; 1�/ ! R be

the linear functional defined by

L"u.H/ WD �hhu;Ht ii � hhf .u/;Hxii � "hhu;Hxxii

C "

Z 0

�T

Œ�1Hx.t; 1/ � �0Hx.t; 0/�dt:
(2.2)

If u is a smooth function satisfying the boundary conditions u.t; 0/ D �0 and

u.t; 1/ D �1 for t 2 Œ�T; 0�, then L"u.H/ D hhut Cf .u/x�"uxx ;H ii. Moreover,

the functional L"u vanishes if and only if u is a weak solution to (2.1).

Let � W Œ0; 1� ! Œ0;C1/ be the mobility of the system; we assume it is the

function defined by �.a/ D a.1� a/. Given u 2 C.Œ�T; 0�;M/, let

hhux; uxii WD sup
H

f�2hhu;Hxii � hhH;H iig;

where the supremum is carried over all smooth functions H W Œ�T; 0�� Œ0; 1� ! R

such that H.t; 0/ D H.t; 1/ D 0, t 2 Œ�T; 0�. The action functional I "
Œ�T;0�

W
C.Œ�T; 0�IM/ ! Œ0;C1� is then defined by

(2.3) I "Œ�T;0�.u/ WD
(

supH fL"u.H/ � "hhHx; �.u/Hxiig if hhux; uxii < C1;

C1 otherwise;

where the supremum is carried over all functions H in C1
0 .Œ�T; 0� � Œ0; 1�/.

Clearly, I "
Œ�T;0�

.u/ vanishes if and only if u 2 C.Œ�T; 0�IM/ admits a square-

integrable derivative and is a weak solution to (2.1). We refer to [10] for equiva-

lent definitions of the action functional I "
Œ�T;0�

. We remark that in [10] the action

functional is defined with the condition hhux; uxii < C1 replaced by the stronger
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condition hhux; �.u/�1uxii < C1. The argument in [10, lemma 4.9] shows, how-

ever, that if the supremum on the right-hand side of (2.3) is finite, these conditions

are in fact equivalent.

In order to state the connection of the action functional to the perturbed parabolic

problem (1.4), we need a few more definitions. Denote by C 1.Œ0; 1�/ the space of

continuously differentiable functions h W Œ0; 1� ! R, and let C 10 .Œ0; 1�/ WD fh 2
C 1.Œ0; 1�/ W h.0/ D h.1/ D 0g. Given a positive bounded measurable function

� W Œ0; 1� ! Œ0;C1/, let H
1
0 .�/ be the Sobolev space induced by C 10 .Œ0; 1�/

endowed with the inner product

hh; gi1;� D
Z 1

0

hxgx� dx:

To be precise, the induced space H
1
0 .�/ is obtained by identifying and completing

elements h 2 C 10 .Œ0; 1�/ with respect to the seminorm hh; hi1=21;� . When � D 1

the space H
1
0 .�/ is the standard Sobolev space on Œ0; 1�; in this case we denote it

simply by H
1
0 . Note that in the above equation, as well as below, we drop from

the notation the explicit dependence on the integration variable when there is no

ambiguity.

Denote by j�j1;� the norm of H
1
0 .�/, and let H

�1
0 .�/ be the dual space of H

1
0 .�/.

It is equipped with the dual norm j � j�1;� defined by

j`j2�1;� D sup
˚
2h`; hi � jhj21;� ; h 2 H

1
0 .�/

�
;

where h`; hi also stands for the value at h of the linear functional `.

Fix a path u inC.Œ�T; 0�;M/ and denote by H10.�.u// the Hilbert space induced

by C1
0 .Œ�T; 0� � Œ0; 1�/ endowed with the inner product hh � ; � ii1;�.u/ defined by

hhH;Gii1;�.u/ D
Z 0

�T

hH;Gi1;�.u.t//dt;

and let k � k1;�.u/ be the associated norm. Let H�1
0 .�.u// be the dual of H10.�.u//;

it is a Hilbert space equipped with the norm k � k�1;�.u/ defined by

kLk2�1;�.u/ D sup
H

˚
2hhL;H ii � kHk21;�.u/

�
;

where the supremum is carried over all functions H 2 C1
0 .Œ�T; 0�� Œ0; 1�/, equiv-

alently over all H 2 H10.�.u//, and hhL;H ii stands for the value of the linear

functional L at H .

The next statement is proven in [10]. A functional f W X ! .�1;C1� defined

on a Polish space X is said to be coercive if all its sublevel sets are precompact:

for all t 2 R, fx W f .x/ � tg is precompact.

THEOREM 2.1 The functional I "
Œ�T;0�

W C.Œ�T; 0�IM/ ! Œ0;C1� is coercive

and lower-semicontinuous for each " > 0 and T > 0I namely, it has compact
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sublevel sets. Moreover, given u such that I "
Œ�T;0�

.u/ < C1, there exists a unique

H D H.u/ in H10.�.u// such that u is a weak solution to(
ut C f .u/x D "uxx � 2".�.u/Hx/x;
u.t; 0/ D �0; u.t; 1/ D �1:

In this case, the linear functional L"u, as defined in (2.2), extends to a linear func-

tional on H10.�.u// that we denote by ut C f .u/x � "uxx , and

I "Œ�T;0�.u/ D "kHk21;�.u/ D 1

4"
kut C f .u/x � "uxxk2�1;�.u/:

2.3 The Quasi-Potential

The quasi-potential [23] associated with the family of action functionals I "
Œ�T;0�

,

T > 0, is the functional V" W M ! Œ0;C1� defined by

(2.4) V".�/ WD
inf
T>0

inf
˚
I "Œ�T;0�.u/ W u 2 C.Œ�T; 0�IM/; u.�T / D �"; u.0/ D �

�
;

so that V".�/ measures the minimal cost to reach the function � starting from the

stationary solution �". In this sense, while I "
Œ�T;0�

.u/ measures how close a path

u is to solutions to (2.1), the quasi-potential V".�/ measures how close � is to the

stationary solution �".

The previous definition implies that V" is a Lyapunov functional for the Burgers

equation (2.1). This is to say that if u.t I �/, t � 0, is the solution to (2.1) with initial

datum u.0; � I �/ D �. � / 2 M , then for any t � 0 we have V".u.t I �// � V".�/.

Observe that for each t � 0 we have u.t I �/ 2 M by the maximum principle. The

previous claim is easily proven, recalling that I "
Œ�T;0�

vanishes on weak solutions

to (2.1), by exhibiting a test path for the variational problem (2.4).

It is also convenient to formulate the variational problem (2.4) on paths defined

on the semi-infinite time interval .�1; 0�. To this end we introduce the set

(2.5) U.�"/ WD ˚
u 2 C..�1; 0�IM/ W lim

t!�1
u.t/ D �"

�
equipped with the topology of uniform convergence. The family of action func-

tionals I "
Œ�T;0�

, T > 0, naturally induces the lower-semicontinuous functional

I " W U.�"/ ! Œ0;C1� defined by

(2.6) I ".u/ WD lim
T!1

I "Œ�T;0�.u�Œ�T;0�/;

where u�Œ�T;0� denotes the restriction of u 2 U.�"/ to C.Œ�T; 0�IM/. Note that

the above limit always exists, possibly equal to C1, in view of the monotonicity

of I "
Œ�T;0�

.u�Œ�T;0�/ in T > 0. Let

(2.7) yV".�/ WD inf
˚
I ".u/ W u 2 U.�"/; u.0/ D �

�
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and observe that the inequality yV" � V" holds trivially. In the context of diffusion

processes in R
n, by the continuity of yV", it is easy to show that V" D yV" [23].

We shall prove that this identity also holds in the present setting where, as shown

below, yV" is not continuous but only lower-semicontinuous.

2.4 Characterization of the Quasi-Potential

The analysis of the quasi-potential in the case �0 > �1 and in the case �0 < �1,

" � "0 has been considered in [8]. Here we discuss the more interesting case in

which �0 < �1 and " 2 .0; "0/. The first main result of this article states that the

quasi-potential V" can be expressed in terms of a static variational problem.

Given m > 0, denote by Pm.Œ0; 1�/ the set of positive Borel measures on Œ0; 1�

with total mass equal to m. Recall that 'i D logŒ�i=.1 � �i /�, i D 0; 1, '0 < '1,

and set

(2.8) F WD f' W '.x/ D '0 C �.Œ0; x�/ for some � 2 P'1�'0.Œ0; 1�/g:
Clearly, if ' belongs to F , then ' is an increasing càdlàg function satisfying '0 �
'.0/, '.1/ D '1. We consider the set F equipped with the topology inherited from

the weak convergence of measures; namely, a sequence f'ng � F converges to '

in F if and only if for any continuous function g on Œ0; 1� we have
R
g d'n !R

g d'. Then F is a compact Polish space. Moreover, 'n ! ' in F implies

'n ! ' a.e.

Let s W R ! .�1;C1� be the convex function defined by

(2.9) s.a/ WD
(
a log aC .1 � a/ log.1� a/ if a 2 Œ0; 1� ;
C1 otherwise;

and observe that for a 2 .0; 1/ we have s00.a/ �.a/ D 1. Let G" W M � F !
.�1;C1� be the functional defined by

(2.10) G".�; '/ D
Z 1

0

Œs.�/C s."'x/C .1� �/' � log.1C e'/�dx;

where we understand that G".�; '/ D C1 unless the measure d' is absolutely

continuous with respect to the Lebesgue measure, and its density, denoted by 'x , is

bounded by "�1. By the convexity of s, the functional G" is lower-semicontinuous.

We shall connect the quasi-potential V".�/ to the minimum of the functional

G".�; � / over F . Fix � in M and consider the Euler-Lagrange equation associated

with the functional G".�; � /:

(2.11)

(
"'xx

'x.1�"'x/
� 1
1Ce'

C � D 0;

'.0/ D '0; '.1/ D '1:

Since this equation is not really meaningful for ' 2 F , we formulate it as a fixed

point condition for a suitable operator.
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Denote by K�;" D K."; '0; '1; �/ W F ! F the integral operator

(2.12) .K�;"'/.x/ D '0 C 1

"

Z x

0

A exp
˚
1
"

R y
0 Œ.1C e'/�1 � ��d´�

1C A exp
˚
1
"

R y
0 Œ.1C e'/�1 � ��d´�dy;

where A D A."; �; '/ 2 .0;1/ is chosen so that .K�;"'/.1/ D '1. We prove

in Section 4 that such a choice is always possible and unique. Moreover, if '

is a fixed point of K�;", then ' is in C 1.Œ0; 1�/, it has a Lipschitz derivative 'x
satisfying 0 < "'x < 1, and ' solves (2.11) a.e. We adopt, in particular, the

following terminology: a function ' 2 F is said to be a solution of (2.11) if it

belongs to P".�/, the set of fixed points of K�;".

Recall that �" is the stationary solution to (2.1). Let So" , S" W M ! R be the

functionals defined by

(2.13) So" .�/ WD inffG".�; '/; ' 2 F g; S".�/ D So" .�/ � So" .�"/;
and note that the infimum is achieved by the lower semicontinuity of G".�; � / and

by the compactness of F . Given � 2 M , we denote by F".�/ � F the collection

of minimizers for the previous variational problem, i.e.,

(2.14) F".�/ WD arg inffG".�; '/; ' 2 F g;
and observe that F".�/ is a nonempty compact subset of F .

THEOREM 2.2 Fix '0 < '1, " 2 .0; "0/, and � 2 M . Then any minimizer

of G".�; � / solves (2.11), i.e.,

F".�/ � P".�/:

Moreover, the functional S" is lower-semicontinuous onM . Finally, if the sequence

f�ng � M converges to � strongly in L1.Œ0; 1�/, then S".�
n/ ! S".�/.

The connection between the quasi-potential and the functional (2.13) is estab-

lished by the following theorem, which is the first main result of this paper.

THEOREM 2.3 For each �0 < �1 and " 2 .0; "0/, we have V" D yV" D S".

We remark that while the identity V" D yV" holds under general conditions, the

characterization of the quasi-potential in terms of the static variational problem

(2.13) depends crucially on the specific form of the flux f and the mobility � ,

namely, f .a/ D �.a/ D a.1� a/, a 2 Œ0; 1�.
In the proof of Theorem 2.3, we actually describe some optimal paths for the

variational problem (2.7). Fix � in M , let ' 2 F".�/, and denote by F D F.t; x/,

.t; x/ 2 Œ0;C1/ � Œ0; 1�, the solution of the viscous Burgers equation (2.1) with

initial condition e'=.1C e'/. Set  D s0.F / and define v D v.t; x/ by

v D 1

1C e 
� " xx

 x.1 � " x/
:

We prove that an optimal path u for the variational problem (2.7) is the path v re-

versed in time, i.e., u.t/ D v.�t/. This construction shows that to each ' 2 F".�/
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there is associated a path u 2 U.�"/ that is a minimizer for the variational problem

(2.7). If F".�/ is not a singleton, to different elements in F".�/ are associated dif-

ferent minimizers for (2.7), and there is no uniqueness of the minimizer for (2.7).

Unfortunately, we are not able to prove that any minimizer of (2.7) can be ob-

tained from the previous construction; in particular, we cannot deduce uniqueness

of the minimizer for (2.7) from the uniqueness of the minimizer for G".�; � /. We

refer, however, to the heuristic argument presented below, in the context of the

Hamiltonian formalism, which suggests that the minimizers for (2.7) are indeed in

a one-to-one correspondence with F".�/.

Theorem 2.3 implies that the minimum of So" is achieved at �" or, equivalently,

that S" is a positive functional. This can also be shown by direct computations.

Indeed, it is enough to observe that, for a fixed ' 2 F , the strict convexity of

the map � 7! G".�; '/ implies that the infimum over � is uniquely attained for

' D s0.�/. A straightforward computation then shows that the functional ' 7!
G".s

0�1.'/; '/ has a unique critical point, which is a global minimum, achieved at

s0.�"/.

2.5 Uniqueness/Nonuniqueness of Optimal Paths

The connection between the quasi-potential V" and a “trial” functional like G"

has been established for other action functionals arising as large-deviation rate

functionals for a few microscopic stochastic dynamics in the diffusive scaling limit

[6, 8, 16, 20]. In contrast to all other cases, the functional G".�; � / is neither con-

cave nor convex and might have more than a single critical point. Fix � 2 M .

The construction presented above actually shows that to each critical point ' for

G".�; � / there is associated a path u 2 U.�"/ that is a critical point for the vari-

ational problem (2.7). It is therefore natural to investigate whether the sets P".�/

and F".�/ are singletons. Note that, as proven in [9], in the case �0 > �1 these sets

coincide and are a singleton for all � 2 M .

In this direction, our next result shows that, under suitable conditions, there

exists a unique critical point for G".�; � /.
THEOREM 2.4 The following statements hold:

(i) Fix '0 < '1. There exists "1 2 .0; "0/ such that for any " 2 ."1; "0/ the

set P".�/ is a singleton for any � 2 M .

(ii) Fix " > 0. There exists ı 2 .0; "�1/ such that for any 0 < '1 � '0 < ı the

set P".�/ is a singleton for any � 2 M .

(iii) Fix '0 < '1 and " 2 .0; "0/. If � 2 M is in C 1.Œ0; 1�/ and strictly

increasing, then the set P".�/ is a singleton.

We remark that while the first two results are based on a standard perturbation

argument and are quite natural from a statistical mechanics point of view, the third

one somehow depends on the global structure of the functional G". Recalling that

the stationary solution �" is smooth and strictly increasing, the third statement
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implies that the functional G".�; � / has a unique critical point when � lies in a

C 1-neighborhood of �".

As discussed above, a most striking feature of the model examined here is that

there can be more than a single minimizer for G".�; � /. The next result states that

this phenomenon does indeed occur.

THEOREM 2.5 Fix '0 < '1. There exists "2 2 .0; "0/ such that the following

statement holds. For each " 2 .0; "2/ there exist functions � 2 M such that F".�/

is not a singleton.

As we show in Proposition 4.6, at the points � where F".�/ is not a singleton

the quasi-potential admits more than one Gâteaux superdifferential. The proof of

the above theorem is based on a perturbation argument with respect to the limiting

case " D 0 that we discuss next.

2.6 The Inviscid Limit

It is well known, see, e.g., [34, chap. 15], that in the inviscid limit " # 0,

the solution to the Cauchy problem associated with (2.1) converges to the en-

tropy solution of the Cauchy problem associated with the inviscid Burgers equation

ut C f .u/x D 0 with the Bardos-Le Roux-Nédélec boundary conditions [2]. We

also mention that in the case of the Burgers equation on R, the variational conver-

gence as " # 0 of the action functional I "
Œ�T;0�

for a fixed T > 0 is discussed in [3].

Referring to [8] for the case �0 > �1, we here discuss the variational convergence

of the quasi-potential V" as " # 0.

In the inviscid limit " D 0, the stationary solutions � are easily described by

considering the propagation of shocks for the inviscid Burgers equation on R. If

1 � .�1 C �0/ > 0, an entropic shock from �0 to �1 travels to the right so that

� D �0, while � D �1 if 1 � .�0 C �1/ < 0. In the case 1 � .�0 C �1/ D 0

there is a one-parameter family of stationary entropic solutions that corresponds to

a stationary shock that can be placed anywhere in Œ0; 1�. Equivalently, a stationary

entropic solution � satisfies f .�/ D minr2Œ�0;�1� f .r/. For 1 � .�0 C �1/ ¤ 0 it

is not difficult to check that, as " # 0, the stationary solution �" converges strongly

in L1.Œ0; 1�/ to the constant function equal to �. In the case 1� .�0 C �1/ D 0, �"
converges to the stationary solution of the inviscid Burgers equation with a shock

placed at x D 1
2

.

Recall (2.10) and let G W M � F ! R be the lower-semicontinuous functional

defined by

(2.15) G .�; '/ WD
Z 1

0

Œs.�/C .1 � �/' � log.1C e'/�dx:

Let also So; S W M ! R be the functionals defined by

(2.16) So.�/ WD inffG .�; '/; ' 2 F g; S.�/ WD So.�/ � So.�/;
and observe that the infimum is achieved by the lower semicontinuity of G .�; � / and

the compactness of F . As discussed before, for �0 C �1 ¤ 1 there exists a unique
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stationary entropic solution � of the inviscid Burgers equation. On the other hand,

if �0 C �1 D 1 there exists a one-parameter family of stationary entropic solutions

f�˛; ˛ 2 Œ0; 1�g; however, it is simple to check that So.�˛/ is in fact independent

of ˛. This shows the functional S is well-defined.

As we show in Proposition 6.3 below, we may restrict the infimum in (2.16) to

functions ' 2 F that are step functions in the sense that ' jumps from '0 to '1
at a single point in Œ0; 1�. In view of this result, simple computations show that S

coincides with the functional derived in [17] within the context of the boundary-

driven asymmetric exclusion process.

In the inviscid limit " # 0 we expect the functional S" to converge to S . From

a variational point of view, the natural notion of convergence is the so-called �-

convergence that we next recall; see, e.g., [12]. Let X be a Polish space. A se-

quence of functionals Fn W X ! .�1;C1� is said to �-converge to a functional

F W X ! .�1;C1� if the following two conditions hold for each x 2 X : there

exists a sequence xn ! x such that lim supn Fn.xn/ � F.x/ (�-lim sup inequal-

ity), and for any sequence xn ! x we have lim infn Fn.xn/ � F.x/ (�-lim inf

inequality).

THEOREM 2.6 Let S"; S W M ! Œ0;1/ be defined as in (2.13) and (2.16), re-

spectively. The family of functionals fS"g">0 �-converges to S in M as " # 0. In

particular, the functional S W M ! Œ0;C1/ is lower-semicontinuous.

Given � 2 M , we also expect that the minimizers of G".�; � / converge, as " # 0,

to a minimizer of G .�; � /. The precise statement is the following.

THEOREM 2.7 Fix � 2 M and let '" 2 F".�/. If "n # 0 is a sequence such that

'"n ! ' for some ' 2 F , then ' is a minimizer for G .�; � /.
Notation warning. Apart from when we discuss, in Section 6, the inviscid limit,

the parameter " > 0 is kept fixed. We therefore drop from most of the notation the

explicit dependence of the functionals on ".

3 Hamiltonian Picture

As will be clear in the following discussion, the variational problem (2.7) is

naturally described within the Hamiltonian formalism. Accordingly, Theorem 2.3

reflects a peculiar geometric structure of the underlying phase space. In this section

we present this picture heuristically, but we emphasize that the actual proofs are

logically independent from it.

The functional IŒ�T;0� in (2.3) is the action functional corresponding to the La-

grangian

L.u; ut / D 1

4"
jut C f .u/x � "uxx j2�1;�.u/:

The associated Hamiltonian, obtained by a Legendre transform, is given by

(3.1) H.�; h/ D "hhx ; �.�/hxi C h"�xx � f .�/x; hi;
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where � W Œ0; 1� ! Œ0; 1� satisfies �.0/ D �0 and �.1/ D �1 and h W Œ0; 1� ! R

is the momentum, satisfying the boundary conditions h.0/ D h.1/ D 0. The

canonical equations associated with the Hamiltonian H are

(3.2)

(
ut D "uxx � f .u/x � 2".�.u/Hx/x;
Ht D �"Hxx � f 0.u/Hx � "� 0.u/H 2

x ;

with the boundary conditions u.t; 0/ D �0, u.t; 1/ D �1, andH.t; 0/ D H.t; 1/ D
0. It is not clear whether the above equations do define, even locally, a flow, and

the discussion here will be kept at an informal level.

As follows from the exponential attractiveness of �" for the flow defined by

(2.1), .�"; 0/ is a hyperbolic fixed point of the Hamilton flow (3.2). Denote by

Ms and Mu the associated stable and unstable manifolds. Of course, Ms;Mu �
f.�; h/ W H.�; h/ D H.�"; 0/ D 0g. Each point .�; 0/ is driven by the flow to

.�"; 0/ as t ! C1, and therefore Ms � f.�; h/ W h D 0g.

Recall the Poincaré-Cartan theorem (see, e.g., [1, sec. 44]), which states that the

integral of the symplectic 1-form hh; d�i along any closed path in the phase space

is preserved by the Hamiltonian flow. This implies that the stable and unstable

manifolds are Lagrangian; namely, for any closed path that lies either in Ms or

in Mu, I
hH;dui D 0:

We can therefore define the prepotential W" W Mu ! R by

(3.3) W".�; h/ D
Z
�

hH;dui;

where the integral is carried over a path � in Mu that connects .�"; 0/ to .�; h/.

Recalling (2.7), the connection between the quasi-potential and the prepotential is

given by

(3.4) yV".�/ D inffW".�; h/; h W .�; h/ 2 Mug:
In a finite-dimensional framework, this result is proven in [13, 14]. For the reader’s

convenience, we sketch the basic argument.

Denote by U".�/ the right-hand side of (3.4). By means of compactness argu-

ments, one shows the existence of a path u 2 U.�"/ satisfying u.0/ D � and such

that

yV".�/ D I.u/ D
Z 0

�1

L.u; ut /dt:

Since u is an extremal path, it satisfies the Euler-Lagrange equation or, equiva-

lently, the pair .u;H/, where H D ıL=ıut stands for the conjugate momentum,

solves the canonical equations (3.2). One then shows that the trajectory .u;H/

lies in the unstable manifold Mu; while u.t/ ! �" as t ! �1 follows from the
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definition, some efforts are required to show that also H.t/ ! 0 as t ! �1. By

Legendre duality, the inclusion Mu � fH D 0g and (3.3)

yV".�/ D I.u/ D
Z 0

�1

L.u; ut /dt D
Z 0

�1

ŒhH;ut i � H.u;H/�dt DZ 0

�1

hH;ut idt D W".�;H.0// � U".�/:

The proof of the reverse inequality is simple. Fix � and choose h to be a min-

imizer for the right-hand side of (3.4). Since .�; h/ belongs to Mu, we only need

to follow the Hamiltonian flow (3.2) to obtain a path .u;H/ such that u.0/ D �,

H.0/ D h, and .u.t/;H.t// ! .�"; 0/ as t ! �1. The previous computations

now give

yV".�/ � I.u/ D W".�; h/ D U".�/:

The above argument actually shows that any minimizer u for the variational prob-

lem (2.7) is a solution to the canonical equations (3.2) with u.0/D� and H.0/Dh
where h is a minimizer for the right-hand side of (3.4).

In a neighborhood of the fixed point .�"; 0/, the unstable manifold Mu can be

written as a graph; namely, it has the form Mu D f.�; h/ W h D mu.�/g for

some map mu. In this case, the infimum on the right-hand side of (3.4) is trivial

and yV".�/ D W".�;mu.�//. In general, though, this is not true globally. Given

� 2 M , to each h such that .�; h/ 2 Mu, there corresponds a critical point for

the variational problem (2.7). It may happen, for special �, that the variational

problem on the right-hand side of (3.4) admits more than a single minimizer. In

this case there is also more than one minimizer for the variational problem (2.7).

In particular, as will be clearer in the following, Theorem 2.4 implies that, for

either " close to "0 or '1 � '0 small, the manifold Mu is globally a graph. On the

other hand, when P .�/ is not a singleton for some � 2 M the manifold Mu is not

globally a graph. Finally, Theorem 2.5 implies that for " small enough there exist

functions � such that the minimizer for the right-hand side of (3.4) is not unique.

In view of (3.4), to prove Theorem 2.3 heuristically we need to replaceW" by G"

on the right-hand side of (3.4). It is convenient to perform the symplectic change

of variables .�; h/ 7! .'; �/ given by

(3.5)

(
' D s0.�/ � h;
� D �:

In the new variables .'; �/ the Hamiltonian reads

eH.'; �/ D H.�; s0.�/ � '/
D "h'x; �.�/'xi � h"�x C �.�/; 'xi C �1 � �0;

(3.6)
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where we used that s0.�/ � ' vanishes at the boundary, �.�/s00.�/ D 1, f D � ,

and �.0/ D �0, �.1/ D �1. The corresponding canonical equations are

(3.7)

8<:ˆt D ıeH
ı…

D "ˆxx � � 0.…/ˆx.1� "ˆx/;
…t D � ıeH

ıˆ
D �"…xx � �.…/x C 2".�.…/ˆx/x:

In the new variables the fixed point .�"; 0/ reads .s0.�"/; �"/. The associated

stable manifold is f.'; �/ W ' D s0.�/g. Let

(3.8) † D
�
.'; �/ W � D 1

1C e'
� "'xx

'x.1� "'x/
�
:

By using that �.�/ D �.1 � �/, a long and tedious computation that we omit

shows that the set † is invariant under the flow (3.7).

More precisely, pick a point .'; �/ 2 † and let ˆ be the solution to

ˆt D �"ˆxx C 1 � eˆ
1C eˆ

ˆx.1 � "ˆx/

with initial condition ˆ.0/ D '. Set now

… D 1

1C eˆ
� "ˆxx

ˆx.1� "ˆx/
and observe that ….0/ D � since .'; �/ 2 †. Then .ˆ;…/ is a solution to the

canonical equations (3.7). Moreover, as we show in Lemmata 5.4 and 5.5, under

the Hamiltonian flow any point in † converges to the fixed point .s0.�"/; �"// as

t ! �1. This implies † is the unstable manifold. The previous arguments really

only show that f.'; �/ W ' D s0.�/g � Ms and † � Mu. On the other hand, as the

tangent spaces to f.'; �/ W ' D s0.�/g and † at .s0.�"/; �"/ span the whole space,

we informally claim that the previous inclusions are equalities.

At this point, the informal deduction of Theorem 2.3 will be completed by the

computation of the prepotential. This is easily achieved in the new variables .'; �/.

We start with the generating function of the symplectic transformation (3.5). Let

F.�; '/ D
Z 1

0

Œs.�/ � �; '�dx

be the so-called free generating function of (3.5) (see, e.g., [1, sec. 48]) so that

h D ıF

ı�
; � D �ıF

ı'
:

Equivalently,

hh; d�i � h�; d'i D dF:

Hence, for any path � D f�.t/ W t 2 Œ0; 1�g in the phase space,Z
�

hH;d…i D
Z
�

h…;dˆi C F.�.1// � F.�.0//:



BURGERS EQUATION IN A BOUNDED INTERVAL 665

Assume now that � � †. By (3.8) and since

"'xx

'x.1 � "'x/
D "Œs0."'x/�x;

we have thatZ
�

h…;dˆi D
Z 1

0

Œˆ.t/ � log.1C eˆ.t//C s."ˆx.t//�dx
ˇ̌̌tD1
tD0

:

Therefore, in view of (2.10), the previous identities imply thatZ
�

hH;dui D
Z
�

hH;d…i D G".….1/;ˆ.1// � G".….0/;ˆ.0//:

Hence, by (3.3), W".�; h/ D G".�; '/ � G".�"; s
0.�"//, where h and ' are related

by (3.5). As stated above, So" .�"/ D G".�"; s
0.�"// and therefore, in view of (3.4),

yV".�/ D inffG".�; '/; ' W .'; �/ 2 †g � So" .�"/:
Since, by Theorem 2.2, † is the set of critical points of the functional G".�; � /,
we can drop from the previous formula the condition that .'; �/ belongs to the

unstable manifold †, because this condition will automatically be satisfied by any

minimizer. This concludes the heuristic proof of Theorem 2.3.

4 The Static Variational Problem

In this section we analyze the variational problem (2.13). In particular, we prove

here Theorems 2.2 and 2.4.

4.1 Critical Points of G".�; � /

Fix � 2 M . Recall definition (2.12) of the operator K� W F ! F and that

we denote by P .�/ � F the set of fixed points of K�. We claim that there exists

a unique A D A.'/ 2 .0;1/, depending also on '0, '1, ", and �, such that

.K�'/.1/ D '1. Note that the integral on the right-hand side of (2.12) evaluated

for x D 1 is strictly increasing in A, equals 0 when A vanishes, and increases to 1

as A " 1. Since ".'1 � '0/ D "="0 2 .0; 1/ by assumption, the claim follows.

By using that 0 � � � 1 and '0 � ' � '1, it is also straightforward to check that

there exist reals 0 < b0 < b1 < 1, bi D bi .'0; '1; "/, such that for any � 2 M

and ' 2 F we have b0 � A � b1.

Let M o be the subset of M given by the smooth functions bounded away from

0 and 1 and satisfying the boundary conditions �.0/ D �0 and �.1/ D �1:

(4.1) M o WD f� 2 C 2.Œ0; 1�/ W 0 < � < 1; �.0/ D �0; �.1/ D �1g:
Recall the notation H

1
0 .�/ introduced before Theorem 2.1 and note that for � 2

M o the norm in H
1
0 .�.�// is in fact equivalent to the norm in the standard Sobolev
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space H
1
0 . Let the Hamiltonian H W M o � H

1
0 ! R be the functional defined in

(3.1):

(4.2) H.�; h/ WD "hhx ; �.�/hxi � h"�x � f .�/; hxi:
PROPOSITION 4.1 Fix '0 < '1, " 2 .0; "0/, and � 2 M .

(i) The set P .�/ is not empty.

(ii) If ' 2 P .�/ then ' 2 C 1.Œ0; 1�/. Moreover, there exist ı 2 .0; 1
2
/ and

C 2 .0;1/ independent of � such that any ' 2 P .�/ satisfies ı � "'x �
1 � ı, and

j'x.x/� 'x.y/j � C jx � yj 8x; y 2 Œ0; 1�:
Finally, if ' 2 P .�/ then it solves (2.11) a.e.

(iii) If � belongs to M o, then any ' 2 P .�/ belongs to C 2.Œ0; 1�/ and satisfies

H.�; s0.�/ � '/ D 0.

PROOF.

(i) It is simple to check that K� W F ! F is continuous. By the convexity

and compactness of F , the statement follows from Schauder’s fixed point theorem.

(ii) Let ' 2 P .�/. The statement ' 2 C 1.Œ0; 1�/ follows immediately from

the definition of K�. By using that 0 < b0 � A � b1 < 1, it is simple to check

that there exists ı > 0 such that ı � "'x � 1 � ı as well as the Lipschitz bound

on 'x . In view of these bounds, we can rewrite the equation K�' D ' as

log
"'x.x/

1 � "'x.x/
D logAC 1

"

Z x

0

Œ.1C e'.y//�1 � �.y/�dy:

Since 'x is a.e. differentiable, the above identity implies that ' satisfies the differ-

ential equation in (2.11) a.e.

(iii) The first statement is trivial. To prove the second, observe that if � 2 M o,

then s0.�/ � ' vanishes at the boundary. Since f D � , an integration by parts

shows that H.�; s0.�/ � '/ D 0 is equivalent to

h�x ; .1 � "'x/i � h�.�/; 'x.1� "'x/i D 0:

To eliminate from this equation any derivative of �, we need to integrate by parts

the first term. To avoid boundary terms, we add and subtract e'=Œ1 C e'� from �

and then integrate by parts. After these steps the previous equation becomes�
� � e'

1C e'
; "'xx C 'x.1 � "'x/

�
� � 1

1C e'

�	
D 0;

where we used that �.a/ D a.1� a/, which implies that

�.b/ � �.a/ D .b � a/.1� a � b/:
To conclude the proof, it is now enough to recall that, in view of item (ii),

' solves (2.11). �
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PROOF OF THEOREM 2.4.

(i) Recall that "0.'1 � '0/ D 1. Let zF WD f' 2 C 1.Œ0; 1�/ W '.0/ D '0,

'.1/ D '1; 0 � "'x � 1g, and observe that zF � F . Fix � 2 M and consider the

integrodifferential operator K
.1/
� on zF defined by

.K.1/
� '/.x/ WD '0 C x

"
�

�
1

"
� 1

"0

�R x
0 expfR y0 R

.1/.�; 'I´/d´g; dyR 1
0 expfR y0 R.1/.�; 'I´/d´gdy

;

where

R
.1/.�; 'Ix/ WD "�1



�.x/� 1

1C e'.x/

�
'x.x/;

which is informally obtained by multiplying (2.11) by 'x and integrating the re-

sulting equation. It is simple to check that if "0 � " is small enough, then K
.1/
� W

zF ! zF .

Let ' 2 P .�/. By Proposition 4.1, ' solves (2.11) a.e., and therefore it is

also a fixed point of K
.1/
� . Consider now the set zF endowed with the distance

d.'; / WD supx j'x.x/ �  x.x/j. It is simple to show that, provided "0 � "

is small enough, the operator K
.1/
� is a contraction with respect to this distance.

Namely, there exists ˛ 2 .0; 1/ such that d.K
.1/
� ';K

.1/
�  / � ˛ d.'; /. This

yields uniqueness of the fixed point of K
.1/
� and concludes the proof.

(ii) The proof is achieved by the same argument as for the previous item by

considering the integrodifferential operator K
.2/
� on zF defined by

.K.2/
� '/.x/ WD '0 C .'1 � '0/

R x
0 expfR y0 R

.2/.�; 'I´/d´gdyR 1
0 expfR y0 R.2/.�; 'I´/d´g dy

;

where

R
.2/.�; 'Ix/ WD "�1



1

1C e'.x/
� �.x/

�
Œ1� "'x.x/�;

which is informally obtained multiplying (2.11) by 1 � "'x and integrating the

resulting equation.

(iii) Fix a strictly increasing function � 2 M\C 1.Œ0; 1�/ and let ' 2 P .�/. We

shall show that the quadratic form given by the second variation of the functional

G".�; � / evaluated at ' is uniformly elliptic. This implies uniqueness of the critical

point.

The second variation of G".�; � / evaluated at ' is the quadratic form

(4.3)

�
h;

ı2

ı'2
G".�; '/h

	
D

Z 1

0



" h2x

'x.1� "'x/
� e' h2

.1C e'/2

�
dx
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defined on functions h in H
1
0 . Let  WD 'x . Since � and ' are smooth, by

differentiating (2.11) we deduce that�
" x

'x.1� "'x/
�
x

C e' 

.1C e'/2
D ��x:

Performing the change of variables h D  g in (4.3), which is legal because  is

smooth and strictly positive, a two-line computation based on the previous identity

shows that�
. g/;

ı2

ı'2
G".�; '/. g/

	
D

Z 1

0



" 2

'xŒ1 � "'x�
g2x C  �xg

2

�
dx:

By Proposition 4.1(ii) and the hypothesis �x > 0, we deduce that there exists a

constant c > 0 depending on � but independent of ' 2 P .�/ such that�
h;

ı2

ı'2
G".�; '/h

	
� chh; hi;

which concludes the proof. �

4.2 Minimizers of G".�; � /

Here we analyze the minimizers of the functional G".�; � /.
LEMMA 4.2 Let � 2 M be smooth. Then any minimizer of G".�; � / is a fixed point

of K�, i.e.,

F .�/ � P .�/:

PROOF. To show that any minimizer of the variational problem (2.13) is a fixed

point of K�, we use a dynamical argument. Let ' 2 F be such that 0 � "'x � 1

and consider the evolution equation

(4.4)

8̂<̂
:
vt D "vxx C vx.1 � "vx/Œ� � .1C ev/�1�;

v.t; 0/ D '0; v.t; 1/ D '1;

v.0; � / D '. � /:
Since � is smooth, by classical results on uniformly parabolic equations, the solu-

tion v is smooth in .0;1/ � Œ0; 1�.
The functional G".�; � / is a Lyapunov functional for the evolution (4.4). Indeed,

for t > 0 we have

d

dt
G".�; v.t// D �

Z 1

0

vx.1 � "vx/



"vxx

vx.1� "vx/
C � � 1

1C ev

�2
dx;

which shows that G".�; v.t// � G".�; '/ provided ' is smooth. By a standard

approximation argument, we then extend this inequality to any ' 2 F .
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Let F D � � .1C ev/�1 and w D vx . Since vt .t; 0/ D vt .t; 1/ D 0, t > 0, a

simple computation shows that w solves8̂<̂
:
wt D "wxx C Œw.1� "w/F �x
"wx.t; i/C w.t; i/Œ1 � "w.t; i/�F.t; i/ D 0; i D 0; 1;

w.0; � / D 'x. � /:
Since Fx is bounded on compact subsets of .0;1/ � Œ0; 1� and 'x is identically

equal to neither 0 nor "�1, [33, theorem 3.7] and remark (ii) that follows it imply

that 0 < "w.t; x/ < 1 for any .t; x/ 2 .0;1/�Œ0; 1�. This proves that 0 < "vx < 1

in .0;1/ � Œ0; 1�.
Now let ' 2 F .�/; i.e., ' is a minimizer for G".�; � /. We deduce G".�; v.t// D

G".�; '/; namely, that for each t � 0 the function v.t/ is a minimizer for G".�; � /.
Since, for t > 0, the function v.t/ is smooth and 0 < "vx.t/ < 1, it satisfies the

Euler-Lagrange equation (2.11). In particular, v.t/ is a fixed point of K�, that is,

v.t/ 2 P .�/. Since v.t/ converges to ' strongly in L1.Œ0; 1�/ as t # 0, by taking

the limit t # 0 in the equation K�v.t/ D v.t/, we conclude that ' 2 P .�/. �

Since �" is smooth and strictly increasing, Theorem 2.4(iii) implies that P .�"/

is a singleton. A simple computation shows that s0.�"/ solves the differential equa-

tion (2.11) for � D �". By the previous lemma, s0.�"/ is the unique minimizer

of G".�"; � /. Hence,

(4.5) So" .�"/ D inf
'2F

G".�"; '/ D G".�"; s
0.�"//:

The previous lemma proves the first statement in Theorem 2.2 for smooth func-

tions �. The proof of the general result is based on the following estimate.

LEMMA 4.3 Fix '0 < '1 and " 2 .0; "0/. There exists ı 2 .0; 1
2
/ such that for any

� 2 M and any ' 2 F .�/ we have ı � "'x � 1� ı a.e.

The most direct approach to proving this lemma would be by contradiction.

Assuming the existence of a minimizer ' with derivative not bounded away from 0

and "�1, we would need to construct a suitable function  with derivative bounded

away from 0 and "�1 such that G".�; / < G".�; '/. However, our attempts in this

direction have not been successful, and we shall prove Lemma 4.3 by an indirect

route based on a geometric characterization of the minimizers, results from convex

analysis, and Lemma 4.2, which implies the statement for smooth �. Postponing

this proof, we now prove Theorem 2.2.

PROOF OF THEOREM 2.2: THE INCLUSION F .�/ � P .�/. Let � 2 M and

' 2 F .�/. In view of Lemma 4.3, we easily deduce that ' satisfies the Euler-

Lagrange equation (2.11) weakly; namely, that for any � 2 C1
0 .Œ0; 1�/

h"s0."'x/; �xi C
�
��C 1

1C e'
; �

	
D 0:
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We deduce there exists a constant C such that for a.e. x 2 Œ0; 1�

"s0."'x.x// D C C
Z x

0



1

1C e'
� �

�
dy:

Recalling (2.12) and that A D A.'/ is chosen so that .K�'/.1/ D '1, it is straight-

forward to check that K�' D '. �

To conclude the proof of Theorem 2.2, it remains to prove the continuity prop-

erties of the functional S". To this end we consider the space L1.Œ0; 1�/ endowed

with the weak topology and, recalling (2.9), we let ƒ W L1.Œ0; 1�/ ! .�1;C1�

be the lower-semicontinuous functional defined by

(4.6) ƒ.'/ WD
( R 1

0 Œs."'x/C ' � log.1C e'/�dx if ' 2 F ;

C1 otherwise;

where we understand that ƒ.'/ D C1 unless ' is absolutely continuous, and the

density of the measure d', denoted by 'x , satisfies 0 � "'x � 1 a.e. Note that

the set f' W ƒ.'/ < C1g is compact in L1.Œ0; 1�/. Recalling that we consider

L1.Œ0; 1�/ endowed with the weak-* topology, the Legendre transform of ƒ is

defined as the function ƒ� W L1.Œ0; 1�/ ! R given by

(4.7) ƒ�.�/ WD sup
'

fh�; 'i �ƒ.'/g;

where the supremum is carried over all functions ' in L1.Œ0; 1�/. Recalling (2.9),

we also let S W L1.Œ0; 1�/ ! .�1;C1� be the functional defined by

(4.8) S.�/ WD
Z 1

0

s.�/dx:

In view of (2.13), the previous definitions imply

(4.9) So" D S �ƒ�;

where we understand that So" , defined in (2.13), has been extended to a functional

on L1.Œ0; 1�/ by setting So" .�/ D C1 for � 62 M .

LEMMA 4.4 Fix '0 < '1, " 2 .0; "0/, and a not empty closed subset K of F . Let

ƒ�
K

W M ! R be the functional defined by

ƒ�
K.�/ WD supfh�; 'i �ƒ.'/; ' 2 Kg:

Then ƒ�
K is continuous.

PROOF. The continuity of the map M 3 � 7! h�; 'i 2 R for a given ' 2 F

implies immediately the lower semicontinuity ofƒ�
K . To prove the upper semicon-

tinuity, fix a sequence f�ng � M converging to �. Since ƒ�
K.�

n/ < 1, n � 1,

there exists a sequence f'ng � K such that

lim
n!1

ƒ�
K.�

n/ D lim
n!1

fh�n; 'ni �ƒ.'n/g:
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Since F is compact, by taking a subsequence, if necessary, we may assume that

f'ng converges in F to some ' 2 K. As �n ! � in M and 'n ! ' in F imply

h�n; 'ni ! h�; 'i and lim infnƒ.'
n/ � ƒ.'/, we deduce

lim sup
n

ƒ�
K.�

n/ � h�; 'i �ƒ.'/ � ƒ�
K.�/;

which is the desired upper semicontinuity. �

PROOF OF THEOREM 2.2: CONCLUSION. Recall (4.8); observe that the con-

vexity of s immediately implies the lower semicontinuity of S on M . On the

other hand, S W M ! R is clearly continuous with respect to the strong topology

of L1.Œ0; 1�/. In view of the decomposition (4.9), the proof of Theorem 2.2 is then

concluded by applying Lemma 4.4 with K D F . �

In what follows we shall need the following density result. Recall the definition

of the set M o introduced in (4.1).

LEMMA 4.5 Fix � inM . There exist a function ' in F .�/, a sequence f�ng � M o,

and a sequence f'ng � F , 'n 2 F .�n/, such that �n ! � strongly in L1.Œ0; 1�/,

'n ! ' in the C 1-topology, and G".�
n; 'n/ ! G".�; '/.

PROOF. Fix � in M and pick a sequence f�ng � M o converging to � strongly

in L1.Œ0; 1�/. Since F is compact and G" is lower-semicontinuous, there exists

a sequence f'ng � F such that 'n 2 F .�n/. By Lemma 4.2 we also have

'n 2 P .�n/. Hence, by item (ii) in Proposition 4.1 and the Ascoli-Arzelà theorem,

f'ng is a precompact sequence in C 1.Œ0; 1�/. In particular, by taking if necessary

a subsequence, there exists a function ' in F \ C 1.Œ0; 1�/ such that 'n ! '

in C 1.Œ0; 1�/. The last statement and the choice of f�ng imply G".�
n; 'n/ !

G".�; '/.

It remains to show that ' 2 F .�/. By taking the limit n ! 1 in the equation

K�n'
n D 'n, we readily deduce that ' 2 P .�/. To show that ' belongs to F .�/,

we proceed as follows. Since 'n 2 F .�n/, Lemma 4.4 and the continuity of S with

respect to the strong L1.Œ0; 1�/ topology imply G".�
n; 'n/ D So" .�

n/ ! So" .�/.

Therefore, as G".�
n; 'n/ ! G".�; '/, we deduce that So" .�/ D G".�; '/, i.e.,

' 2 F .�/. �

4.3 Convexity Considerations

Let X and X� be vector spaces in duality with respect to h � ; � i. We consider

X and X�, respectively, endowed with the weak and weak-* topology. Recall that

f W X ! .�1;C1� is Gâteaux differentiable at x if there exists ` 2 X� such

that

lim
�#0

1

�
Œf .x C �v/� f .x/� �h`; vi� D 0 for any v 2 X:

In such a case we denote ` by DGf .x/. In general, we define the Gâteaux sub-

differential D�
Gf .x/ and Gâteaux superdifferential DC

G f .x/ of f at the point x as
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the following, possibly empty, convex subsets of X�:

(4.10)

DC
G f .x/ WD ˚

` 2 X� W lim sup
�#0

1
�
Œf .x C �v/� f .x/� �h`; vi� � 0

for any v 2 X�
D�

Gf .x/ WD ˚
` 2 X� W lim inf

�#0

1
�
Œf .x C �v/ � f .x/� �h`; vi� � 0

for any v 2 X�
in which we understand D˙

G f .x/ D ¿ if f .x/ D C1.

In the context of convex analysis, the subdifferential of a convex function f W
X ! .�1;C1� at a point x 2 X , here denoted by @f .x/, is the set of linear

functionals ` 2 X� such that

f .y/� f .x/ � h`; y � xi for any y 2 X;
in which we understand that @f .x/ D ¿ if f .x/ D C1. It is well known (see,

e.g., [19, prop. 1.5.3]), that if f is convex and Gâteaux-differentiable at x, then

@f .x/ D fDGf .x/g. It is also simple also to check that for any convex function

f W X ! .�1;C1�, the equality D�
Gf .x/ D @f .x/ holds for all x 2 X .

Recall from (2.14) that the set F .�/ � F , � 2 M , represents the minimizers

of G".�; � /. In view of definition (4.6), the set F .�/ coincides with the maximiz-

ers for the variational problem on the right-hand side of (4.7). We consider here

such a variational problem for � 2 L1.Œ0; 1�/ and still denote by F .�/ the set

of maximizers, i.e., F .�/ D arg supfh�; 'i � ƒ.'/; ' 2 L1.Œ0; 1�/g. For each

� 2 L1.Œ0; 1�/, the set F .�/ is a not empty compact subset of F . Given a set A

we denote by coA its convex hull.

PROPOSITION 4.6 The functional ƒ� W L1.Œ0; 1�/ ! R defined in (4.7) is lower-

semicontinuous and convex. Moreover, for each � 2 L1.Œ0; 1�/ we have

D�
Gƒ

�.�/ D @ƒ�.�/ D co F .�/;

DC
Gƒ

�.�/ D
(

f'g if F .�/ D f'g for some ' 2 F ;

¿ otherwise:

In particular, ƒ� is Gâteaux-differentiable at � if and only if F .�/ is a singleton.

To prove this statement we need the following elementary result from convex

analysis. We say that f W X ! .�1;C1� has superlinear growth if and only if

for each affine function onX , i.e., a mapX 3 x 7! h`; xiC˛ 2 R for some ` 2 X�

and ˛ 2 R, there exists a compact K D K`;˛ � X such that f .x/ � h`; xi C ˛

for any x 62 K. Observe that if f has superlinear growth, then f is coercive.

LEMMA 4.7 Let f W X ! .�1;C1� be lower-semicontinuous with superlinear

growth. Denote by f �� the convex envelope of f , i.e., the largest convex and

lower-semicontinuous function below f . Then

co arg infff .x/ W x 2 Xg D arg infff ��.x/ W x 2 Xg:
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PROOF. The inclusion co arg infff .x/ W x 2 Xg � arg infff ��.x/ W x 2 Xg
is trivial; to prove the converse we shall argue by contradiction and assume, with

no loss of generality, that inf f D 0. Recall that the epigraph of f is the subset

of X � R given by epi f WD f.x; t/ W f .x/ � tg. The convex envelope f �� is then

characterized by the identity co epi f D epi f ��; see, e.g., [19, prop. 1.3.2].

Assume, by contradiction, that there exists x 2 arg infff ��.x/ W x 2 Xg such

that x 62 co arg infff .x/ W x 2 Xg DW C . Since f is coercive and lower-semi-

continuous, its sublevel sets, and therefore C , are compact. By the Hahn-Banach

theorem there exist ˛ 2 R and ` 2 X� such that C � fx W h`; xi > ˛g and

x 2 fx W h`; xi < ˛g. Since C is compact, we can find an open neighborhood A

of C such that A � fx W h`; xi > ˛g. Since f has superlinear growth, we can also

find a compact K such that for any x 62 K we have f .x/ � �h`; xi C ˛. Let now

m WD infff .x/; x 62 Ag > 0; M WD supfjh`; xij; x 2 Kg < 1;

and set � WD maxf1; .M C ˛/=mg 2 Œ1;1/.

Consider the following half-spaces in X � R:

…C WD f.x; t/ W h`; xi C � t � ˛g; …� WD f.x; t/ W h`; xi C �t � ˛g;
and observe that .x; 0/ belongs to the interior of …�. It is also easy to check

that epi f � …C. Therefore, as co epi f is the intersection of all the half-spaces

containing epi f , we deduce that .x; 0/ 62 co epi f , which yields the desired con-

tradiction. �

PROOF OF PROPOSITION 4.6. The lower semicontinuity and convexity of ƒ�

follows trivially from its definition. Given � 2 L1.Œ0; 1�, seteF .�/ WD arg supfh�; 'i �ƒ��.'/; ' 2 L1.Œ0; 1�/g;
where, we recall,ƒ�� denotes the convex envelope ofƒ. Because f' 2 L1.Œ0; 1�/ W
ƒ.'/ < 1g is compact, ƒ has superlinear growth and Lemma 4.7 yields eF .�/ D
co F .�/. On the other hand, by, e.g., [19, prop. 1.4.1 and cor. 1.4.1,],

ƒ�.�/ D ƒ���.�/ WD sup
'

fh�; 'i �ƒ��.'/g:

Since we are now dealing with Legendre duality between convex functions, by,

e.g., [19, prop. 1.5.1 and cor. 1.5.2], ' 2 @ƒ�.�/ if and only if � 2 @ƒ��.'/ if and

only if ' 2 eF .�/. This concludes the proof of the equality @ƒ�.�/ D co F .�/.

We claim that if F .�/ D f'g for some ' 2 F , then ' 2 DC
Gƒ

�.�/. This

statement completes the proof of the proposition. Indeed, if DC
Gƒ

�.�/ ¤ ¿ and

D�
Gƒ

�.�/ ¤ ¿, then ƒ�.�/ is necessarily Gâteaux-differentiable at �.

To prove the claim, given v 2 L1.Œ0; 1�/ and � > 0, pick '� 2 F .�C �v/. By

the very definition of ƒ�.�/,

ƒ�.� C �v/�ƒ�.�/ � �h'; vi � �h'� � '; vi:
The proof will therefore be completed once we show that any element in F .�C�v/
converges, as � # 0, weakly in L1.Œ0; 1�/ to '. Since we assumed F .�/ to be a
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singleton, this is a straightforward consequence of the lower semicontinuity of ƒ

and the compactness of F . �

The proof of Lemma 4.3 is basically achieved by Lemma 4.2, Proposition 4.6,

and the following general result in convex analysis, which is proven in [29]. Let B

be a separable Banach space and f W B ! R a continuous convex function. Given

x 2 B and ` 2 @f .x/ we say that ` is approximable by unique tangent functionals

if and only if there exists a sequence fxng � B converging (in norm) to x such

that @f .xn/ D f`ng for some `n 2 B� and `n ! ` in the weak-* topology of B�.

The collection of elements in @f .x/ approximable by unique tangent functionals is

denoted by @appf .x/.

THEOREM 4.8 Let B be a separable Banach space and f W B ! R be a continu-

ous convex function. Then for each x 2 B
@f .x/ D co @appf .x/;

where co denotes the weak-* closure of the convex hull.

As the previous theorem requires working in a separable Banach space, we

extend the functional ƒ� W L1.Œ0; 1�/ ! R, as defined in (4.7), to a func-

tional on the space L1.Œ0; 1�/ endowed with the strong topology. To avoid am-

biguities, we shall denote the extended functional by yƒ. In other words, we let
yƒ W .L1.Œ0; 1�/; strong/ ! R be the functional defined by

(4.11) yƒ.�/ WD sup
'

fh�; 'i �ƒ.'/g

where the supremum is carried over all ' in L1.Œ0; 1�/ such that ƒ.'/ < 1.

Clearly yƒ is convex and, by the argument used in Lemma 4.4, continuous with

respect to the strong topology of L1.Œ0; 1�. We claim that for each � 2 L1.Œ0; 1�/

we have

(4.12) @yƒ.�/ D @ƒ�.�/:

By the previous identity we mean that any element in @ƒ�.�/, which a priori be-

longs only to L1.Œ0; 1�/, belongs also to L1.Œ0; 1�/, and it is an element in @yƒ.�/.
Indeed, on the one hand, it follows from the definition of subdifferentials that

@yƒ.�/ � @ƒ�.�/ for each � 2 L1.Œ0; 1�/. The reverse inclusion follows from the

definition of subdifferentials, the fact, proven in Proposition 4.6, that @ƒ�.�/ D
co F .�/, and the continuity of yƒ with respect to the strong topology of L1.Œ0; 1�/.

PROOF OF LEMMA 4.3. We shall consider the integral operator K� W F ! F ,

as defined in (2.12), for � 2 L1.Œ0; 1�/ instead ofL1.Œ0; 1�/. To avoid ambiguities,

denote by yP .�/ the set of ' 2 F , which are fixed points of K�, � 2 L1.Œ0; 1�/.

By the proof of Proposition 4.1, yP .�/ is not empty, and any ' 2 yP .�/ belongs to

C 1.Œ0; 1�/. Furthermore, there exist ı > 0 depending on '0 < '1, " 2 .0; "0/, and

j�jL1 such that any ' 2 yP .�/ satisfies the bound ı � "'x � 1 � ı. We stress that

ı depends on � only via j�jL1 .



BURGERS EQUATION IN A BOUNDED INTERVAL 675

We claim that if � 2 L1.Œ0; 1�/ is such that @yƒ.�/ D f'g for some ' 2
L1.Œ0; 1�/, then ' 2 yP .�/. Postponing the proof of this claim, we first con-

clude the proof of the lemma. Fix � 2 L1.Œ0; 1�/ and ' 2 @app
yƒ.�/. By

definition, there exists a sequence f�ng � L1.Œ0; 1�/ converging to � strongly

in L1.Œ0; 1�/ such that @yƒ.�n/ D f'ng and 'n ! ' weak-* in L1.Œ0; 1�/. In

view of the previous claim, 'n 2 C 1.Œ0; 1�/ and there exists ın > 0, depend-

ing only on j�njL1 , such that ın � "'nx � 1 � ın. Since �n converges to �

in L1.Œ0; 1�/, ı D minfın W n � 1g > 0. By duality, it is readily shown that

the map  7! j x jL1 is lower-semicontinuous with respect to the weak-* con-

vergence in L1.Œ0; 1�/. Therefore j"'x jL1 � 1 � ı and, by the same argument,

j1 � "'x jL1 � 1� ı; that is, ı � "'x � 1 � ı a.e.

Lemma 4.3 thus holds for ' in @app
yƒ.�/. Fix now � 2 L1.Œ0; 1�/, j�jL1 � 1,

and ' 2 F .�/. By Proposition 4.6 and by (4.12), ' belongs to @ƒ�.�/ D @yƒ.�/.
Hence, by Theorem 4.8 and by the first part of the proof, there exists a sequence

f ng, n convex combinations of elements in @app
yƒ.�/, such that ı � " nx � 1�ı

a.e. for some ı > 0 and  n converges in the weak-* topology of L1.Œ0; 1�/ to '.

To conclude, it remains to recall the lower semicontinuity of  7! j xjL1 with

respect to the weak-* convergence in L1.Œ0; 1�/.

We turn now to the proof of the claim. Pick a sequence of smooth functions f�ng
converging to � strongly in L1.Œ0; 1�/ and choose 'n 2 F .�n/. By Proposition 4.6

and (4.12), 'n 2 @ƒ�.�n/ D @yƒ.�n/. On the other hand, by Lemma 4.2, as �n is

smooth, 'n 2 yP .�n/ D P .�n/. In particular, f'ng � F . By taking, if necessary,

a subsequence, the compactness of F now yields the existence of  2 F such that

'n !  in F . We can thus take the limit n ! 1 in the equation 'n D K�n'
n

and conclude that  2 yP .�/. Finally, by using the definition of subdifferentials,

we easily deduce that  2 @yƒ.�/. Since we assumed @yƒ.�/ D f'g, we conclude

 D '. �

5 The Quasi-Potential

Relying on the properties of the static variational problem presented in the pre-

vious section, we prove here the first main result, namely, the identity between

the quasi-potential V" and the functional S". The proof is organized as follows:

We first prove the equality yV" D V". We then show that the algorithm presented

below the statement of Theorem 2.3 provides a legal test path for the variational

problem (2.7). By elementary computations, basically the ones described in the

context of Hamiltonian formalism, we deduce the inequality yV" � S". Finally, by

using the variational definition (2.3) of the action functional, we prove the inequal-

ity V" � S" by exhibiting a suitable test function H . In these arguments, all the

computations will be performed for smooth paths, and we will use density results

to extend the bounds to arbitrary paths.
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5.1 The Identity yV" D V"

We prove in this subsection that the variational problems (2.4) and (2.7) are

equivalent. We emphasize that this statement does not depend on the specific form

of the flux f and the mobility � . The argument relies on two results. The first one

asserts that if the action of a path u in U.�"/ is finite, then there exists a sequence

tn ! �1 such that u.tn/ � �" converges to 0 in H
1
0 ; recall the notation for the

Sobolev spaces introduced before the statement of Theorem 2.1. The second one

asserts that if a function � 2 M is such that ���" is small in H
1
0 , then there exists

a path in a time interval of length 1 that connects �" to � and has small action. In

this subsection we also drop the subscript " in the stationary solution �" and denote

its derivative by �x .

LEMMA 5.1 Fix T > 0 and a path u in C.Œ�T; 0�;M/ such that IŒ�T;0�.u/ < 1I
then

"

8

Z 0

�T

ju.t/ � �j2
H
1
0

dt C 1

4
ju.0/ � �j2

L2
�

1

4
ju.�T / � �j2

L2
C IŒ�T;0�.u/C 1

2"

Z 0

�T

ju.t/ � �j2
L2
dt:

PROOF. The proof of this lemma is similar to the one given for lemma 4.9 in

[10] or lemma 4.2 in [22]. We thus just sketch the argument.

Fix T > 0 and recall the definition of the linear functional Lu introduced

in (2.2). By definition of the action functional IŒ�T;0�, for any function H in

C1
0 .Œ�T; 0� � Œ0; 1�/,

Lu.H/ � " hhHx; �.u/Hxii � IŒ�T;0�.u/:

TakeH D .1
2
/.u��/. This function is not smooth and does not satisfy the bound-

ary conditions at �T and 0, but can be approximated by such smooth functions in

the norms needed for our purposes. This is presented with all details in the proofs

of [10, lemma 4.9] and [22, lemma 4.2]. For instance, to match the boundary con-

ditions at �T and 0, we multiply H by a time-dependent function that vanishes at

�T and 0 and is close to the indicator of the interval Œ0; T �.

Integrating by parts and adding to the previous expression hhf .�/x � "�xx ;H ii,

which vanishes, the previous equation implies

1

4
ju.0/ � �j2

L2
C "

2
hhux � �x; ux � �xii � "

4
hhux � �x ; �.u/Œux � �x�ii �

IŒ�T;0�.u/C 1

4
ju.�T / � �j2

L2
C 1

2
hhf .u/� f .�/; ux � �xii:

Since �.u/ � 1
4

, it remains to apply the Schwarz inequality to bound the last term

and to recall that f is Lipschitz with Lipschitz constant 1. �
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LEMMA 5.2 Fix a path u in U.�/ such that I.u/ < 1. Then

lim
t!�1

ju.t/ � �jL2 D 0 and lim
n!1

Z �n

�.nC1/

ju.t/ � �j2
H
1
0

dt D 0:

PROOF. We first show that

(5.1) lim
n!1

Z �n

�.nC1/

hu.t/ � �; u.t/ � �idt D 0:

Let fek ; k � 1g be the complete orthonormal system of L2.Œ0; 1�/ given by

ek.x/ D p
2 sin.k�x/ and set 	k.t/ D hu.t/ � �; eki, k � 1. The integral in the

previous formula can be written asX
k�1

Z �n

�.nC1/

	k.t/
2 dt �

k0X
kD1

Z �n

�.nC1/

	k.t/
2 dt C 1

k20

X
k�1

Z �n

�.nC1/

k2	k.t/
2 dt

for any k0 � 1. Since ek is an eigenfunction of the Laplacian with Dirichlet bound-

ary conditions, the second term is equal to the time integral of .�k0/
�2ju.t/��j2

H
1
0

.

Therefore, by Lemma 5.1, the last expression is less than or equal to

k0X
kD1

Z �n

�.nC1/

hu.t/ � �; eki2 dt C 2

�2k20"
ju.�.nC 1// � �j2

L2

C 1

�2k20

�
8

"
IŒ�.nC1/;�n�.u/C 4

"2

Z �n

�.nC1/

ju.t/ � �j2
L2
dt

�
:

Since u.t/ � � is absolutely bounded by 1 and since IŒ�.nC1/;�n�.u/ � I.u/, the

previous expression is bounded by

k0X
kD1

Z �n

�.nC1/

hu.t/ � �; eki2 dt C 1

�2k20

�
2

"
C 4

"2
C 8

"
I.u/

�
:

Since u.t/ converges weakly in L2.Œ0; 1�/ to � as t ! �1, to conclude the proof

of the claim (5.1) it remains to let n ! 1 and then k0 ! 1.

Since u belongs to C..�1; 0�;M/, the function t 7! ju.t/ � �jL2 is lower-

semicontinuous. In particular, there exists sn 2 Œ�n;�.n � 1/� such that

ju.sn/ � �j2
L2

D min
�n�t��.n�1/

ju.t/ � �j2
L2
:

By applying Lemma 5.1 in the time interval ŒsnC1; t � with t 2 Œ�n;�.n � 1/�, we

deduce

sup
�n�t��.n�1/

ju.t/ � �j2
L2

�
4IŒ�.nC1/;�.n�1/�.u/C

�
1C 2

"

� Z �.n�1/

�.nC1/

ju.t/ � �j2
L2
dt;

where we bounded ju.snC1/ � �j2
L2

by the time integral of ju.t/ � �j2
L2

over the

interval Œ�.n C 1/;�n�. In view of the hypothesis I.u/ < 1 and (5.1), the first
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statement of the lemma follows from the previous estimate. The second one is a

direct consequence of the first and Lemma 5.1. �

Fix a path u in U.�"/ such that I.u/ < 1. It follows from the previous lemma

that there exists a sequence tn ! �1 such that

(5.2) lim
n

ju.tn/ � �j
H
1
0

D 0:

LEMMA 5.3 Suppose that � is a function in M such that

j� � �j
H
1
0

� 1

2
minf�0; 1 � �1g:

Then there exists a constant C0, depending only on �0 and �1, such that for any

T > 0

inffIŒ�T;0�.u/; u.�T / D �; u.0/ D �g � C0
�
T C 1

T

��
"C 1

"

�j� � �j2
H
1
0

:

PROOF. We have to exhibit a path whose action can be estimated by the right-

hand side of the inequality appearing in the statement of the lemma. We claim

that the straight one u.t/ D Œ1 C .t=T /�� � .t=T /�, t 2 Œ�T; 0�, fulfills the

requirements.

Since �0 � �.x/ � �1, it follows from the assumption of the lemma and from

the elementary estimate between the L1-norm and the H
1
0 -norm, namely, from

the estimate jhj2
L1 � R 1

0 h
2
x dx, that �0=2 � u � �1 C .1 � �1/=2. In particular,

�.u/ � c0 > 0 for some constant c0 that depends only on �0 and �1.

Recall definition (2.3) of the action functional IŒ�T;0�. Fix a function H in

C1
0 .Œ�T; 0�� Œ0; 1�/; we need to estimate three terms to get a bound on IŒ�T;0�.u/.

The first one is hhut ;H ii. Since ut D .� � �/=T , by using the Schwarz inequality

and hh; hi � hhx ; hxi, we deduce

hhut ;H ii � "c0

2
hhHx;Hxii C 1

2"c0T
j� � �j2

H
1
0

:

The second and third terms are estimated as follows. Since f .�/x C "�xx D 0,

hhf .u/x � "uxx ;H ii D �hhf .u/� f .�/;Hxii C "hhux � �x ;Hxii:
Since u � � D Œ1C .t=T /�Œ� � ��, again by the Schwarz inequality

hhf .u/x � "uxx ;H ii � "c0

2
hhHx;Hxii C T

c0

�
"C 1

"

�
j� � �j2

H
1
0

;

where we used the fact that f 0 is absolutely bounded by 1 and again the estimate

hh; hi � hhx ; hxi. Since �.u/ � c0, the lemma follows from the previous bounds

and (2.3). �

We are now ready to prove the equivalence between variational problems (2.4)

and (2.7).
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PROOF OF THEOREM 2.3: THE IDENTITY yV" D V". Any path u belonging to

C.Œ�T; 0�IM/ such that u.�T / D � may be extended to a path in U.�/ by setting

u.t/ D � for t 2 .�1;�T /. The inequality yV" � V" follows trivially.

To prove the reverse inequality, fix � in M such that yV".�/ < 1. Fix 0 <

ı � 1
=
2minf�0; 1 � �1g and let uı 2 U.�/ be such that uı .0/ D � and I.uı/ �

yV".�/C ı. By (5.2), there exists T > 0 such that

juı.�T / � �j
H
1
0

� ı:

By Lemma 5.3, there exists a path v inC.Œ�1; 0�;M/ such that v.�1/ D �, v.0/ D
uı.�T /, and IŒ�1;0�.v/ � 2C0."C"�1/ı2. Consider the pathw defined byw.t/ D
v.t C T /, t 2 Œ�.T C 1/;�T �, w.t/ D uı.t/, t 2 .�T; 0� in C.Œ�T � 1; 0�;M/.

Clearly, w.�T � 1/ D �, w.0/ D �, and

IŒ�.TC1/;0�.w/ D IŒ�1;0�.v/C IŒ�T;0�.u
ı/ � yV".�/C ı C 2C0

�
"C 1

"

�
ı2;

which, by the arbitrariness of ı, yields V".�/ � yV".�/ and concludes the proof. �

5.2 Upper Bound for the Quasi-Potential

Recalling (4.1) and (3.8), the first two lemmata below state that if � belongs to

M o and .'; �/ 2 †, then we can construct a solution to the canonical equations

(3.7) converging to .s0.�"/; �"/ as t ! �1.

Fix a continuous function ' W Œ0; 1� ! Œ'0; '1� satisfying the boundary condi-

tions '.0/ D '0, '.1/ D '1, and consider the parabolic equation

(5.3)

8̂<̂
:
 t D " xx C e �1

e C1
 x.1 � " x/;

 .t; 0/ D '0;  .t; 1/ D '1;

 .0; � / D '. � /:
A classical solution  of (5.3) is a function  W Œ0;1/� Œ0; 1� ! R such that  is

continuous in Œ0;1/ � Œ0; 1�,  t ,  x , and  xx are continuous in .0;1/ � .0; 1/,
and  satisfies the identities (5.3). Let F W Œ0;1/ � Œ0; 1� ! Œ0; 1� be a classical

solution to the viscous Burgers equation (2.1). A simple computation shows that

 D s0.F / D logŒF=.1 � F /� is a classical solution to (5.3).

LEMMA 5.4 Fix an absolutely continuous function ' W Œ0; 1� ! Œ'0; '1� satisfying

the boundary conditions '.0/ D '0, '.1/ D '1, and 0 � "'x � 1. There exists a

unique classical solution  to (5.3). Moreover, this solution satisfies 0 < " x < 1

for .t; x/ 2 .0;1/ � Œ0; 1�. Finally, as t ! C1 the function  .t/ converges to

s0.�"/ D logŒ�"=.1 � �"/� in the C 3.Œ0; 1�/ topology uniformly in '.

PROOF. We start with existence. Set F0 WD e'=Œ1 C e'�. By assumption, the

function F0 is continuous, bounded below by �0, and bounded above by �1, and it

satisfies F0.0/ D �0, F0.1/ D �1. By theorem 4.4 in [28, chap. 6], there exists a

unique classical solution, denoted by F D F.t; x/, to the viscous Burgers equation

(2.1) with initial condition F0. By the maximum principle, �0 � F � �1. The
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function  W Œ0;1/ � Œ0; 1� ! R given by  WD s0.F / D logŒF=.1 � F /� is

therefore well-defined. An elementary computation that we omit, relying on the

special form of the flux given by f .u/ D u.1 � u/, shows that  is a classical

solution to (5.3). Uniqueness follows from a similar argument. Indeed, if  is a

classical solution to (5.3), then F D e =Œ1 C e � is a classical solution to (2.1).

Hence, uniqueness of (5.3) follows from uniqueness of (2.1).

A recursive argument, relying on differentiability properties of solutions of lin-

ear parabolic equations, shows that F.t/, Ft .t/, and therefore  .t/,  t .t/, belong

to C k.Œ0; 1�/ for any k � 1. To prove that 0 < " x < 1 for .t; x/ 2 .0;1/� Œ0; 1�,
let � WD  x and observe that � solves the nonlinear equation with mixed boundary

conditions 8̂̂̂<̂
ˆ̂:
�t D "�xx C Œg�.1� "�/�x;
"�x.t; 0/ D �g.t; 0/�.t; 0/.1 � "�.t; 0//;
"�x.t; 1/ D �g.t; 1/�.t; 1/.1 � "�.t; 1//;
�.0; � / D 'x. � /;

where g D Œe �1�=Œe C1�. Since gx is bounded on compact subsets of .0;1/�
Œ0; 1�, and 'x is neither identically equal to 0 nor to "�1, [33, theorem 3.7] and

remark (ii) following it imply the result.

Finally, by [15, theorem 4.9], as t ! 1, the function F.t/ converges to �"
in the C 1.Œ0; 1�/ topology, uniformly over F0 W Œ0; 1� ! Œ�0; �1�. By the meth-

ods developed there, it is straightforward to prove this statement in the C 3.Œ0; 1�/

topology. Since F.t/ converges to �" in the C 3.Œ0; 1�/ topology uniformly in F0,

 .t/ converges to logŒ�"=.1 C �"/� D '" in the C 3.Œ0; 1�/ topology, uniformly

in '. �

Recalling (4.1), fix � in M o and ' in P .�/. Let  be the solution to (5.3) and

define v W Œ0;1/ � Œ0; 1� ! R by

(5.4) v WD 1

1C e 
� " xx

 x.1� " x/
:

Since ' is smooth,  .t/ and v.t/ belong to C k.Œ0; 1�/ for all t � 0, k � 1.

LEMMA 5.5 Function v defined by (5.4) is smooth, solves

(5.5)

8̂<̂
:
vt � f .v/x D "vxx � 2"Œ�.v/ x�x;
v.t; 0/ D �0; v.t; 1/ D �1;

v.0; � / D �. � /;
and satisfies 0 < v < 1, .t; x/ 2 Œ0;1/ � Œ0; 1�. Moreover, as t ! C1 the

function v.t/ converges to �" in the C 1.Œ0; 1�/ topology, uniformly for � in M o.

PROOF. By using the differential equation in (5.3) and the identity f .u/ D
�.u/ D u.1 � u/, a tedious computation shows that v solves the differential equa-

tion in (5.5). The boundary conditions in (5.5) follow directly from (5.3) and the

definition of v. The initial condition in (5.5) holds, in view of (5.4), because ' is a
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fixed point of K� and therefore solves the Euler-Lagrange equation (2.11). Since

the boundary conditions are bounded away from 0 and 1, and since  xx is bounded

on compact subsets of Œ0;1/ � Œ0; 1�, by theorem 3.7 in [33] and remark (ii) fol-

lowing it, 0 < v < 1, .t; x/ 2 Œ0;1/ � Œ0; 1�.
By Lemma 5.4,  .t/ converges in the C 3.Œ0; 1�/ topology to logŒ�"=.1 � �"/�,

uniformly in ' . Therefore, by (5.4), v.t/ converges in the C 1.Œ0; 1�/ topology to

�" uniformly for � in M o. �

LEMMA 5.6 Fix a time interval ŒT1; T2�, a smooth path u 2 C.ŒT1; T2�IM o/, and

a smooth path ' 2 C.ŒT1; T2�I F / with 0 < "'x < 1I then

(5.6) G".u.T2/; '.T2// � G".u.T1/; '.T1// DZ T2

T1

�
hs0.u/ � '; ut i �

�
"'xx

'x.1 � "'x/
� 1

1C e'
C u; 't

	�
dt:

The proof relies on a simple computation, which is omitted. We remark that if

the paths u and ' are chosen so that .'.t/; u.t// 2 †, t 2 ŒT1; T2�, then the second

term on the right-hand side of (5.6) vanishes. Therefore, the previous lemma pro-

vides an explicit expression for the integral of the symplectic 1-form along any path

that lies in †, showing in particular that the result depends only on the endpoints

of the path, namely, that † is Lagrangian.

In view of Lemma 5.5, the time reversal of the function v defined in (5.4) can

be chosen as a test path for the variational problem (2.7). In the next lemma we

compute the action of such a path.

LEMMA 5.7 Fix a function � inM o and ' in P .�/. Let v be the path (5.4) and let

u 2 U.�"/ be defined by u.t/ WD v.�t/. Then I.u/ D G".�; '/ � So" .�"/.
PROOF. By Lemma 5.5, u is a smooth path in C..�1; 0�IM o/, satisfies the

final condition u.0; � / D �. � /, and solves

ut C f .u/x D �"uxx C 2"Œ�.u/ �
x �x;

where  �.t/ D  .�t/, t � 0. Equivalently, by setting K D s0.u/ �  �, u solves

(5.7) ut C f .u/x D "uxx � 2"Œ�.u/Kx�x:
Fix T > 0, recall that u satisfies the boundary conditions u.t; 0/ D �0, u.t; 1/ D
�1, t 2 Œ�T; 0�, and observe that K is smooth and satisfies K.t; 0/ D K.t; 1/ D 0,

t 2 Œ�T; 0�. In particular, K 2 H10.�.u// and therefore, by Theorem 2.1,

IŒ�T;0�.u/ D "kKk21;�.u/ D "hhKx; �.u/Kxii:
Recall definition (4.2) of the Hamiltonian H. Multiplying both sides of (5.7)

by K and integrating, we get that

hK;ut i � H.u;K/ D "hKx; �.u/Kxi
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so that

IŒ�T;0�.u/ D
Z 0

�T

fhs0.u/ �  �; ut i � H.u; s0.u/ �  �/gdt:

Since v is defined by (5.4), u is given by the same equation with  � replacing

 . In particular, by Proposition 4.1(iii), H.u; s0.u/ �  �/ vanishes. Hence, by

Lemma 5.6,

(5.8) IŒ�T;0�.u/ D
Z 0

�T

hs0.u/ �  �; ut idt D G".�; '/ � G".v.T /;  .T //:

By Lemma 5.4  .T / converges to s0.�"/ in the C 3.Œ0; 1�/ topology; by Lemma 5.5

v.T / converges to �" in the C 1.Œ0; 1�/ topology. Therefore G".v.T /;  .T // con-

verges to G".�"; s
0.�"//, which is equal to So" .�"/ by (4.5). In conclusion,

I.u/ D lim
T!1

IŒ�T;0�.u/ D G".�; '/ � So" .�"/;
which proves the lemma. �

It follows from the previous lemma that if ' is chosen in F .�/ (namely, ' is a

minimizer for G".�; � /), then I.u/ D So" .�/ � So" .�"/ D S".�/. In particular, this

proves the inequality yV".�/ � S".�/ for smooth functions � in M o. By a density

argument, we next show this bound holds for any � 2 M .

PROOF OF THEOREM 2.3: THE BOUND yV" � S". Fix � 2 M and denote by

' 2 F .�/, f�ng � M o, and f'ng � F the function and the sequences provided by

Lemma 4.5. Denote by  the classical solution to (5.3), and define u W .�1; 0� �
Œ0; 1� ! Œ0; 1� by

u.t/ D
(
� if t D 0;

v.�t/ if t < 0;

where v is the function defined in (5.4). Since ' 2 C 1.Œ0; 1�/,  .t/ ! ' in the

C 1 topology as t # 0. Since by Lemma 4.3 we have 0 < "'x < 1, it is simple

to check that the function u.t/ converges to � in M as t " 0. Hence, by the

convergence of  .t/ as t ! C1 stated in Lemma 5.4, the path u belongs to the

set U.�"/ introduced in (2.5).

Let  n be the solution to (5.3) with ' replaced by 'n, and let vn be as defined

in (5.4) with  replaced by  n. Finally, let un W .�1; 0� � Œ0; 1� ! Œ0; 1� be

defined by un.t/ D vn.�t/. In view of the continuity with respect to the initial

condition of the solution to the viscous Burgers equation (2.1) and the uniformity

of the convergence as t ! C1 stated in Lemma 5.5, the sequence fung converges

to u in U.�"/. The lower semicontinuity of the functional I W U.�"/ ! Œ0;C1�,

together with Lemmata 5.7 and 4.5, now imply

I.u/ � lim inf
n

I.un/ D lim inf
n

ŒG".�
n; 'n/ � So" .�"/�

D G".�; '/ � So" .�"/ D S".�/;



BURGERS EQUATION IN A BOUNDED INTERVAL 683

whence yV".�/ � S".�/ and the proof is concluded. �

5.3 Lower Bound for the Quasi-Potential

Before carrying out the details, we explain the main idea and the novel difficulty

encountered here. Fix � 2 M , T > 0, and a path u 2 C.Œ�T; 0�IM/ such that

u.�T / D �" and u.0/ D �. We need to show IŒ�T;0�.u/ � S".�/. Assume

that the path u is smooth, bounded away from 0 and 1, and satisfies the boundary

conditions �0, �1 at the endpoints of Œ0; 1�. By the variational definition (2.3) of the

action functional and the definition (4.2) of the Hamiltonian H, for each smooth

function H W Œ�T; 0� � Œ0; 1� ! R vanishing at the boundary, we have

IŒ�T;0�.u/ � hhut C f .u/x � "uxx ;H ii � "hhHx; �.u/Hxii

D
Z 0

�T

ŒhH;ut i � H.u;H/�dt:
(5.9)

Assume now that for each t 2 Œ�T; 0� there exists a unique solution '.t/ to the

Euler-Lagrange equation (2.11) with � replaced by u.t/. Assume furthermore that

'.t/ is smooth; in this case we may choose above H D s0.u/ � '. In view of

Proposition 4.1(iii) and Lemma 5.6, we then conclude IŒ�T;0�.u/ � S".�/. If for

each � 2 M the functional G .�; � / has a unique critical point, it is not difficult to

turn the previous argument into a proof [6, 8].

On the other hand, in the case discussed here we have to face the lack of unique-

ness of (2.11): if we choose the “wrong” ', the bound we would get by the previous

argument would not be sharp. We shall overcome this problem by discretizing the

time interval Œ�T; 0� and choosing a piecewise constant path '.t/. As we show, the

previous argument then gives the sharp bound provided we choose the optimal '

at the endpoint of each time step.

We start by recalling the following density result, which is proven in theorem 5.1

of [10].

LEMMA 5.8 Fix T > 0 and a path u in C.Œ�T; 0�IM/ such that u.�T / D �"
and IŒ�T;0�.u/ < 1. There exists a sequence fung � C.Œ�T; 0�IM/ of smooth

functions un W Œ�T; 0�� Œ0; 1� ! .0; 1/ converging to u in C.Œ�T; 0�IM/ such that

un.�T; � / D �". � /, un.t; 0/ D �0, un.t; 1/ D �1, t 2 Œ�T; 0�, and IŒ�T;0�.u
n/

converges to IŒ�T;0�.u/.

PROOF OF THEOREM 2.3: THE BOUND S" � V". Fix � in M , T > 0, and a

path u in C.Œ�T; 0�IM/ such that u.�T / D �", u.0/ D �. We need to show that

IŒ�T;0�.u/ � S".�/. Assume first that � belongs to M o and that u W Œ�T; 0� �
Œ0; 1� ! Œ0; 1� is a smooth path bounded away from 0 and 1 and satisfies u.t; 0/ D
�0, u.t; 1/ D �1, t 2 Œ�T; 0�. In this case, as we have seen above, (5.9) holds

for any H in H10.�.u//. Consider a partition Œ�T; 0/ D Sn
kD1Œ�Tk;�Tk�1/ with

T0 D 0 and Tn D T . For k D 1; : : : ; n, choose 'k 2 F .u.�Tk//; namely,

'k is a minimizer for G".u.�Tk/; � /. In view of Lemma 4.2, 'k also belongs to
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P .u.�Tk//. Define the path ' piecewise constant in Œ�T; 0� by '.t/ D 'k for

t 2 Œ�Tk;�Tk�1/, k D 1; : : : ; n, and '.0/ D '1.

Since the path u is smooth, by the definition of ', '.t; 0/ D '0, '.t; 1/ D '1,

t 2 Œ�T; 0�, and s0.u/�' is a smooth function in space, piecewise smooth in time,

that vanishes at the endpoints of Œ0; 1�. In particular, s0.u/�' belongs to H10.�.u//.

By choosing H D s0.u/ � ' in (5.9) we then get

IŒ�T;0�.u/ �
nX
kD1

Z �Tk�1

�Tk

Œhs0.u/ � 'k ; ut i � H.u; s0.u/ � 'k/�dt:

By the choice of 'k and Proposition 4.1(iii), H.u.t/; s0.u.t// � 'k/ vanishes for

t D �Tk . A simple computation, based on the bounds stated in Proposition 4.1(ii),

shows that the map Œ�Tk ;�Tk�1/ 3 t 7! H.u.t/; s0.u.t//� 'k/ is Lipschitz with

a Lipschitz constant depending on u but independent of 'k . Hence

lim
n!1

nX
kD1

Z �Tk�1

�Tk

H.u; s0.u/ � 'k/dt D 0

provided the mesh of the partition vanishes as n ! 1.

On the other hand, because '.t/ is constant in the interval Œ�Tk ;�Tk�1/, Lem-

ma 5.6 yields

nX
kD1

Z �Tk�1

�Tk

hs0.u.t// � 'k ; ut idt D
nX
kD1

ŒG".u.�Tk�1/; '
k/ � G".u.�Tk/; 'k/�:

Since 'k�1 2 F .u.�Tk�1//, it follows that G".u.�Tk�1/; '
k/ � G".u.�Tk�1/;

'k�1/. The previous expression is thus bounded below by the telescopic sum

nX
kD1

ŒG".u.�Tk�1/; '
k�1/ � G".u.�Tk/; 'k/� D G".u.0/; '

1/ � G".u.�T /; 'n/:

Since u.�T / D N�", by the choice of 'n, we have G". N�"; 'n/ D inf G". N�";  / D
So" . N�"/. On the other hand, since u.0/ D �, we have G".u.0/; '

1/ D G".�; '
1/ �

So" .�/. By taking the limit n ! 1, the previous bounds imply

IŒ�T;0�.u/ � So" .�/ � So" .�"/ D S".�/:

Now let � 2 M be arbitrary and consider an arbitrary path u 2 C.Œ�T; 0�IM/

such that u.0/ D � and u.�T / D �". Since we can assume IŒ�T;0�.u/ < 1, by

Lemma 5.8 there exists a sequence of smooth paths un bounded away from 0 and 1

that converges to u in C.Œ�T; 0�IM/ and such that limn IŒ�T;0�.u
n/ D IŒ�T;0�.u/.

The lower semicontinuity of S" onM (see Theorem 2.2) and the result for smooth
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paths yield

IŒ�T;0�.u/ D lim
n
IŒ�T;0�.u

n/ � lim inf
n

S".u
n.0// � S".u.0// D S".�/;

which concludes the proof. �

6 The Inviscid Limit

In this section we discuss the inviscid limit " # 0. We first discuss the variational

convergence of the functional G" to G . By analyzing the limiting variational prob-

lem (2.16) and using a perturbation argument we then show, provided " is small

enough, that there exists � 2 M such that G".�; � / admits at least two minimizers.

6.1 Variational Convergence of G"

By standard properties of �-convergence, Theorems 2.6 and 2.7 are corollaries

of the following result.

THEOREM 6.1 Let G" W M �F ! .�1;C1� be the functional defined in (2.10).

As " # 0, the family fG"g">0 �-converges to the functional G defined in (2.15).

PROOF. We start by showing the �-lim inf inequality. Fix a sequence "n # 0,

.�; '/ 2 M � F , and a sequence f.�n; 'n/g � M � F converging to .�; '/.

We need to show lim infn G"n.�
n; 'n/ � G .�; '/. The convexity of the real func-

tion s trivially implies lim infn
R 1
0 s.�

n/dx � R 1
0 s.�/dx. By the Jensen inequality,R 1

0 s."n'
n
x /dx � s."nŒ'1�'0�/, which vanishes as "n # 0. To conclude the proof,

it remains to observe that the convergence of �n to � in M and of 'n to ' in F

implies the convergence of
R 1
0 Œ.1� �n/'n � log.1C e'

n

/�dx.

We next show the �-lim sup inequality. Fix a sequence "n # 0 and .�; '/ 2
M � F . We need to exhibit a sequence f.�n; 'n/g � M � F converging to .�; '/

such that lim supn G"n.�
n; 'n/ � G .�; '/. Consider first the case in which ' 2 F

is smooth, sayC 1, and satisfies '.0/ D '0, '.1/ D '1. We then claim a recovering

sequence is simply given by the constant sequence .�n; 'n/ D .�; '/. Indeed, by

the smoothness of ', for such a sequence we have
R 1
0 s."n'

n
x /dx ! 0. The proof

is now completed by a density argument. More precisely, it is enough to observe

that, given ' 2 F , there exists a sequence f'kg � F converging to ' such that

'k 2 C 1.Œ0; 1�/, 'k.0/ D '0, 'k.1/ D '1, and limk G .�; 'k/ D G .�; '/. �

The next result is a straightforward consequence of the the previous proof be-

cause the sequence used in the �-lim sup inequality is constant in �.

COROLLARY 6.2 For every � in M , G".�; � / �-converges to G .�; � / as " # 0.

PROOF OF THEOREM 2.7. Because F is compact, Theorem 2.7 follows from

Theorem 6.1 and [12, theorem 1.21]. �

To deduce Theorem 2.6, we only need to “project” Theorem 6.1 to the first

variable. For completeness, we detail the proof below.



686 L. BERTINI ET AL.

PROOF OF THEOREM 2.6. We first show that as " # 0, the family of function-

als fSo" g �-converges to So. We start by proving the �-lim inf inequality. Fix a

sequence "n # 0, � 2 M , and a sequence f�ng � M converging to �. In view

of the compactness of F and the lower semicontinuity of G"n.�
n; � /, there exists a

sequence f'ng � F such that So"n.�
n/ D G"n.�

n; 'n/. Again by the compactness

of F , by taking if necessary a subsequence, there exists ' 2 F such that 'n ! '.

By Theorem 6.1 we then deduce

lim inf
n

So"n.�
n/ D lim inf

n
G"n.�

n; 'n/ � G .�; '/ � So.�/:

We next prove the �-lim sup inequality. Fix a sequence "n # 0, � 2 M , and

choose the constant sequence �n D �. By Corollary 6.2, the compactness of F ,

and [12, theorem 1.21],

lim
n
So"n.�/ D lim

n
inf
'

G"n.�; '/ D inf
'

G .�; '/ D So.�/:

To complete the proof, we need to show that So" .�"/ ! So.�/ as " # 0. While this

statement can be proven by using (4.5) and the explicit expression of G" and G , we

next give an argument again based on Theorem 6.1 and the fact that �" converges

to � in L1.Œ0; 1�/, pointed out just before (2.15). In the case �0 C �1 D 1, by

the latter statement we mean that �" converges to the stationary entropic solution

with a shock placed at x D 1
2

. Since �" ! � in M , the �-lim inf inequality

proven above yields lim inf" S
o
" .�"/ � So.�/. To prove the other inequality, fix a

smooth ' 2 F so that
R 1
0 s."'x/dx vanishes as " # 0. Since �" converges to � in

L1.Œ0; 1�/,
R 1
0 s.�"/dx converges to

R 1
0 s.�/dx. Therefore

lim sup
"

So" .�"/ � lim sup
"

G".�"; '/ D G .�; '/:

By optimizing on ', we then deduce lim sup" S
o
" .�"/ � So.�/, which concludes

the proof. �

The variational problem appearing in (2.16) is much simpler than the one in

(2.13). In fact, the former can be reduced to a one-dimensional minimum problem.

More precisely, we can restrict the infimum in (2.16) to step functions '. Denote by
zG .�; y/ the functional G .�; '/ defined in (2.15) evaluated at ' D '.y/, y 2 Œ0; 1�,
where '.y/.x/ WD '01Œ0;y/.x/C'11Œy;1�.x/. In other words, let zG W M � Œ0; 1� !
R be the functional defined by

zG .�; y/ WD
Z 1

0

s.�/dx C '0

Z y

0

.1 � �/dx C '1

Z 1

y

.1� �/dx

� y log.1C e'0/ � .1 � y/ log.1C e'1/:

PROPOSITION 6.3 Fix � 2 M . Then,

(6.1) inffG .�; '/; ' 2 F g D inffzG .�; y/; y 2 Œ0; 1�g:
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PROOF. Since the functional G .�; � / is concave and F is a compact convex

set, the infimum on the left-hand side of (6.1) is achieved when ' belongs to the

extremal elements of F . We thus have to show that the extremal elements of F

are f'.y/; y 2 Œ0; 1�g. This is easily proven recalling (2.8) and noticing that, given

m > 0, the extremal elements of Pm.Œ0; 1�/ are fmıy ; y 2 Œ0; 1�g, where ıy is the

Dirac measure at y. �

6.2 Nonuniqueness of the Minimizers

The statements of Theorems 2.2 and 2.5 imply that for " small enough there

exists � 2 M such that P".�/ is a not a singleton. This result, however, can be

directly proven by a simpler argument, presented below, which also shows that

there exists points in P".�/ that are not in F".�/.

LEMMA 6.4 Fix '0 < '1. There exists "� 2 .0; "0/ and a smooth function � inM

such that K�;" has at least two fixed points for " < "�.

PROOF. Let ' 2 F be the affine function '.x/ D '0.1 � x/ C '1x, and let

� 2 M be given by � D 1=.1 C e'/. Clearly, ' is a fixed point of K�;". To

conclude the proof, it is enough to show that, provided " is small enough, ' is not a

minimizer of G".�; � /. Recall that the second variation of G".�; � / evaluated at ' is

the quadratic form (4.3). For the above choices of � and ', it is easy to check that

this quadratic form is not positive semidefinite for " small enough, which proves

the lemma. �

In order to prove Theorem 2.5, we first analyze the limiting variational problem

(2.16) and characterize, for suitable functions �, its minimizers. Fix '0 < '1, set

' WD .'0 C '1/=2, and let

A WD 1 � log.1C e'1/ � log.1C e'0/

'1 � '0
;

AC WD 1 � log.1C e'/ � log.1C e'0/

' � '0
;

A� WD 1 � log.1C e'1/ � log.1C e'/

'1 � ' :

Since the real function x 7! log.1C ex/ is strictly increasing, strictly convex, and

Lipschitz with Lipschitz constant 1, we have 0 < A� < A < AC < 1. Fix a

continuous function � W Œ0; 1� ! Œ0; 1� satisfying the following condition: There

exist three reals 0 � y� < y0 < yC � 1 such that �.y0/ D �.y˙/ D A,

�.x/ < A for x 2 Œ0; y�/ [ .y0; yC/, �.x/ > A for x 2 .y�; y0/ [ .yC; 1/, and

A� < �.x/ < AC for x 2 Œy�; yC�. Recalling that Pm.Œ0; 1�/, m > 0, denotes the

set of positive Borel measure on Œ0; 1� with mass m endowed with the topology of

weak convergence, let

P
�
m .Œ0; 1�/ WD ˚

� 2 Pm.Œ0; 1�/ W �.Œ0; y0�/ � m
2

�
;

P
C
m .Œ0; 1�/ WD ˚

� 2 Pm.Œ0; 1�/ W �.Œy0; 1�/ � m
2

�
:
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Note that P
˙
m .Œ0; 1�/ is a closed convex subset of Pm.Œ0; 1�/. Recalling (2.8), let

accordingly

F
˙ WD f' 2 F W '.x/ D '0 C �.Œ0; x�/ for some � 2 P

˙
'1�'0

.Œ0; 1�/g
and observe that F D F

� [ F
C.

LEMMA 6.5 Fix � as above and set '�
˙ WD '01Œ0;y˙/

C '11Œy˙;1�
. Then

arg inffG .�; '/; ' 2 F
˙g D f'�

˙g;
namely, the infimum of G .�; � / over F

˙ is uniquely achieved at '�
˙. If, further-

more, � satisfies
R yC

y�
� dx D A.yC � y�/, then infF � G .�; � / D infF C G .�; � /.

This result implies that if the function � satisfies all conditions of the previous

lemma then

arg inffG .�; '/; ' 2 F g D f'�
�; '

�
Cg;

namely, the functional G .�; � / on F has exactly two minimizers. In fact, by using

Proposition 6.3, this can easily be proven even if the condition A� < �.x/ < AC,

x 2 Œy�; yC�, is dropped. We also mention that, as observed in [17], if � is constant

and equal to A, then there exists a one-parameter family of minimizers for G .�; � /
that is exactly the collection of the extremal elements f'.y/; y 2 Œ0; 1�g of F .

PROOF OF LEMMA 6.5. Since G .�; � / is a strictly concave functional and F
˙

is a compact convex set, the infimum can only be achieved at the extremal elements

of F
˙. These elements can easily be characterized. Indeed, it is simple to check

that the extremal points of P
�
m .Œ0; 1�/ are given by E�

1 [E�
2 where

E�
1 D fmıx; x 2 Œ0; y0�g; E�

2 D ˚
m
2
.ıx C ıx0/; x 2 Œ0; y0�; x0 2 Œy0; 1�

�
:

We denote by F
�

e;1 and F
�

e;2 the corresponding subsets of F
� with m D '1 � '0.

Note that ' 2 F
�

e;1 if and only if ' jumps from '0 to '1 at some point x 2 Œ0; y0�
while ' 2 F

�
e;2 if and only if ' jumps from '0 to ' at some point x 2 Œ0; y0� and

from ' to '1 at some point x0 2 Œy0; 1�.
We have thus reduced the original problem of the minimum over F

� to a min-

imum problem in one and two real variables. By using that �.x/ < AC for

x 2 Œ0; y0� and �.x/ > A� for x 2 Œy0; 1�, elementary computations show that

the infimum of G .�; � / over F
�

e;2 is achieved when ' has a single jump at y0. Note

that such a ' belongs both to F
�

e;2 and F
�

e;1. Likewise, by using that �.x/ < A for

x 2 Œ0; y�/ and �.x/ > A for x 2 .y�; y0/, it is readily seen that the infimum over

F
�

e;1 is uniquely achieved at '�
�.

The argument for F
C is the same and the last statement follows from a direct

computation. �

By using the variational convergence of G" to G and the above lemma, we finally

show, provided " is small enough and � is suitably chosen, the functional G".�; � /
admits more than a single minimizer.
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PROOF OF THEOREM 2.5. Fix a continuous function � 2 M bounded away

from 0 and 1 satisfying the condition stated above Lemma 6.5 as well as the con-

dition in the last statement of that lemma. Now pick a continuous positive function

� W Œ0; 1� ! RC such that supp � � .y�; y0/ and
R 1
0 dx � D 1. Finally, choose

ı > 0 so small that for each ˛ 2 Œ�ı; ı� the function �.˛/ WD � C ˛� still satisfies

the condition stated above Lemma 6.5 with y0 and y˙ independent on ˛. Note,

however, that for ˛ ¤ 0 the functional G .�.˛/; � / has a unique minimizer. The

proof of the theorem will be accomplished by considering the one-parameter fam-

ily of functions f�.˛/; j˛j � ıg and showing that, for " small enough, there exists

˛0 for which G".�
.˛0/; � / has at least two distinct minimizers.

Given " > 0, let g" W Œ�ı; ı� ! R be defined by

g".˛/ WD inffG".�.˛/; '/; ' 2 F
Cg � inf fG".�.˛/; '/; ' 2 F

�g
and observe that, in view of Lemma 4.4, the function g" is continuous. Let int F

˙

be the interior of F
˙. By Theorem 6.1 and standard properties of �-convergence

(see, e.g., [12, prop. 1.18]), for each ˛ 2 Œ�ı; ı�

inf
F ˙

G .�.˛/; � / � lim inf
"#0

inf
F ˙

G".�
.˛/; � /

� lim sup
"#0

inf
int F ˙

G".�
.˛/; � / � inf

int F ˙
G .�.˛/; � /I

whence, using '�
˙ 2 int F

˙ and Lemma 6.5,

lim
"#0

inf
'2F ˙

G".�
.˛/; '/ D G .�.˛/; '�

˙/

so that

lim
"#0

g".ı/ D G .�.ı/; '�
C/ � G .�.ı/; '�

�/

D G .�; '�
C/ � G .�; '�

�/ � ı
Z 1

0

�.'�
C � '�

�/dx D ı.'1 � '0/:

In particular, "1 2 .0; "0/ exists such that for any " 2 .0; "1/ we have g".ı/ > 0

and, by the same argument, g".�ı/ < 0.

Applying the theorem on the existence of zeros for a continuous function of a

real variable, we deduce that for each " 2 .0; "1/ there exists ˛0 2 .�ı; ı/ such

that g".˛0/ D 0. This implies the existence of at least two distinct minimizers

for G".�
.˛0/; � /. Note that although the sets F

C and F
� are not disjoint, the

minimizer of G".�
.˛0/; � / over F

� cannot coincide with the one over F
C since

they respectively converge to '�
C and '�

� as " # 0. The last statement follows

again from Theorem 6.1 and standard properties of �-convergence; see, e.g., [12,

theorem 1.21]. �
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7 Hamilton-Jacobi Equation

In the context of diffusion processes in R
n, the quasi-potential is connected to

a Hamilton-Jacobi equation. More precisely, let I be the action functional corre-

sponding to the Lagrangian L.x; Px/, and denote by H.x; p/ the associated Hamil-

tonian. Under suitable conditions, the quasi-potential, as defined in (1.2), is then a

viscosity solution to the Hamilton-Jacobi equation H.x;Dv/ D 0 [13, 32]. In an

infinite-dimensional setting, the theory of the Hamilton-Jacobi equation, in partic-

ular of the stationary Hamilton-Jacobi equation, is much less developed. As Theo-

rem 2.3 gives a somewhat explicit expression for the quasi-potential, the problem

discussed here may prove to be a good example for the development of the the-

ory of infinite-dimensional Hamilton-Jacobi equations. In this section, we present

some possible formulations of the Hamilton-Jacobi equation that seem apt for the

variational problems (2.4) or (2.7).

It is not clear how to introduce a differentiable structure on the set M in such

a way that the Hamiltonian H in (4.2) becomes a well-defined function on the

cotangent bundle of M . The formalization of the Hamilton-Jacobi equation is thus

a nontrivial issue. In the following we consider two possibilities to circumvent

this problem. In the first we simply consider the subset of M given by the smooth

functions � W Œ0; 1� ! Œ0; 1� that are bounded away from 0 and 1 and satisfy the

boundary conditions. In the second one we exploit the symplectic transformation

(3.5) and deduce that the functional ƒ� (recall (4.7) and (4.9)) solves the Hamilton-

Jacobi equation with the Hamiltonian zH introduced in (3.6).

Recall the definitions (2.13), (4.1), and (4.2). We would like to claim that the

functional So" solves the Hamilton-Jacobi equation H.�;DU / D 0 in M o. In this

setting, we formulate the notion of viscosity solutions to such Hamilton-Jacobi

equations in terms of Gâteaux subdifferentials; recall (4.10).

THEOREM 7.1 For each � 2 M o we have D˙
G S

o
" .�/ � H

1
0 . Moreover, So" is

a Gâteaux viscosity solution to H.�;DU / D 0 in M oI that is, the two following

inequalities hold for any � 2 M oW
H.�; h/ � 0 8h 2 DC

G S
o
" .�/;

H.�; h/ � 0 8h 2 D�
GS

o
" .�/:

PROOF. Recall the decomposition (4.9) and fix � 2 M o. It is straightforward

to check that S is Gauteaux-differentiable at � and DGS.�/ D s0.�/. In view of

Proposition 4.6 we deduce that DC
G S

o
" .�/ D s0.�/ � co F .�/ and

D�
GS

o
" .�/ D

(
s0.�/ � ' if F .�/ D f'g for some ' 2 F ,

¿ otherwise.

By Lemma 4.2 and Proposition 4.1(ii), we then deduce D˙
G S

o
" .�/ � H

1
0 .

By Proposition 4.1(iii), H.�; s0.�/ � '/ D 0 for any � 2 M o and any ' 2
P .�/. In particular, again by Lemma 4.2, this equation holds for any � 2 M o and
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' 2 F .�/. The explicit expression of the Gâteaux subdifferentials above and the

convexity of H.�; � / on H
1
0 now easily yield the statements. �

Since in our case �" is the unique, globally attractive fixed point of the flow

defined by (2.1), we can try to characterize the quasi-potential V", as defined

in (2.4), as the maximal viscosity subsolution of the Hamilton-Jacobi equation

H.�;DU / D 0 satisfying U.�"/ D 0. Our next result, which does not depend

on the special form of the flux f and mobility � , goes in this direction.

THEOREM 7.2 Let U" W M ! R be a lower-semicontinuous functional such that

U".�"/ D 0 and U" satisfies the following condition: For each T > 0 and each

smooth path u W Œ�T; 0� � Œ0; 1� ! .0; 1/ such that u.t; 0/ D �0, u.t; 1/ D �1,

t 2 Œ�T; 0�, consider a partition Œ�T; 0/ D Sn
kD1Œ�Tk ;�Tk�1/ with T0 D 0 and

Tn D T . Then there are elements hk 2 H
1
0 , k D 1; : : : ; n, that are uniformly

bounded in H
1
0 and such that

(7.1) H.u.�Tk/; hk/ � 0; k D 1; : : : ; n;

and

(7.2) lim sup
max jTk�1�Tk j!0

nX
kD1



U".�Tk�1/�U".�Tk/�

Z �Tk�1

�Tk

hhk ; ut idt
�

� 0:

Then V" � U".

Note that condition (7.2) basically requires that hk belong to the superdifferen-

tial of U" at the point u.�Tk/ with a uniform control over the smooth path u.t/,

t 2 Œ�T; 0�. Equation (7.1) is thus a viscosity formulation of H.�;DU"/ � 0. As

a matter of fact, the proof of the above theorem is quite similar to the proof of the

lower bound in Theorem 2.3 in Section 5 and so we only sketch the argument.

PROOF. Let U" W M ! R be as in the statement of the theorem. In view of

Lemma 5.8 and the lower semicontinuity of U", it is enough to prove the following

statement: Fix � 2 M o, T > 0, and a smooth path u 2 C.Œ�T; 0�IM o/ such that

u.�T / D �", u.0/ D �; then IŒ�T;0�.u/ � U".�/.

Consider a partition Œ�T; 0/ D Sn
kD1Œ�Tk ;�Tk�1/ with T0 D 0 and Tn D T .

For k D 1; : : : ; n, let hk 2 H
1
0 as in the statement of the theorem and choose in

(5.9) the piecewise constant path H.t/ D hk for t 2 Œ�Tk;�Tk�1/, k D 1; : : : ; n,

and H.0/ D h1. By assumption, H.u.�Tk/; hk/ � 0. By the smoothness of the

path u and the assumption that jhk j
H
1
0

is uniformly bounded, we have

lim sup
n!1

nX
kD1

Z �Tk�1

�Tk

H.u.t/; hk/dt � 0

provided the mesh of the partition vanishes as n ! 1.
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Again by assumption,

lim inf
n!1

nX
kD1

� Z �Tk�1

�Tk

hhk; ut idt � ŒU".u.�Tk�1// � U".u.�Tk//�
�

� 0

provided the mesh of the partition vanishes as n ! 1. We then deduce that

IŒ�T;0�.u/ � U.u.0// � U.u.�T // D U.�/;

which concludes the proof. �

We next discuss a formulation of the Hamilton-Jacobi equation in a strong topol-

ogy and in the whole set M . Recalling (4.9), the basic idea is to look for an equa-

tion for ƒ� or, equivalently, to exploit the symplectic transformation (3.5).

Consider the space L1.Œ0; 1�/ equipped with the strong topology and denote by
yM its (closed) subset given by yM WD f� 2 L1.Œ0; 1�/ W 0 � � � 1g. There

is nothing really peculiar about the choice of L1.Œ0; 1�/; any Lp.Œ0; 1�/ with p 2
Œ1;1/ would lead to the same results. L1.Œ0; 1�/ might look more natural, but its

lack of separability (with respect to the strong topology) prevents its use. Let

W WD fw 2 W 2;1.Œ0; 1�/ W w.0/ D '0; w.1/ D '0g;

where W 2;1.Œ0; 1�/ is the Sobolev space of the functions whose second (weak)

derivative belongs to L1.Œ0; 1�/. Let yH W yM � W ! R be the Hamiltonian defined

by

yH.�;w/ WD �"hwx; �.�/wxi � "h�;wxxi
C h�.�/;wxi � �1Œ1 � "wx.1/�C �0Œ1 � "wx.0/�:

(7.3)

The relationship of yH to the original Hamiltonian H is the following.: Consider

the antisymplectic transformation .�; h/ 7! .�;w/ where w D s0.�/ � h. The

associated Hamiltonian yH.�;w/ D �H.�; s0.�/�w/ is then the one defined above.

We remark that while the identity yH.�;w/ D �H.�; s0.�/ � w/ holds only for

� 2 M o (recall (4.1)), the Hamiltonian yH is defined for all � in yM .

We claim that the functional yƒ in (4.11) is a viscosity solution of the Hamilton-

Jacobi equation yH.�;DU / D 0, � 2 yM . In order to state this result precisely, we

recall the notion of Fréchet subdifferentials. Let B be a Banach space and denote

by B� its dual. The norms inB and B� are denoted by j � jB and j � jB� , respectively.

A function f W B ! R is Fréchet differentiable at x 2 B if and only if there exists

` 2 B� such that

lim
y!x

f .y/ � f .x/� h`; y � xi
jy � xjB

D 0I
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in this case we denote ` byDFf .x/. In general the Fréchet subdifferential D�
F f .x/

and Fréchet superdifferential DC
F f .x/ of f at the point x are defined as the (pos-

sibly empty) convex subsets of B�

DC
F f .x/ WD

�
` 2 B� W lim sup

y!x

f .y/� f .x/� h`; y � xi
jy � xjB

� 0

�
;

D�
F f .x/ WD

�
` 2 B� W lim inf

y!x

f .y/ � f .x/� h`; y � xi
jy � xjB

� 0

�
:

THEOREM 7.3 The functional yƒ W .L1.Œ0; 1�/; strong/ ! R is convex and contin-

uous, in particular, locally Lipschitz. Moreover, for each � 2 L1.Œ0; 1�/ we have

D˙
F

yƒ.�/ � W . Finally, yƒ is a Fréchet viscosity solution of yH.�;DU / D 0 in yM I
namely, the two following inequalities hold for any � 2 yM W

yH.�;w/ � 0 8w 2 DC
F

yƒ.�/;
yH.�;w/ � 0 8w 2 D�

F
yƒ.�/:

PROOF. Clearly yƒ is convex and, by the argument used in Lemma 4.4, con-

tinuous. Fix � 2 yM . Proposition 4.6 and the argument presented below Theo-

rem 4.8 show that D�
F

yƒ.�/ D co F .�/ and DC
F

yƒ.�/ D f'g when F .�/ D f'g
and DC

F
yƒ.�/ D ¿ otherwise. In particular, by the inclusion F .�/ � P .�/ and

Proposition 4.1(ii), D˙
F

yƒ.�/ � W .

As in the proof of Lemma 4.3, we consider the integral operator K� defined in

(2.12) also for � 2 L1.Œ0; 1�/ and denote by yP .�/ � F the set of fixed points

of K�. As in Proposition 4.1, if ' 2 yP .�/, then ' 2 C 1.Œ0; 1�/ and there exist

ı 2 .0; 1/ and C < 1, depending only on j�jL1 , such that ı � "'x � 1 � ı and

j'xx jL1 � C . In particular, the Euler-Lagrange equation (2.11) holds a.e.

We now prove the subsolution statement; that is, yH.�;w/ � 0 for any � 2 yM
and w 2 DC

F
yƒ.�/. Since DC

F
yƒ.�/ D ¿ if F .�/ is not a singleton, we need only

to consider the case F .�/ D f'g for some ' 2 F . Hence, as shown in the proof

of Lemma 4.3, ' 2 yP .�/. It is therefore enough to show that for any � 2 yM
and ' 2 yP .�/ we have yH.�; '/ D 0. This is essentially the same computation

as the one used in the proof of Proposition 4.1(iii). Recall 'i D logŒ�i=.1 � �i /�,

i D 0; 1; and observe that, in view of the bounds stated above, if ' 2 yP .�/, then

�1Œ1 � "'x.1/� � �0Œ1� "'x.0/�

D
��

e'

1C e'

�
x

; 1 � "'x
	

�
�

e'

1C e'
; "'xx

	
D

�
e'

.1C e'/2
; 'x.1� "'x/

	
�

�
e'

1C e'
; "'xx
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so that, recalling (7.3),

yH.�; '/ D
�
�.�/ � e'

.1C e'/2
; 'x.1 � "'x/

	
C

�
e'

1C e'
� �; "'xx

	
:

At this point we use the special form of � , i.e., �.�/ D �.1 � �/, which implies

�.�/ � e'

.1C e'/2
D

�
e'

1C e'
� �

��
� � 1

1C e'

�
:

We then deduce

yH.�; '/ D
�

e'

1C e'
� �; "'xx C 'x.1 � "'x/

�
� � 1

1C e'

�	
D 0

since ' satisfies (2.11) a.e.

It remains to prove the supersolution statement, that is yH.�; '/ � 0 for any

� 2 yM and ' 2 D�
F

yƒ.�/. To this end, consider first the case ' 2 @app
yƒ.�/.

By definition, there exists a sequence f�ng � L1.Œ0; 1�/ converging to � 2 yM
strongly inL1.Œ0; 1�/ such that @yƒ.�n/ D f'ng and 'n ! ' weak-* inL1.Œ0; 1�/.

In particular, 'n 2 yP .�n/ and therefore, by the bounds stated at the beginning

of this proof, ' 2 yP .�/. By the computation presented above, we then deduce
yH.�; '/ D 0.

We now consider the general case ' 2 D�
F

yƒ.�/ D @yƒ.�/. The concavity

of yH.�; � / implies yH.�; '/ � 0 for any ' 2 co @app
yƒ.�/. In view of Theorem 4.8,

it is now enough to take the weak-* closure in L1.Œ0; 1�/. This is easily accom-

plished by noticing that there exist ı 2 .0; 1/ and C < 1 depending only on �

such that any ' 2 co @app
yƒ.�/ satisfies ı � "'x � 1 � ı and j'xx jL1 � C . �
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