
The Annals of Probability
2009, Vol. 37, No. 6, 2357–2403
DOI: 10.1214/09-AOP472
© Institute of Mathematical Statistics, 2009

DYNAMICAL LARGE DEVIATIONS FOR THE BOUNDARY
DRIVEN WEAKLY ASYMMETRIC EXCLUSION PROCESS

BY LORENZO BERTINI, CLAUDIO LANDIM AND MUSTAPHA MOURRAGUI

Università di Roma “La Sapienza,” IMPA and Université de Rouen
and Université de Rouen

We consider the weakly asymmetric exclusion process on a bounded in-
terval with particle reservoirs at the endpoints. The hydrodynamic limit for
the empirical density, obtained in the diffusive scaling, is given by the viscous
Burgers equation with Dirichlet boundary conditions. We prove the associ-
ated dynamical large deviations principle.

1. Introduction. The analysis of the large deviations is asymptotic as the
number of degrees of freedom diverges, for the stationary nonequilibrium states
of interacting particle systems have recently proved to be an important step in the
physical description of such states and a rich source of mathematical problems.
Referring to [4, 8] for two recent reviews on this topic, we briefly outline its basic
points. We discuss only stochastic lattice gases for which the underlying random
fluctuations ensure the necessary ergodicity for a rigorous analysis. The stationary
nonequilibrium states are characterized by a flow of mass through the system and
the corresponding dynamics are not reversible. The main difference with respect to
(reversible) equilibrium states follows. In equilibrium the invariant measure, which
determines the thermodynamic properties, is given for free by the Gibbs distrib-
ution specified by the Hamiltonian. On the contrary, in nonequilibrium states the
construction of the stationary state requires the solution of a dynamical problem.

Since we are interested only in the macroscopic description, only the ther-
modyamic observables are relevant. For lattice gases there is only one of such
observable, which is the empirical density. In equilibrium states, the thermody-
namic functional, like the free energy, can then be identified [6, 22, 24] with the
large deviation rate function for the empirical density when the particles are dis-
tributed according to the Gibbs measure. Provided one replaces the Gibbs measure
with the invariant measure (which is in general not explicitly known), the above
statement is meaningful also for stationary nonequilibrium states, and it is the de-
finition of nonequilibrium free energy adopted in [4, 8].

A typical generic feature of nonequilibrium stationary states is the presence of
long-range correlations. The large deviation rate functional, which has been iden-
tified with the thermodynamic functional, is nonlocal. In this respect nonequilib-
rium stationary states behave quite differently from equilibrium states. As it has
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been shown in concrete examples, the nonequilibrium rate functional is also not
necessarily convex.

In absence of the Gibbs principle, a basic problem is the characterization of the
nonequilibrium free energy in concrete simple models of stochastic lattice gases.
While the approach discussed in [8] is based on powerful combinatorial methods
which exploit the special feature of the exclusion processes, we recall the dynami-
cal/variational approach reviewed in [4]. One first fixes a macroscopic time interval
[0, T ] and analyzes the dynamical behavior of the empirical density over such an
interval. The law of large numbers for the empirical density is then called hydro-
dynamic limit, and, in the context of diffusive scaling limit here considered, it is
given by a parabolic evolution equation. The next step is the proof of the associated
dynamical large deviation principle, namely, to compute the asymptotic probabil-
ity of observing a given large fluctuation in the dynamics of the empirical density.
This asymptotic probability can be expressed by a suitable rate functional on the
set of space-time trajectories. Finally, one minimizes the dynamical rate functional
on all the paths starting from the stationary profile, that is, the stationary solution
of the hydrodynamic equation ending on a fixed profile. The solution of this vari-
ational problem then coincides with the nonequilibrium free energy.

The exclusion process is a very simple lattice gas: the only interaction is due
to the exclusion condition. A particle can therefore jump to its neighboring sites,
but the jump takes place only if the arrival site is not occupied. We consider this
process on the bounded lattice [−N + 1,N − 1] ∩ Z, N ≥ 1, in contact with par-
ticles’ reservoirs at the endpoints, so that to the bulk dynamics we add birth and
death processes at the sites ±(N −1). In the case of the boundary driven symmetric
exclusion process characterized by symmetric bulk jump rates, the program out-
lined has been rigorously implemented in [3]. Of course, the nonequilibrium free
energy functional thus obtained coincides with the one deduced in [9] by combi-
natorial methods.

Here we analyze instead boundary driven weakly asymmetric exclusion process-
es in which the asymmetry of the bulk rates is of order E/N for some fixed E ∈ R.
For this model on the whole lattice, the hydrodynamic limit has been proven in [7,
16, 20], and the hydrodynamic equation is the viscous Burgers equation (see [14,
15, 18] for the hydrodynamic limit of boundary driven models). Referring to [5,
13] for the computation of the nonequilibrium free energy functional, in this paper
we prove the dynamical large deviation principle associated to the hydrodynamic
limit. The general methods developed in [20] for the symmetric exclusion process,
and adapted in [3] to the boundary driven case, are applied with simple modifica-
tions, but there is a somewhat delicate technical point. The basic strategy in the
proof of the lower bound consists in obtaining this bound for smooth paths and
then applying the following density argument. Given a path π with a finite rate
functional, that is, I (π) < ∞, one constructs a suitable sequence of smooth paths
{πn} such that πn → π and I (πn) → I (π). By the lower semicontinuity of I we
have lim infn I (πn) ≥ I (π) for any sequence {πn}, but one needs to show that the
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equality actually holds for a suitable sequence {πn}. The proof of this step in the
symmetric case in [3, 20] takes advantage of the convexity of the functional I ; this
property does not, however, hold for the weakly asymmetric exclusion process.
Following [26, 27], we modify the definition of the rate functional I requiring
that a suitable energy estimate holds. As shown here in detail, this energy estimate
provides the necessary compactness to carry out the above density argument. The
arguments needed to prove this density are essentially an adaptation to the bound-
ary driven case of those developed in [26, 27]. The lack of translation invariance
requires new tools.

The modification in the definition of the rate functional I makes the proof of
the upper bound harder than the one in [3, 20]: one needs to show that the energy
estimate holds with probability superexponentially close to one. This step is also
discussed here in detail. A similar approach has been followed in [23] for particle
systems with Kac interaction and random potential.

The proof of a dynamical large deviations principle for the empirical measure of
boundary driven interacting particle systems is the first step in the derivation of the
nonequilibrium free energy, a thermodynamical functional of considerable interest
in mathematical physics. Based on the results presented here, we obtain in [5] the
nonequilibrium free energy of weakly asymmetric exclusion processes and show
that its limit, as the asymmetry diverges, �-converges to the nonequilibrium free
energy of the asymmetric exclusion process obtained in [10] through combinatorial
methods.

2. Notation and results.

The boundary driven weakly asymmetric exclusion process. Fix an integer
N ≥ 1, E ∈ R, 0 < ρ− ≤ ρ+ < 1 and let �N := {−N +1, . . . ,N −1}. The configu-
ration space is �N := {0,1}�N ; elements of �N are denoted by η so that η(x) = 1,
resp. 0, if site x is occupied, resp. empty, for the configuration η. We denote by
σx,yη the configuration obtained from η by exchanging the occupation variables
η(x) and η(y), that is,

(σ x,yη)(z) :=
⎧⎨⎩

η(y), if z = x,
η(x), if z = y,
η(z), if z �= x, y,

and by σxη the configuration obtained from η by flipping the configuration at x,
that is,

(σ xη)(z) :=
{

1 − η(x), if z = x,
η(z), if z �= x.

The one-dimensional boundary driven weakly asymmetric exclusion process is
the Markov process on �N whose generator LN can be decomposed as

LN = L0,N + L−,N + L+,N ,
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where the generators L0,N , L−,N , L+,N act on functions f :�N → R as

(L0,Nf )(η) = N2

2

N−2∑
x=−N+1

e−E/(2N)[η(x+1)−η(x)][f (σx,x+1η) − f (η)],

(L−,Nf )(η) = N2

2
c−
(
η(−N + 1)

)[f (σ−N+1η) − f (η)]

(L+,Nf )(η) = N2

2
c+
(
η(N − 1)

)[f (σN−1η) − f (η)],
where c± : {0,1} → R are given by

c±(ζ ) := ρ±e∓E/(2N)(1 − ζ ) + (1 − ρ±)e±E/(2N)ζ.

Notice that the (weak) external field is E/(2N), and, in view of the diffusive scal-
ing limit, the generator has been speeded up by N2. We denote by ηt the Markov
process on �N with generator LN and by PN

η its distribution if the initial configu-
ration is η. Note that PN

η is a probability measure on the path space D(R+,�N),
which we consider endowed with the Skorohod topology and the corresponding
Borel σ -algebra. Expectation with respect to PN

η is denoted by EN
η .

Since the Markov process ηt is irreducible, for each N ≥ 1, E ∈ R, and
0 < ρ− ≤ ρ+ < 1 there exists a unique invariant measure μN

E in which we drop the
dependence on ρ± from the notation. Let ϕ± := log[ρ±/(1−ρ±)] be the chemical
potential of the boundary reservoirs, and set E0 := (ϕ+ − ϕ−)/2. A simple com-
putation shows that if E = E0 then the process ηt is reversible with respect to the
product measure

μN
E0

(η) =
N−1∏

x=−N+1

e
ϕN

E0
(x)η(x)

1 + e
ϕN

E0
(x)

,

where

ϕN
E0

(x) := ϕ−
N − x

2N
+ ϕ+

N + x

2N
.

On the other hand, for E �= E0 the invariant measure μN
E cannot be written in a

simple form.

The dynamical large deviation principle. We denote by u ∈ [−1,1] the macro-
scopic space coordinate and by 〈·, ·〉 the inner product in L2([−1,1], du). We set

M := {ρ ∈ L∞([−1,1], du) : 0 ≤ ρ ≤ 1},
which we equip with the topology induced by the weak convergence of measures,
namely a sequence {ρn} ⊂ M converges to ρ in M if and only if 〈ρn,G〉 →
〈ρ,G〉 for any continuous function G : [−1,1] → R. Note that M is a compact
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Polish space that we consider endowed with the corresponding Borel σ -algebra.
The empirical density of the configuration η ∈ �N is defined as πN(η) where the
map πN :�N → M is given by

πN(η)(u) :=
N−1∑

x=−N+1

η(x)1
{[

x

N
− 1

2N
,

x

N
+ 1

2N

)}
(u),

in which 1{A} stands for the indicator function of the set A. Let {ηN } be a sequence
of configurations with ηN ∈ �N . If the sequence {πN(ηN)} ⊂ M converges to ρ

in M as N → ∞, we say that {ηN } is associated with the macroscopic density
profile ρ ∈ M.

Given T > 0, we denote by D([0, T ]; M) the Skorohod space of paths from
[0, T ] to M equipped with its Borel σ -algebra. Elements of D([0, T ], M) will
be denoted by π ≡ πt(u) and sometimes by π(t, u). Note that the evaluation map
D([0, T ]; M) � π �→ πt ∈ M is not continuous for t ∈ (0, T ) but is continuous for
t = 0, T . We denote by πN , also, the map from D([0, T ];�N) to D([0, T ]; M)

defined by πN(η·)t := πN(ηt ). The notation πN(t, u) is also used.
Fix a profile γ ∈ M and consider a sequence {ηN :N ≥ 1} associated to γ .

Let ηN
t be the boundary driven weakly asymmetric exclusion process starting

from ηN . In [7, 16, 20] it is proven that as N → ∞ the sequence of random vari-
ables {πN(ηN· )}, which take values in D([0, T ], M) and converge in probability
to the path ρ ≡ ρt (u), (t, u) ∈ [0, T ] × [−1,1] which solves the viscous Burgers
equation with Dirichlet boundary conditions at ±1, that is,⎧⎪⎪⎨⎪⎪⎩

∂tρ + E

2
∇χ(ρ) = 1

2
�ρ,

ρt (±1) = ρ±,

ρ0(u) = γ (u),

(2.1)

where χ : [0,1] → R+ is the mobility of the system, χ(a) = a(1 − a), and ∇ ,
resp. �, denotes the derivative, resp. the second derivative, with respect to u. In
fact the proof presented in [7, 16] is in real line, while the one in [20] is on the
torus. The arguments, however, can be adapted to the boundary driven case (see
[14, 15, 18] for the hydrodynamic limit of different boundary driven models).

The main result of this paper is the large deviations principle associated with the
above law of large numbers. In order to state this result some more notation is re-
quired. For T > 0 and positive integers m,n, we denote by Cm,n([0, T ]× [−1,1])
the space of functions G ≡ Gt(u) : [0, T ] × [−1,1] → R with m derivatives in
time, n derivatives in space which are continuous up to the boundary. We improp-
erly denote by C

m,n
0 ([0, T ] × [−1,1]) the subset of Cm,n([0, T ] × [−1,1]) of the

functions which vanish at the endpoints of [−1,1], that is, G ∈ Cm,n([0, T ] ×
[−1,1]) belongs to C

m,n
0 ([0, T ] × [−1,1]) if and only if Gt(±1) = 0, t ∈ [0, T ].
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Let the energy Q :D([0, T ], M) → [0,∞] be given by

Q(π) = sup
G

{∫ T

0
dt

∫ 1

−1
duπ(t, u)(∇G)(t, u)

− 1

2

∫ T

0
dt

∫ 1

−1
duG(t, u)2χ(π(t, u))

}
,

where the supremum is carried over all smooth functions G : [0, T ]× (−1,1) → R

with compact support. In Section 4 we show that the energy Q is convex and lower
semicontinuous. Moreover, if Q(π) is finite, π has a generalized space derivative,
∇π , and

Q(π) = 1

2

∫ T

0
dt

∫ 1

−1
du

(∇πt)
2

χ(πt )
.

Fix a function γ ∈ M which corresponds to the initial profile. For each H in
C

1,2
0 ([0, T ] × [−1,1]), let ĴH = ĴT ,H,γ :D([0, T ], M) −→ R be the functional

given by

ĴH (π) := 〈πT ,HT 〉 − 〈γ,H0〉 −
∫ T

0
dt〈πt , ∂tHt 〉

− 1

2

∫ T

0
dt〈πt ,�Ht 〉 + ρ+

2

∫ T

0
dt ∇Ht(1)

(2.2)

− ρ−
2

∫ T

0
dt ∇Ht(−1)

− E

2

∫ T

0
dt〈χ(πt ),∇Ht 〉 − 1

2

∫ T

0
dt〈χ(πt ), (∇Ht)

2〉.

Let ÎT (·|γ ) :D([0, T ], M) −→ [0,+∞] be the functional defined by

ÎT (π |γ ) := sup
H∈C

1,2
0 ([0,T ]×[−1,1])

ĴH (π).(2.3)

The rate functional IT (·|γ ) :D([0, T ], M) → [0,∞] is given by

IT (π |γ ) =
{

ÎT (π |γ ), if Q(π) < ∞,
∞, otherwise.

(2.4)

We prove in Theorem 4.2 that the functional IT (·|γ ) is lower semicontinous
and has compact level sets, and in Lemma 4.3 that any path π with with finite rate
function, IT (π |γ ) < ∞, is continuous in time and satisfies the boundary condi-
tions π(0, ·) = γ (·), π(·,±1) = ρ±. In Section 5 we show that any trajectory π

with finite rate function can be approximated by a sequence of smooth trajectories
{πn :n ≥ 1} such that IT (πn|γ ) converges to IT (π |γ ). These properties of the rate
function IT (·|γ ) hold in a general context described in Section 4.

The main result of this article reads as follows.
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THEOREM 2.1. Fix T > 0 and an initial profile γ in M. Consider a se-
quence {ηN :N ≥ 1} of configurations associated to γ . Then, the sequence
of probability measures {PN

ηN ◦ (πN)−1 :N ≥ 1} on D([0, T ], M) satisfies a
large deviation principle with speed N and good rate function IT (·|γ ). Namely,
IT (·|γ ) :D([0, T ]; M) → [0,∞] has compact level sets and for each closed set
C ⊂ D([0, T ], M) and each open set O ⊂ D([0, T ], M),

lim
N→∞

1

N
log PN

ηN (πN ∈ C) ≤ − inf
π∈C

IT (π |γ ),

lim
N→∞

1

N
log PN

ηN (πN ∈ O) ≥ − inf
π∈O

IT (π |γ ).

We provide in Section 4 an explicit formula for the rate function IT (·|γ ). De-
note by C∞

K ((0, T ) × (−1,1)) the infinitely differentiable functions H : (0, T ) ×
(−1,1) → R with compact support. For a trajectory π in D([0, T ], M), let
H1

0(χ(π)) be the Hilbert space induced by C∞
K ((0, T ) × (−1,1)) endowed with

the scalar product defined by

〈〈G,H 〉〉1,χ(π) =
∫ T

0
dt

∫ 1

−1
du(∇G)(t, u)(∇H)(t, u)χ(π(t, u)).

Induced means that we first declare two functions F , G in C∞
K ((0, T ) × (−1,1))

to be equivalent if 〈〈F − G,F − G〉〉1,χ(π) = 0 and then we complete the quotient
space with respect to the norm induced by the scalar product. Denote by ‖ · ‖1,χ(π)

the norm associated to the scalar product 〈〈·, ·〉〉1,χ(π).
Let H−1(χ(π)) be the dual of H1

0(χ(π)). It is a Hilbert space equipped with
the norm ‖ · ‖−1,χ(π) defined by

‖L‖2−1,χ(π) = sup
G∈C∞

K ((0,T )×(−1,1))

{
2〈〈L,G〉〉 − ‖G‖2

1,χ(π)

}
.

In this formula, 〈〈L,G〉〉 stands for the value of the linear form L at G. We prove
in Section 4 that if π is a trajectory with finite rate function, then

IT (π |γ ) = 1
2‖∂tπ − (1/2)�π + (E/2)∇χ(π)‖2−1,χ(π).

A large deviations principle for the symmetric simple exclusion process, E = 0,
with periodic boundary conditions has been proved in [20]. It has been extended
in [3] to symmetric exclusion processes in contact with reservoirs. In both cases
the rate function is ÎT (·|γ ).

By Lemma 2.1.1 in [11], there is uniqueness of rate functions in Polish spaces.
In particular, for the symmetric simple exclusion process, ÎT = IT . Equivalently,
any path π with finite rate function, ÎT (π |γ ) < ∞, has finite energy.
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3. The large deviations principle. We prove in this section, relying on some
properties of the rate function that we prove later, the large deviations principle
stated in Theorem 2.1.

The approach differs slightly from the original one in [12, 20] due to definition
(2.4) of the rate function IT (·|γ ) which is set to be +∞ on the set of paths π with
infinite energy [Q(π) = +∞] [26, 27]. The rate function IT (·|γ ), being larger
than ÎT (·|γ ), the original one in [12, 20], the proof of the upper bound becomes
harder and the one of the lower bound easier. As discussed in the introduction,
this modification is needed for the following reason. In the lower bound part, one
first proves the estimate for suitable “nice” trajectories and then one shows that
any path with finite rate function can be approximated by a sequence of “nice”
trajectories with convergence of the associated large deviations probability. The
procedure used in [20] for this step relies strongly on the convexity of the rate
functional which allows the approximation of a path by taking convolutions with
a smooth ad-hoc kernel. However, the convexity of the rate function is a special
feature of the symmetric exclusion process. Without such convexity, one is only
able to approximate trajectories with finite energy, thus forcing the above redefi-
nition of the rate function. The boundary conditions introduce a second obstacle
which prevent convolutions with space-independent kernels since the rate function
equals +∞ for trajectories which do not meet the boundary conditions.

Denote by ρ̄ the stationary density profile, that is, the unique solution of the
elliptic equation {

E∇[ρ(1 − ρ)] = �ρ,

ρ(±1) = ρ±.

Denote by νN the product measure with density profile ρ̄. The marginals of νN

are given by

νN {η :η(x) = 1} = ρ̄(x/N), −N + 1 ≤ x ≤ N − 1.

3.1. Superexponential estimates. It is well known that one of the main steps
in the derivation of a large deviation principle for the empirical density is a super-
exponential estimate which allows the replacement of local functions by func-
tionals of the empirical density in the large deviations regime. The problem con-
sists of estimating expressions such as 〈V,f 2〉μN in terms of the Dirichlet form
〈−LNf,f 〉μN where V is a local function and 〈·, ·〉μN represents the inner prod-
uct with respect to some probability measure μN .

In the context of boundary-driven processes, the fact that the invariant mea-
sure is not known explicitly introduces a technical difficulty. Following [3, 21]
we fix νN , the product measure with density profile ρ̄, as reference measure and
estimate everything with respect to νN . Note, however, that since νN is not the
invariant measure, there are no reasons for 〈−LNf,f 〉νN

to be positive. The first
statement shows that this expression is almost positive.
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For a function f :�N → R, let

D0,N (f ) =
N−2∑

x=−N+1

∫
[f (σx,x+1η) − f (η)]2 dνN,

D±,N (f ) =
∫ [

f
(
σ±(N−1)η

)− f (η)
]2

dνN .

LEMMA 3.1. There exist constants A0,C0 > 0 depending only on ρ±, E, such
that

〈L0,Nf,f 〉νN
≤ −A0N

2D0,N (f ) + C0N〈f,f 〉νN
,

〈L±,Nf,f 〉νN
≤ −A0N

2D±,N (f ) + C0〈f,f 〉νN

for all functions f :�N → R.

The proof of this lemma is elementary and left to the reader. The fact that ρ̄ is the
stationary profile is irrelevant. We may replace in the statement of the lemma the
product measure νN , associated with ρ̄, by the product measure associated with
any smooth profile with the correct boundary conditions at ±1. Lemma 3.1, to-
gether with the computation presented in [2], page 78, for nonreversible processes,
allows one to prove the super-exponential estimates stated below in Theorem 3.2.

Given a cylinder function � , that is a function on {0,1}Z depending on η(x),
x ∈ Z, only through finitely many x, denote by �̃(α) the expectation of � with
respect to να , the Bernoulli product measure with density α:

�̃(α) = Eνα [�].
Denote by {τx :x ∈ Z} the group of translations in {0,1}Z so that (τxζ )(z) =

ζ(x + z) for all x, z in Z and configuration ζ in {0,1}Z. Translation is extended to
functions and measures in a natural way.

For a positive integer � and −N + 1 + � ≤ x ≤ N − 1 − �, denote the empirical
mean density on a box of size 2� + 1 centered at x by η�(x),

η�(x) = 1

|��(x)|
∑

y∈��(x)

η(y),

where ��(x) = �N,�(x) = {y ∈ �N : |y − x| ≤ �}. Let H ∈ C([0, T ] × [−1,1])
and � a cylinder function. For ε > 0 and N large enough, define V

H,�
N,ε : [0, T ] ×

�N → R by

V
H,�
N,ε (t, η) = 1

N

N−1−�Nε�∑
x=−N+1+�Nε�

H(t, x/N)
{
τx�(η) − �̃

(
η�Nε�(x)

)}
,
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where �·� denotes the lower integer part. Note that for x as above and N suffi-
ciently large τx� is indeed a function on �N . For a function G ∈ C([0, T ]) let
also W±

G : [0, T ] × �N → R be defined by

W±
G (t, η) = G(t)[η(±N) − ρ±].

THEOREM 3.2. Fix H in C([0, T ]×[−1,1]), G in C([0, T ]), a cylinder func-
tion � , a sequence {ηN ∈ �N :N ≥ 1} of configurations, and δ > 0. Then

lim
ε→0

lim sup
N→∞

1

N
log PN

ηN

[∣∣∣∣∫ T

0
V

H,�
N,ε (t, ηt ) dt

∣∣∣∣> δ

]
= −∞,

lim
N→∞

1

N
log PN

ηN

[∣∣∣∣∫ T

0
W±

G (t, ηt ) dt

∣∣∣∣> δ

]
= −∞.

3.2. Energy estimate. We prove in this subsection an energy estimate. It per-
mits the exclusion of paths with infinite energy in the large deviation regime.

Recall the definition of the constant A0 introduced in Lemma 3.1. For a smooth
function G : [0, T ]×(−1,1) → R with compact support, let QG :D([0, T ], M) →
[0,∞] be given by

QG(π) = 2
∫ T

0
dt

∫ 1

−1
duπ(t, u)(∇G)(t, u)

− 4

A0

∫ T

0
dt

∫ 1

−1
duG(t, u)2χ(π(t, u))

and note that

Q(π) = 2

A0
sup
G

QG(π).

Given ε > 0 and a function π in M, let πε : [−1,1] → R+ be given by

πε(u) = 1

2ε

∫
[u−ε,u+ε]∩[−1,1]

π(v)dv.

LEMMA 3.3. Fix a smooth function G : [0, T ] × (−1,1) → R with compact
support and a sequence {ηN ∈ �N :N ≥ 1} of configurations. There exists a con-
stant C > 0, depending only on ρ±, E, such that

lim sup
ε→0

lim sup
N→∞

1

N
log PN

ηN [QG(πN,ε) ≥ �] ≤ −� + C(T + 1).

PROOF. Assume without loss of generality that ε is small enough for the sup-
port of G to be contained in [0, T ] × [ε,1 − ε]. Since νN(ηN) ≥ exp{−CN} for
some constant C depending only on ρ±, it is enough to prove the lemma with PN

νN

in place of PN
ηN .
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Let �0(η) = (1/2)[η(1) − η(0)]2 and note that �̃0(α) = α(1 − α) = χ(α). Re-
call the definition of V

H,�0
N,ε given just before Theorem 3.2, set H(t, u) = G(t,u)2,

and let BN,ε be the set

BN,ε =
{
η ∈ D([0, T ],�N) :

∣∣∣∣∫ T

0
V

H,�0
N,ε (t, ηt ) dt

∣∣∣∣≤ 1
}
.

By Theorem 3.2, it is enough to show

lim sup
ε→0

lim sup
N→∞

1

N
log PN

νN
[{QG(πN,ε) ≥ �} ∩ BN,ε] ≤ −� + C(T + 1).

Recall the definition of the functional QG. On the one hand,∫ T

0
dt

∫ 1

−1
du(πN,ε)(t, u)(∇G)(t, u)

=
∫ T

0
dt

N−2∑
x=−N+1

{ηt (x) − ηt (x + 1)}G(t, x/N) + OG(ε),

where OG(ε) is absolutely bounded by a constant which vanishes as ε ↓ 0. On the
other hand, on the set BN,ε for N large enough we have∫ T

0
dt

∫ 1

−1
duG(t, u)2χ((πN,ε)(t, u))

≥ −2 +
∫ T

0
dt

1

N

N−2∑
x=−N+1

G(t, x/N)2τx�0(ηt ).

Therefore, we just need to prove that

lim sup
ε→0

lim sup
N→∞

1

N
log PN

νN

[∫ T

0
dt VG(t, ηt ) ≥ �

]
≤ −� + CT

where

VG(t, η) = 2
N−2∑

x=−N+1

G(t, x/N){η(x) − η(x + 1)}

− 2

A0N

N−2∑
x=−N+1

G(t, x/N)2[η(x) − η(x + 1)]2.

By Chebyshev’s exponential inequality, the proof reduces to the statement

lim sup
ε→0

lim sup
N→∞

1

N
log EνN

[
exp
{
N

∫ T

0
dt VG(t, ηt )

}]
≤ CT .
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By Feynman–Kac’s formula and the computations performed in [2], page 78, this
expression is bounded by∫ T

0
dt sup

f

{∫
VG(t, η)f (η)2νN(dη) + N−1〈LNf,f 〉νN

}
,

where the supremum is carried over all functions f in L2(νN) such that 〈f,f 〉νN
=

1. By Lemma 3.1, we may replace N−1〈LNf,f 〉νN
by −A0ND0,N (f ) + C0 for

some constants A0, C0 depending only on ρ±, E. It thus remains to show that

lim sup
N→∞

∫ T

0
dt sup

f

{∫
VG(t, η)f (η)2νN(dη) − A0ND0,N (f )

}
≤ CT

for some constant C which depends only on ρ±. To prove this statement we esti-
mate the linear term of VG by its quadratic term and by D0,N (f ).

Consider the linear term of VG(t, η). The change of variables η′ = σx,x+1η

permits to rewrite it as

N−2∑
x=−N+1

G(t, x/N)

∫
{η(x) − η(x + 1)}{f (η)2 − f (σx,x+1η)2}νN(dη)

+
N−2∑

x=−N+1

G(t, x/N)(3.1)

×
∫

{η(x) − η(x + 1)}f (η)2{1 − F(x,η)}νN(dη),

where

F(x,η) =
(

ρ̄(x/N)[1 − ρ̄(x + 1/N)]
ρ̄(x + 1/N)[1 − ρ̄(x/N)]

)η(x+1)−η(x)

.

After a Taylor expansion, the second term in (3.1) becomes

− 1

N

N−2∑
x=−N+1

G(t, x/N)∇
(

log
ρ̄

1 − ρ̄

)
(x/N)

∫
{η(x) − η(x + 1)}2f (η)2νN(dη)

plus a term of order N−1. Since 2ab ≤ A0a
2 + A−1

0 b2, this expression is bounded
by

C + 1

A0N

N−2∑
x=−N+1

G(t, x/N)2
∫

{η(x) − η(x + 1)}2f (η)2νN(dη)

for some finite constant C which depends on ρ±, E only. Note that the second
term can be absorbed in the quadratic part of VG.
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To conclude the proof of the lemma, we estimate the first term in (3.1). Write
f (η)2 −f (σx,x+1η)2 as {f (η)−f (σx,x+1η)}{f (η)+f (σ x,x+1η)} and apply the
Schwarz inequality to bound this expression by

1

4A0N

N−2∑
x=−N+1

G(t, x/N)2
∫

{η(x) − η(x + 1)}2{f (η) + f (σx,x+1η)}2νN(dη)

+ A0N

N−2∑
x=−N+1

∫
{f (η) − f (σx,x+1η)}2νN(dη).

The second line is A0ND0,N (f ). The first one, by a change of variables and the
same arguments used to estimate the second term in (3.1), can be bounded above
by

1

A0N

N−2∑
x=−N+1

G(t, x/N)2
∫

{η(x) − η(x + 1)}2f (η)2νN(dη) + C(G)N−1

for some finite constant C(G). This expression is part of the quadratic term of VG,
which concludes the proof of the lemma. �

COROLLARY 3.4. Fix a sequence {Gj : j ≥ 1} of smooth functions Gj : (0,

T ) × (−1,1) → R with compact support and a sequence {ηN ∈ �N :N ≥ 1} of
configurations. There exists a constant C, depending only on ρ±, E, such that for
any k ≥ 1

lim sup
ε→0

lim sup
N→∞

1

N
log PN

ηN

[
max

1≤j≤k
QGj

(πN,ε) ≥ �
]
≤ −� + C(T + 1).

3.3. Upper bound. In this subsection, we prove the large deviations upper
bound stated in Theorem 2.1. As mentioned at the beginning of this section, the
proof is slightly more demanding than the original one [12, 17, 20] because the
present rate function IT (·|γ ) is larger than the original one. To exclude paths with
infinite energy, we rely on the estimate presented in the previous subsection.

Fix a measurable density profile γ : [−1,1] → [0,1], a function H in C
1,2
0 ([0,

T ]×[−1,1]), a sequence {Gj : j ≥ 1} of smooth functions Gj : [0, T ]×(−1,1) →
R with compact support, dense in C

0,1
0 ([0, T ] × [−1,1]), and a sequence of con-

figurations {ηN :N ≥ 1} associated to γ . For k ≥ 1, � > 0, let Bk,� be the set of
paths with truncated energy bounded by �,

Bk,� =
{
π : max

1≤j≤k
QGj

(π) ≤ �
}
.

By Corollary 3.4, there exists a constant C > 0 such that for any k ≥ 1 and � > 0,

lim sup
ε→0

lim sup
N→∞

1

N
log PN

ηN [πN,ε /∈ Bk,�] ≤ −� + C(T + 1).(3.2)
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Recall the definition of the functional ĴH :D([0, T ], M) → R introduced just
before the statement of Theorem 2.1. For k ≥ 1 and � > 0, let

J
k,�
H (π) =

{
ĴH (π), if π ∈ Bk,�,
+∞, otherwise.

Let H1(t, u) = (∂uH)(t, u), H2(t, u) = H1(t, u)2. Recall that �0(η) stands for
the cylinder function (1/2)[η(1) − η(0)]2 and that V

H,�0
N,ε is defined just before

Theorem 3.2. Let B
j,H,N
δ,ε , j = 1,2, be the set

B
j,H,N
δ,ε =

{
η ∈ D([0, T ],�N) :

∣∣∣∣∫ T

0
V

Hj ,�0
N,ε (t, ηt ) dt

∣∣∣∣≤ δ

}
and set B

H,N
δ,ε = B

1,H,N
δ,ε ∩ B

2,H,N
δ,ε . By the super-exponential estimate stated in

Theorem 3.2, for each δ > 0,

lim
ε→0

lim sup
N→∞

1

N
log PN

ηN [(BH,N
δ,ε )�] = −∞.(3.3)

Fix a subset A of D([0, T ], M). By (3.2) and (3.3),

lim sup
N→∞

1

N
log PN

ηN [πN ∈ A] ≤ max{Rε,δ
k,�(A),Rk,�(ε),RH (ε)},(3.4)

where lim supε→0 RH(ε) = −∞, lim supε→0 Rk,�(ε) ≤ −� + C(T + 1) and

R
ε,δ
k,�(A) = lim sup

N→∞
1

N
log PN

ηN [{πN ∈ A} ∩ {πN,ε ∈ Bk,�} ∩ B
H,N
δ,ε ].

Consider the exponential martingale MH
t defined by

MH
t = exp

{
N

[
〈πN

t ,Ht 〉 − 〈πN
0 ,H0〉

− 1

N

∫ t

0
e−N〈πN

s ,Hs〉(∂s + LN)eN〈πN
s ,Hs〉 ds

]}
.

Since the sequence {ηN :N ≥ 1} is associated to γ and H is in C
1,2
0 ([0, T ] ×

[−1,1]), an elementary computation shows that on the set B
H,N
δ,ε

MH
T = expN{ĴH (πN,ε) + OH(ε) + O(δ)},

where OH(ε) [resp. O(δ)] is an expression which vanishes as ε ↓ 0 (resp. δ ↓ 0).
On the set {πN,ε ∈ Bk,�}, we may replace ĴH (πN,ε) by J

k,�
H (πN,ε).

Let AH,ε,δ
k,� = {πN ∈ A} ∩ {πN,ε ∈ Bk,�} ∩ B

H,N
δ,ε and write

1

N
log PN

ηN [AH,ε,δ
k,� ] = 1

N
log EηN [MH

T (MH
T )−11{AH,ε,δ

k,� }].
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Optimizing over πN in A, since MH
t is a mean one positive martingale, the previ-

ous expression is bounded above by

− inf
π∈A

J
k,�
H (πε) + OH(ε) + O(δ).

Thus in view of (3.4),

lim sup
N→∞

1

N
log PηN [πN ∈ A]

≤ max
{
− inf

π∈A
J

k,�
H (πε) + OH(ε) + O(δ),Rk,�(ε),RH (ε)

}
for all k, �, ε, δ and H . Optimize the previous inequality with respect to these
parameters and assume that the set A is compact. Since the map π �→ J

k,�
H (πε)

is lower semi-continuous for every k, �, H and ε, we may apply the arguments
presented in [30], Lemma 11.3, to exchange the supremum with the infimum. In
this way we obtain that the last expression is bounded above by

sup
π∈A

inf
H,k,�,ε,δ

max{−J
k,�
H (πε) + OH(ε) + O(δ),Rk,�(ε),RH (ε)}.

For each k ≥ 1, � > 0, and H in C
1,2
0 ([0, T ] × [−1,1]),

lim
ε→0

max
1≤j≤k

QGj
(πε) = max

1≤j≤k
QGj

(π)

and limε→0 ĴH (πε) = ĴH (π). Hence J
k,�
H (π) ≤ lim infε→0 J

k,�
H (πε) and, letting

first ε ↓ 0 and then δ ↓ 0, we obtain that the previous expression is bounded above
by

sup
π∈A

inf
H,k,�

max{−J
k,�
H (π),−� + C(T + 1)}.(3.5)

Let

J �
H (π) =

⎧⎨⎩ ĴH (π), if sup
j≥1

QGj
(π) ≤ �,

+∞, otherwise.

Since the sequence {Gj : j ≥ 1} is dense in C
0,1
0 ([0, T ] × [−1,1]), and since

Q(π) = (2/A0) supG QG(π), we may replace in the previous formula the con-
dition supj≥1 QGj

(π) ≤ � by Q(π) ≤ (2�/A0). Since J �
H (π) = limk→∞ J

k,�
H (π),

optimizing (3.5) over k we obtain that it is bounded above by

sup
π∈A

inf
H,�

max{−J �
H (π),−� + C(T + 1)}.

Let

JH (π) =
{

ĴH (π), if Q(π) < ∞,
+∞, otherwise.
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Clearly, JH (π) ≤ J �
H (π). We may, therefore, replace in the previous variational

formula J �
H (π) by JH (π) and let � ↑ ∞ to conclude that the left-hand side of

(3.4) is bounded above by

− inf
π∈A

sup
H

JH (π).

This concludes the proof of the upper bound for compact sets because
supH JH (π) = IT (π |γ ).

To pass from compact sets to closed sets, we need to prove the so-called expo-
nential tightness for the sequence of probability measures on D([0, T ], M) given
by {PN

ηN ◦ (πN)−1}. The proof presented in [1] for the noninteracting zero-range
process is easily adapted to our context.

3.4. Lower bound. The following is an elementary general result concerning
the large deviations lower bound. Given two probability measures P and Q we
denote by Ent(Q|P) the relative entropy of Q with respect to P .

LEMMA 3.5. Let {Pn :n ≥ 1} be a sequence of probability measures on a Pol-
ish space X and let X 0 ⊂ X . Assume that for each x ∈ X 0 there exists a sequence
of probability measures {Qx

n :n ≥ 1} which converges weakly to δx and such that

lim sup
n

1

n
Ent(Qx

n|Pn) ≤ I 0(x)(3.6)

for some functional I 0 : X 0 → [0,∞]. Then, for every open set O ⊂ X ,

lim inf
n→∞

1

n
logPn(O) ≥ − inf

π∈O∩X 0
I 0(x).

The previous result is applied with X 0 given by the collection D◦
T ,γ of “nice”

paths introduced in Definition 3.6 below. In Lemma 3.7, we show that for each path
π in D◦

T ,γ there exists a sequence of measures {Qπ
N :N ≥ 1} which converges to π

and which satisfy (3.6) with I 0(·) = IT (·|γ ). In view of Lemma 3.5, to complete
the proof of the lower bound, it is enough to show that for every open set O of
D([0, T ], M),

inf
π∈O∩D◦

T ,γ

IT (π |γ ) = inf
π∈O

IT (π |γ ).(3.7)

This is the content of Theorem 5.1 where we prove that for any path π in D([0, T ],
M) such that IT (π |γ ) < ∞, there exists a sequence {πn :n ≥ 1} in D◦

T ,γ such that

πn −→ π, IT (πn|γ ) −→ IT (π |γ ).

This last property is the main subject of Section 5.
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We start introducing the class of “nice” paths. This set has to be large enough to
meet condition (3.7), but cannot be too large because we need to find for each nice
path a sequence of probability measures satisfying the conditions of Lemma 3.5.

In the context of hydrodynamic limits, it is easy to compute the relative en-
tropy of two dynamics which differ by a smooth external field. The external field
adds to the hydrodynamic equation a transport term. The nice paths will be, there-
fore, paths which are solutions of the hydrodynamic equation with an extra smooth
transport term. This is shown in (3.8), right after the definition of nice paths.

DEFINITION 3.6. Given γ ∈ M, let D◦
T ,γ be the collection of all paths ρ in

D([0, T ], M) such that:

• For every 0 < δ ≤ T , there exists ε > 0 such that ε ≤ ρ(t, u) ≤ 1 − ε for all
(t, u) in [δ, T ] × [−1,1].

• There exists t > 0, denoted by t(ρ), such that ρ follows the hydrodynamic equa-
tion (2.1) in the time interval [0, t], is continuous on (0, T ]×[−1,1] and smooth
on [t, T ] × [−1,1].

• ρ(0, ·) = γ (·), ρ(·,±1) = ρ±, 0 < t ≤ T .

Fix a trajectory π in D◦
T ,γ . For each 0 ≤ t ≤ T , let Ht be the unique solution of

the elliptic equation{
∂tπt = (1/2)�πt − ∇{χ(πt )[(E/2) + ∇Ht ]},
Ht (±1) = 0.

(3.8)

For t = t(π), ∂tπt should be interpreted as the right derivative ∂t+πt . Note that
H vanishes on [0, t(π)) × [−1,1]. We prove in Lemma 5.7 that H is smooth on
(t(π), T ] × [−1,1] and that

IT (π |γ ) = 〈πT ,HT 〉 − 〈πt(π),Ht(π)

〉− ∫ T

t(π)
〈πt , ∂tHt 〉dt + 1

2

∫ T

t(π)
〈∇πt ,∇Ht 〉dt

− E

2

∫ T

t(π)
〈χ(πt ),∇Ht 〉dt − 1

2

∫ T

t(π)
〈χ(πt ), (∇Ht)

2〉dt.

For a configuration η in �N and a function H : [0, T ] × [−1,1] → R, smooth
in space and smooth by parts in time, as it is the case of the function introduced
in (3.8), denote by PN,H

η the probability measure on D([0, T ],�N) correspond-
ing to the boundary driven weakly asymmetric exclusion process with the (weak)
external field (E/2 + ∇H)/N starting from η. In view of the super-exponential
estimate stated in Theorem 3.2, of Definition 3.6, and of the previous explicit for-
mula for IT (π |γ ), the proof of the following lemma is similar to the one for the
symmetric simple exclusion process on the torus. We thus refer to [17, 20] for its
proof.
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LEMMA 3.7. Fix γ ∈ M, a sequence {ηN ∈ �N,N ≥ 1} associated to γ and
π ∈ D◦

T ,γ . Let H be the solution of (3.8). The sequence of probability measures

{PN,H

ηN ◦ (πN)−1} converges weakly to δπ and

lim
N→∞

1

N
Ent(PN,H

ηN |PN
ηN ) = IT (π |γ ).

4. The rate function. In this and in next section we prove some properties of
the rate functional IT of the large deviations principle. Since the arguments apply
to a large class of interacting particle systems and might be of wider interest, we
assume that the underlying stochastic dynamics has a hydrodynamical description
characterized by a diffusivity D and a mobility χ . The method requires the mobil-
ity χ : [0,1] → R to be a smooth function equivalent to χ0(π) = π(1 − π) in the
sense that

C−1
0 χ0(·) ≤ χ(·) ≤ C0χ0(·)(4.1)

for some finite constant C0, and the diffusivity D : [0,1] → R to be a strictly pos-
itive smooth function. Such bounds have been proven [29, 31] for stochastic lat-
tice gases with compact single-spin state space in the high-temperature region.
We mention, however, that there are other models, such as the so-called KMP
process [19], for which they do not hold.

With the previous notation the hydrodynamic equation becomes⎧⎨⎩
∂tρ = ∇(D(ρ)∇ρ) − (E/2)∇χ(ρ),

ρ(t,±1) = ρ±,

ρ(0, ·) = γ (·).
(4.2)

For the exclusion process introduced in Section 2, D(ρ) = 1/2 and χ(ρ) = χ0(ρ).
Fix once for all T > 0. Let � = (−1,1) and �T = (0, T ) × �. For a subset E

of Rd , denote by E its closure. For 0 ≤ m, n ≤ ∞, and E ⊂ R (resp. E ⊂ [0, T ] ×
R), denote by Cn(E) [resp. Cm,n(E)] the space of functions H :E → R with n

continuous derivatives (resp. m continuous derivatives in time and n continuous
derivatives in space). Adding the subindex 0 (resp. K) to Cn, Cm,n means that the
functions vanish at the boundary (resp. have compact support in the open set E).
To keep notation simple, denote C∞,∞ by C∞.

4.1. The energy Q. For a bounded positive function f :� → R+ (resp.
f :�T → R+), denote by L2(f ) [resp. L2(f )] the Hilbert space of (equiv-
alence classes of) measurable functions {H :� → R :

∫
� H(u)2f (u)du < ∞}

[resp. {H :�T → R :
∫
�T

H(t, u)2f (t, u) dt du < ∞}] endowed with the scalar
product 〈·, ·〉f (resp. 〈〈·, ·〉〉f ) induced by

〈H,G〉f =
∫
�

duH(u)G(u)f (u), 〈〈H,G〉〉f =
∫ T

0
dt〈Ht,Gt 〉f (t,·).
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The norm associated to the above scalar products is denoted by ‖ ·‖f . When f = 1
we omit the index f and denote the spaces L2(1), L2(1) by L2(�), L2(�T ), re-
spectively.

Since f is bounded, C∞
K (�T ) is dense in L2(f ). Moreover, the space of

bounded linear functionals on L2(f ) can be identified with L2(1/f ): any bounded
linear functional � on L2(f ) can be represented as

�(G) =
∫ T

0
dt〈Ht,Gt 〉(4.3)

for some H in L2(1/f ). Indeed, by Riesz’s representation theorem, for each
bounded linear functional � on L2(f ), there exists a unique element Ĥ = Ĥ� ∈
L2(f ) such that �(G) = 〈〈Ĥ ,G〉〉f . Let H = f Ĥ . Clearly, H belongs to L2(1/f )

and we obtain the representation claimed above.
Fix a function F in L1(�T ). We claim that

V (F) = sup
G∈C∞

K (�T )

{
2
∫ T

0
dt〈Ft ,∇Gt 〉 − ‖G‖2

f

}
< ∞

if and only if the generalized space derivative of F , denoted by ∇F , exists and
belongs to L2(1/f ). In this case,

V (F) =
∫ T

0
dt

∫ 1

−1
du

(∇Ft)(u)2

f (t, u)
.(4.4)

Indeed, on the one hand, assume that V (F) is finite. In this case the linear
functional � :C∞

K (�T ) → R defined by �(G) = ∫ T
0 dt〈Ft ,∇Gt 〉 is bounded for

the norm ‖ · ‖f . Since C∞
K (�T ) is dense in L2(f ), � can be extended to a bounded

linear functional in L2(f ). By (4.3), for all G in C∞
K (�T ),∫ T

0
dt〈Ft ,∇Gt 〉 = �(G) =

∫ T

0
dt〈Ht,Gt 〉

for some H in L2(1/f ). Since H belongs to L2(�T ), this identity states that −H

is equal to the generalized space derivative of F , denoted by ∇F , which belongs
to L2(1/f ) as claimed.

Conversely, if the generalized derivative of F exists and belongs to L2(1/f ),
an integration by parts in the definition of V (F) and the Schwarz inequality show
that V (f ) is finite.

Equation (4.4) remains to be proven. After an integration by parts, the Schwarz
inequality shows that the left-hand side is bounded above by the right-hand side.
On the other hand, ∇F/f belongs to L2(f ). Since C∞

K (�T ) is dense in L2(f ),
there exists a sequence Gn in C∞

K (�T ) converging to −∇F/f in L2(f ). This
proves the reverse inequality.
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Let Q :D([0, T ], M) → [0,∞] be given by

Q(π) = 1

2
sup

H∈C∞
K (�T )

{
2〈〈π,∇H 〉〉 − 〈〈H,H 〉〉χ0(π)

}
.(4.5)

If Q(π) is finite, by (4.4), π has a generalized space derivative and

Q(π) = 1

2

∫ T

0
dt

∫ 1

−1
du

(∇πt)
2

χ0(πt )
.

Notice that for a path π with Q(π) < ∞, π(t, ·) is continuous for almost all t in
[0, T ]. While for the weakly asymmetric exclusion process χ = χ0, in general the
function χ has no reasons to be concave. It is therefore crucial to have the lower
semicontinuity stated below in Lemma 4.1, that energy Q has been defined with
χ0 and not χ .

Fix a functional J :D([0, T ], M) → [0,∞]. A subset A of D([0, T ], M)

is called J -dense if for each π such that J (π) < ∞, there exists a sequence
{πn ∈ A :n ≥ 1} converging in the topology of D([0, T ], M) to π and such that
limn→∞ J (πn) = J (π).

LEMMA 4.1. The functional Q is convex and lower semicontinuous. The set
of smooth functions bounded away from 0 and 1 is Q-dense.

PROOF. By concavity of the function χ0, for each fixed H in C∞
K (�T ) the

expression appearing inside braces in (4.5) is convex and therefore lower semicon-
tinuous. These properties are inherited by Q.

By the lower semicontinuity, to conclude the proof, it is enough to show that
for each π such that Q(π) < ∞, there exists a sequence πn of smooth functions
bounded away from 0 and 1 converging to π and such that lim supn Q(πn) ≤ Q(π).

To show that functions bounded away from 0 and 1 are Q-dense, fix a profile
π such that Q(π) < ∞. For n ≥ 1, consider the sequence πn = n−1ρ∗ + (1 −
n−1)π , where ρ∗(t, u) = (1/2)(1 −u)ρ− + (1/2)(u+ 1)ρ+. Clearly πn converges
to π . By convexity Q(πn) ≤ n−1Q(ρ∗) + (1 − n−1)Q(π). Since Q(ρ∗) is finite,
lim supn Q(πn) ≤ Q(π).

We now show that the set of smooth functions in space, bounded away from
0 and 1 are Q-dense. Fix a function π bounded away from 0 and 1 such that
Q(π) < ∞. For ε > 0, denote by λε : [−1,1] → [−1− ε,1+ ε] the affine function
λε(x) = (1+ε)x and by θw the translation by w so that (θwπ)(t, u) = π(t, u+w).
Let πε : [0, T ] × [−(1 + ε), (1 + ε)] → [0,1] be given by πε(t, u) = π(t, λ−1

ε (u)).
We claim that

Q(θwπε) ≤ 1

1 + ε
Q(π) ∀|w| ≤ ε,
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where θwπε must be understood as restricted to [0, T ] × [−1,1]. Indeed, on the
one hand, for each H in C∞

K (�T ),∫ T

0
dt〈θwπε,∇H 〉 =

∫ T

0
dt〈π,∇Jε,w〉,

where Jε,w(t, u) = H(t, λε(u) − w) for u in [λ−1
ε (−1 + w),λ−1

ε (1 + w)] and
Jε,w(t, u) = 0 if −1 ≤ u ≤ 1 does not belong to the previous interval. On the other
hand, ∫ T

0
dt〈χ0(θwπε),H

2〉 = (1 + ε)

∫ T

0
dt〈χ0(π), J 2

ε,w〉.
Therefore, since Jε,w belongs to C∞

K (�T ),∫ T

0
dt〈θwπε,∇H 〉 − 1

2

∫ T

0
dt〈χ0(θwπε),H

2〉 ≤ 1

1 + ε
Q(π).

It remains to optimize over H to conclude.
Let {αε : ε > 0} be a smooth approximation of the identity with support con-

tained in (−ε, ε). The function
∫

αε(dw)θwπε is smooth in space and converges to
π as ε ↓ 0. By the previous estimate and the convexity of Q,

Q
(∫

αε(dw)θwπε

)
≤
∫

αε(dw)Q(θwπε) ≤ 1

1 + ε
Q(π).

This proves that we may approximate π by functions πn smooth in space and
bounded away from 0 and 1 in such a way that Q(πn) converges to Q(π).

We may repeat the same argument presented above to show that we can further
require the functions to be smooth in time. �

4.2. The rate functional IT (·|γ ). Fix once for all the initial profile γ ∈ M.
Recall that D : [0,1] → R is a strictly positive continuous function and that χ is
a continuous function equivalent to χ0. We next introduce the relevant rate func-
tion for interacting particle systems whose hydrodynamic behavior is described
by (4.2). Let d : [0,1] → R be an anti-derivative of D: d ′ = D, uniquely defined
up to an additive constant. For each H in C

1,2
0 (�T ), the space of C1,2(�T ) func-

tions vanishing at the boundary of �, let ĴH = ĴT ,H,γ :D([0, T ], M) −→ R be
the functional given by

ĴH (π) := 〈πT ,HT 〉 − 〈γ,H0〉 −
∫ T

0
dt〈πt , ∂tHt 〉

−
∫ T

0
dt〈d(πt ),�Ht 〉

(4.6)

+ d(ρ+)

∫ T

0
dt ∇Ht(1) − d(ρ−)

∫ T

0
dt ∇Ht(−1)

− E

2

∫ T

0
dt〈χ(πt ),∇Ht 〉 − 1

2

∫ T

0
dt〈χ(πt ), (∇Ht)

2〉.
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Of course, for the weakly asymmetric exclusion process, the above definition co-
incides with the one given in (2.2). Note also that the functional ĴH is not affected
by the choice of the arbitrary constant in the function d . Recalling that the gen-
eral definition of the energy Q has been discussed in the previous subsection, the
functionals ÎT (·|γ ), IT (·|γ ) :D([0, T ], M) → [0,+∞] are defined as in (2.3) and
(2.4) with ĴH as in (4.6). We may now state the main result of this section.

THEOREM 4.2. For every profile γ ∈ M, IT (·|γ ) :D([0, T ], M) −→ [0,+∞]
is a lower semicontinuous functional with compact level sets.

The proof of this theorem is split in several lemmata. We show in this subsection
that trajectories with finite rate function are continuous in time and satisfy the
boundary conditions. We present also an alternative form of the rate function which
only involves functions with compact support in �T .

Denote by Dγ = D(γ,ρ−, ρ+) the subset of D([0, T ], M) of all paths π in
C([0, T ], M) which satisfy the boundary conditions π(0, ·) = γ (·), π(·,±1) =
ρ±, in the sense that the trace of π at the boundary is ρ±: for every 0 ≤ t0 < t1 ≤ T ,

lim
δ→0

1

δ

∫ t1

t0

dt

∫ −1+δ

−1
π(t, u) du = ρ−(t1 − t0),

and a similar identity at the other boundary. The proof of the next statement is
similar to the one of Lemma 3.5 in [3].

LEMMA 4.3. Fix π in D([0, T ], M) such that ÎT (π |γ ) < ∞. Then π belongs
to Dγ .

In fact, for each A > 0, the trajectories in the set {π ∈ D([0, T ], M) : ÎT (π |γ ) ≤
A} are uniformly continuous in time.

LEMMA 4.4. Fix A > 0 and a function J in C2
0(�). For each ε > 0, there

exists δ > 0 such that

sup
π : ÎT (π |γ )≤A

sup
|t−s|≤δ

|〈πt , J 〉 − 〈πs, J 〉| ≤ ε.

PROOF. Fix A > 0, a path π such that ÎT (π |γ ) ≤ A and a function H in
C

1,2
0 (�T ). Denote by �H the linear part in H of the functional ĴH . It follows from

the bound ÎT (π |γ ) ≤ A that

�H (π)2 ≤ 2A

∫ T

0
dt〈χ(πt ), (∇Ht)

2〉.
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Fix a function J in C2
0(�) and 0 ≤ s < t ≤ T . Approximate the indicator of the

interval [s, t] by smooth functions Fδ(r) and let Hδ(r, u) = Fδ(r)J (u). With this
definition,

〈πt , J 〉 − 〈πs, J 〉 = lim
δ→0

{
〈πT ,Hδ

T 〉 − 〈π0,H
δ
0 〉 −

∫ T

0
〈πr, ∂rH

δ
r 〉dr

}
.

Rewrite the expression inside braces as the sum of �Hδ(π) with linear terms in-
volving only space derivatives of Hδ . Since d , χ are bounded functions, we obtain
that

|〈πt , J 〉 − 〈πs, J 〉|
≤ C0(t − s)

{‖J ′′‖L1(�) + ‖J ′‖L1(�)

}+ C0A(t − s)1/2‖J ′‖L2(�)

for some constant C0 depending only on ρ±, E. In this formula ‖ · ‖Lp(�), p ≥ 1,
stand for the usual Lp norm. This concludes the proof of the lemma. �

Fix π in D([0, T ], M) such that IT (π |γ ) < ∞. We claim that for all H in
C0,1(�T ),

〈〈d(π),∇H 〉〉 − d(ρ+)

∫ T

0
dt Ht(1) + d(ρ−)

∫ T

0
dt Ht(−1)

(4.7)
= −〈〈∇d(π),H 〉〉,

where ∇d(πt ) stands for the generalized derivative of d(πt ). Indeed, π has a gen-
eralized derivative in L2(1/χ0(π)) because Q(π) < ∞. Thus, d(π) has a general-
ized derivative which also belongs to L2(1/χ0(π)). Fix H in C0,1(�T ). For δ > 0,
let βδ : [−1,1] → R+ be a smooth function with compact support in (−1,1) and
equal to 1 in the interval [−1 + δ,1 − δ]. Since Hδ(t, u) = βδ(u)H(t, u) belongs
to C

0,1
K (�T ),

〈〈d(π),∇Hδ〉〉 = −〈〈∇d(π),Hδ〉〉.
It remains to let δ ↓ 0 and to recall that the value of π(t, ·) is fixed at the boundary
to deduce (4.7).

LEMMA 4.5. Let ĨT (·|γ ) : {π ∈ D([0, T ], M) : Q(π) < ∞} −→ [0,+∞] be
the functional defined by

ĨT (π |γ ) = sup
H∈C∞

K (�T )

{
−〈〈π, ∂tH 〉〉 +

〈〈
D(π)∇π − E

2
χ(π),∇H

〉〉
(4.8)

− 1

2
〈〈χ(π), (∇H)2〉〉

}
.

Fix π in Dγ such that Q(π) < ∞. Then ĨT (π |γ ) = ÎT (π |γ ).
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PROOF. Fix a trajectory π in Dγ such that Q(π) < ∞. Clearly, ĨT (π |γ ) ≤
ÎT (π |γ ). To prove the reverse inequality, assume that ÎT (π |γ ) < ∞ and fix ε > 0.
By definition, there exists H in C

1,2
0 (�T ) such that ÎT (π |γ ) ≤ ĴH (π) + ε.

For δ > 0, let βδ : [0, T ] → R+ be a smooth function with compact support in
(0, T ) and equal to 1 in the interval [δ, T − δ]. Let

Hδ(t, u) =
{

βδ(t)H
(
t, u/(1 − δ)

)
, if |u| ≤ 1 − δ,

0, otherwise.

For each δ > 0, Hδ is piecewise continuously differentiable and has compact sup-
port in �T . Moreover, since π belongs to Dγ , limδ→0 ĴHδ (π) = ĴH (π). Thus
ÎT (π |γ ) ≤ ĴHδ (π) + 2ε for δ small enough. It remains to approximate Hδ by a
smooth function to get that ÎT (π |γ ) ≤ ĨT (π |γ ).

On the other hand, if ÎT (π |γ ) = ∞, one can adapt the previous arguments to
show that ĨT (π |γ ) = ∞ as well. �

Lemmata 4.3 and 4.5 furnish an alternative definition of the rate functional
IT (·|γ ):

IT (π |γ ) =
{

ĨT (π |γ ), if π ∈ Dγ , Q(π) < ∞,
∞, otherwise.

(4.9)

We conclude this subsection with an observation on paths π with finite energy.

LEMMA 4.6. Fix a trajectory π in Dγ with finite energy: Q(π) < ∞. Assume
that

sup
H∈C∞

K (�T )

{
−〈〈π, ∂tH 〉〉 − 1

4
〈〈χ(π), (∇H)2〉〉

}
< ∞.

Then, IT (π |γ ) is finite.

PROOF. Fix a trajectory π in Dγ with finite energy and assume that the vari-
ational problem appearing in the statement of the lemma is finite. In view of (4.8),
(4.9),

IT (π |γ ) ≤ sup
H∈C∞

K (�T )

{
−〈〈π, ∂tH 〉〉 − 1

4
〈〈χ(π), (∇H)2〉〉

}

+ sup
H∈C∞

K (�T )

{〈〈
D(π)∇π − E

2
χ(π),∇H

〉〉
−1

4
〈〈χ(π), (∇H)2〉〉

}
.

By assumption, the first term on the right-hand side is finite. By the Schwarz in-
equality, the second term is bounded above by C0Q(π) for some finite constant C0
depending only on E, D(·) and χ(·). This proves the lemma. �
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4.3. Weighted Sobolev spaces. We introduce in this subsection weighted
Sobolev spaces. We start with the classical Sobolev spaces. Let H 1(�) be the
Sobolev space of functions G in L2(�) with generalized derivatives ∇G in L2(�).
H 1(�) endowed with the scalar product 〈·, ·〉1,2, defined by

〈G,J 〉1,2 = 〈G,J 〉 + 〈∇G,∇J 〉,
is a Hilbert space. The corresponding norm is denoted by ‖ · ‖1,2. Note that all
functions in H 1(�) are continuous. In particular, the boundary values are well
defined.

Denote by H 1
0 (�) the closure of C∞

K (�) in H 1(�). Since � is bounded, by
Poincaré’s inequality, there exists a finite constant C1 such that for all G ∈ H 1

0 (�),

‖G‖1,2 ≤ C1‖∇G‖.
This implies that in H 1

0 (�),

‖G‖2
1 = 〈∇G,∇G〉

is a norm equivalent to the norm ‖ · ‖1,2. Moreover, H 1
0 (�) is a Hilbert space with

inner product given by

〈G,J 〉1 = 〈∇G,∇J 〉.
By [32], Appendix (48b), page 1030, a function H in H 1(�) which vanishes at
the boundary belongs to H 1

0 (�).
Denote by H−1(�) the dual of H 1

0 (�), a Hilbert space equipped with the norm

‖v‖2−1 = sup
G∈C∞

K (�)

{
2〈v,G〉 −

∫
�

‖∇G(u)‖2 du

}
.

In this formula, 〈v,G〉 ≡ 〈v,G〉H−1,H 1
0

stands for the value of the linear form v

at G.
Finally, for a Banach space (B,‖ · ‖B) and T > 0, we denote by L2(0, T ;B) the

Banach space of measurable functions U : (0, T ) → B for which

‖U‖2
L2(0,T ;B)

=
∫ T

0
‖U(t, ·)‖2

B dt < ∞.

To prove the lower semicontinuity of the rate function, we need the following result
which provides certain compactness.

LEMMA 4.7. Let {ρn :n ≥ 1} be a sequence of functions in L2(�T ) such that∫ T

0
dt‖ρn

t ‖2
1,2 +

∫ T

0
dt‖∂tρ

n
t ‖2−1 ≤ C0

for some finite constant C0 and all n ≥ 1. Suppose that the sequence ρn converges
weakly in L2(�T ) to some ρ. Then ρn converges strongly in L2(�T ) to ρ.
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PROOF. Recall that H 1(�) ⊂ L2(�) ⊂ H−1(�). By [32], Theorem 21.A, the
embedding H 1(�) ⊂ L2(�) is compact. Hence, by [28], Lemma 4, Theorem 5,
the sequence {ρn :n ≥ 1} is relatively compact in L2(0, T ;L2(�)). In particular,
weak convergence of the sequence {ρn :n ≥ 1} implies strong convergence. �

We now introduce the weighted Sobolev spaces. Fix π in D([0, T ], M) and de-
note by H1

0(χ(π)) the Hilbert space induced by the smooth functions in C∞
K (�T )

endowed with the scalar product defined by

〈〈G,H 〉〉1,χ(π) =
∫ T

0
dt〈∇Gt,∇Ht 〉χ(πt ).

“Induced” means that we first declare two functions F , G in C∞
K (�T ) to be equiv-

alent if 〈〈F − G,F − G〉〉1,χ(π) = 0 and then we complete the quotient space with
respect to scalar product. Denote by ‖ · ‖1,χ(π) the norm associated to the scalar
product 〈〈·, ·〉〉1,χ(π).

Let H−1(χ(π)) be the dual of H1
0(χ(π)); it is a Hilbert space equipped with

the norm ‖ · ‖−1,χ(π) defined by

‖L‖2−1,χ(π) = sup
G∈C∞

K (�T )

{
2〈〈L,G〉〉 − ‖G‖2

1,χ(π)

}
.(4.10)

In this formula, 〈〈L,G〉〉 stands for the value of the linear form L at G. By Riesz
representation theorem, an element L of H−1(χ(π)) can be written as L(H) =
〈〈∇G,∇H 〉〉χ(π) for some G in H1

0(χ(π)). The next result states that H−1(χ(π))

is formally the space {∇P :P ∈ L2(χ(π)−1)}. For an integrable function H :� →
R, let 〈H 〉 = ∫� H(u)du.

LEMMA 4.8. A linear functional L : H1
0(χ(π)) → R belongs to H−1(χ(π))

if and only if there exists P in L2(χ(π)−1) such that L(H) = 〈〈P,∇H 〉〉 for every
H in C∞

K (�T ). In this case,

‖L‖2−1,χ(π) =
∫ T

0
dt
{〈Pt ,Pt 〉χ(πt )−1 − ct

}
,

where ct = 〈Ptχ(πt )
−1〉2〈χ(πt )

−1〉−11{〈χ(πt )
−1〉 < ∞}.

PROOF. Fix L in H−1(χ(π)). By the remark preceding the lemma, L(H) =
〈〈∇G, ∇H 〉〉χ(π) for some G in H1

0(χ(π)). Let P = χ(π)∇G ∈ L2(χ(π)−1) so
that L(H) = 〈〈P,∇H 〉〉. Reciprocally, fix P in L2(χ(π)−1). It is easy to check
that the linear functional L defined by L(H) = 〈〈P,∇H 〉〉 belongs to H−1(χ(π)).

To compute the norm of L, recall that there exists J in H1
0(χ(π)) such that

L(H) = 〈〈∇J,∇H 〉〉χ(π). Therefore,∫ T

0
dt〈{Pt − χ(πt )∇Jt }∇Ht 〉 = 0
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for all H in C∞
K (�T ). In particular, for almost all 0 ≤ t ≤ T ,

Pt − χ(πt )∇Jt = at a.s.,

where at is a constant. The right-hand side belongs to L2(χ(πt )
−1) because so

does the left-hand side. Thus at = 0 if 〈χ(πt )
−1〉 = ∞ and at = 〈Ptχ(πt )

−1〉 ×
〈χ(πt )

−1〉−1, otherwise. Moreover,

‖L‖2−1,χ(π) = sup
H∈C∞

K (�T )

{
2〈〈P,∇H 〉〉 − ‖H‖2

1,χ(π)

}
= sup

H∈C∞
K (�T )

{
2〈〈∇J,∇H 〉〉χ(π) − ‖H‖2

1,χ(π)

}
=
∫ T

0
dt〈χ(πt )(∇Jt )

2〉.
To conclude the proof, it remains to recall that χ(πt )∇Jt = Pt − at . �

Fix an integrable function G : [0, T ] × [−1,1] → R. Then,

V (G) = sup
H∈C∞

K (�T )

{
2〈〈G,H 〉〉 − ‖H‖2

1,χ(π)

}
< ∞

if and only if the linear functional LG :C∞
K (�T ) → R defined by LG(H) =

〈〈G,H 〉〉 belongs to H−1(χ(π)). Indeed, if V (G) < ∞, LG is bounded in
H1

0(χ(π)) and thus belongs to H−1(χ(π)). On the other hand, if LG belongs
to H−1(χ(π)), by Lemma 4.8, for each H in C∞

K (�T ), 〈〈G,H 〉〉 = LG(H) =
〈〈P,∇H 〉〉 for some P in L2(χ(π)−1). Hence, V (G) is finite by the Schwarz in-
equality. In this case, V (G) = ‖LG‖2−1,χ(π).

By abuse of notation, we shall say that G belongs to H−1(χ(π)) whenever the
linear functional LG belongs to H−1(χ(π)). In this case we denote by ‖G‖−1,χ(π)

the norm of LG :‖G‖−1,χ(π) = ‖LG‖−1,χ(π). With this convention, recalling (4.8),
for every path π in D([0, T ], M) with finite energy, Q(π) < ∞,

ĨT (π |γ ) = 1
2‖∂tπ − ∇(D(π)∇π) + (E/2)∇χ(π)‖2−1,χ(π),(4.11)

where this expression might take the value +∞. In this formula, ∂tπ is the linear
functional whose value at H ∈ C∞

K (�T ) is equal to −〈〈πt , ∂tH 〉〉.
Fix a trajectory π in Dγ with finite energy, Q(π) < ∞. Since χ and χ0 are

equivalent and since D is bounded, the weak derivatives ∇(D(π)∇π), ∇χ(π)

belong to H−1(χ(π)). In particular, ∂tπ belongs to H−1(χ(π)) if and only if
IT (π |γ ) is finite. Indeed, on the one hand, if ‖∂tπ‖−1,χ(π) < ∞, by Lemma 4.6,
IT (π |γ ) < ∞. On the other hand, if IT (π |γ ) < ∞, it follows from (4.11) that ∂tπ

belongs to H−1(χ(π)) as well.
If ∂tπ belongs to H−1(χ(π)), by Lemma 4.8, ∂tπ = ∇P for some P = Pπ in

L2(χ(π)−1),

〈〈π, ∂tH 〉〉 = 〈〈P,∇H 〉〉(4.12)
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for every H in C∞
K (�T ). We may of course choose P so that 〈Ptχ(πt )

−1〉 ×
〈χ(πt )

−1〉−11{〈χ(πt )
−1〉 < ∞} = 0. Replacing 〈〈π, ∂tH 〉〉 by 〈〈P,∇H 〉〉 in the

variational formula appearing in the statement of Lemma 4.5, we obtain from
Lemma 4.8 an explicit expression for the rate functional,

IT (π |γ ) = 1

2

∫ T

0
dt
{‖Pt − D(πt)∇πt + (E/2)χ(πt )‖2

χ(πt )−1 − Rt

}
,(4.13)

where

Rt = {δh − E}2 1

〈χ(πt )−1〉
and δh = h(ρ+) − h(ρ−) where h′(ρ) = D(ρ)/χ(ρ). Here we adopted the con-
vention that Rt vanishes if 〈χ(πt )

−1〉 = ∞. Note that Rt vanishes in the reversible
case because h(ρ+) − h(ρ−) = E there.

4.4. Lower-semicontinuity of IT (·|γ ). In this subsection we conclude the
proof that the rate function IT (·|γ ) is lower-semicontinuous and has compact level
sets.

LEMMA 4.9. There exists a constant C0 such that

‖∂tρ‖2−1,χ(ρ) ≤ C0{1 + IT (ρ|γ ) + Q(ρ)}, Q(ρ) ≤ C0{1 + IT (ρ|γ )}
for all ρ in D([0, T ], M).

PROOF. Fix ρ in D([0, T ], M) such that IT (ρ|γ ) < ∞. By (4.11),

‖∂tρ‖2−1,χ(ρ) ≤ 4IT (ρ|γ ) + 2‖∇(D(ρ)∇ρ) − (E/2)∇χ(ρ)‖2−1,χ(ρ).

Recall that D is bounded. By definition of the norm ‖ · ‖−1,χ(ρ) and by Schwarz
inequality, the second term is bounded above by C0{1 + Q(ρ)} for some finite
constant C0 which depends only on D, E and χ . This concludes the first part of
the proof.

We now prove the second statement of the lemma. Since Q(ρ) < ∞ it follows
that ρ(t, ·) is continuous and ρ(t,±1) = ρ± for almost all t ∈ [0, T ], and ∂tρ

belongs to L2([0, T ];H−1(�)).
Let ε = min{ρ−,1−ρ+} > 0 and let D = {(a, b) ∈ [0,1]×[−1,1] : 0 ≤ a+b ≤

1}. Fix 0 < δ < ε small and let Fδ : D → R be defined by

Fδ(a, b) = (a + b + δ) log
a + b + δ

a + δ
+ (1 + δ − a − b) log

1 + δ − a − b

1 + δ − a
.

Fix a smooth profile ρ̄ ∈ M satisfying the boundary conditions, ρ̄(±1) = ρ±.
Since ρ belongs to L2([0, T ];H 1(�)) and ρ(t,±1) = ρ± for almost all t ∈ [0, T ],
by [32], Appendix (48b), page 1030, ρ − ρ̄ belongs to L2([0, T ];H 1

0 (�)). As
∂t (ρ − ρ̄) = ∂tρ belongs to L2([0, T ];H−1(�)), by [32], Proposition 23.23(iii),
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there exists a sequence {Un :n ≥ 1} of smooth functions Un : [0, T ]×� → R with
compact support such that Un converges to ρ − ρ̄ in L2([0, T ];H 1

0 (�)) and ∂tU
n

converges to ∂tρ in L2([0, T ];H−1(�)).
For each n ≥ 1,∫

�
Fδ(ρ̄,Un

T ) −
∫
�

Fδ(ρ̄,Un
0 ) =

∫ T

0
dt〈∂tU

n
t , (∂2Fδ)(ρ̄,Un

t )〉,
where ∂2Fδ stands for the partial derivative of Fδ with respect to the second coor-
dinate. Since Fδ is smooth with bounded first and second derivatives and since Un

converges to ρ − ρ̄, letting n ↑ ∞, we obtain that

0 =
∫
�

Fδ(ρ̄, ρT − ρ̄) −
∫
�

Fδ(ρ̄, ρ0 − ρ̄) − 〈〈∂tρ, (∂2Fδ)(ρ̄, ρ − ρ̄)〉〉.
In this formula, the scalar product on the right-hand side has to be understood as
the value at (∂2Fδ)(ρ̄, ρ − ρ̄) of the linear functional ∂tρ. Since the last term is
equal to 〈〈∂tρ,hδ(ρ) − hδ(ρ̄)〉〉 where hδ(x) = log{δ + x/1 + δ − x}, the previous
identity can be written as

〈〈∂tρ,hδ(ρt ) − hδ(ρ̄)〉〉 =
∫
�

Fδ(ρ̄, ρT − ρ̄) −
∫
�

Fδ(ρ̄, ρ0 − ρ̄).(4.14)

Note that the right-hand side is absolutely bounded uniformly in δ, by a constant
depending only on ρ̄.

Fix a path π in H1(χ(π)). We claim that for any α > 0 and any H in
L2([0, T ];H 1

0 (�)).

〈〈∂tπ,H 〉〉 ≤ 1

α
IT (π |γ ) − 〈〈D(π)∇π,∇H 〉〉

(4.15)

+ E

2
〈〈χ(πt ),∇Ht 〉〉 + α

2
‖H‖2

1,χ(π).

We prove this statement at the end of the lemma.
Since hδ(ρt ) − hδ(ρ̄) belongs to L2([0, T ];H 1

0 (�)), (4.15) holds with π re-
placed by ρ and with Ht = hδ(ρt ) − hδ(ρ̄). By the Schwarz inequality, the third
term on the right-hand side is bounded by C0α

−1 + (α/2)‖H‖2
1,χ(π) for every

α > 0. Hereafter, C0 stands for a finite constant, depending only on E, ρ±, D

and χ , whose value may change from line to line. We have seen just after (4.14)
that the left-hand side is absolutely bounded by a constant depending only on ρ̄.
Hence, moving the term on the right-hand side to the left-hand side and the second
term on the right-hand side to the left-hand side, we get that

〈〈D(ρt )∇ρt ,∇Ht 〉〉 ≤ 1

α
C0 + 1

α
IT (ρ|γ ) + α‖H‖2

1,χ(π)

for every α > 0. Let χδ(a) = (a + δ)(1 + δ −a)/(1 + 2δ) so that h′
δ(a) = χδ(a)−1.

Since Ht = hδ(ρt )−hδ(ρ̄) and D is bounded below by a strictly positive constant,
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we may choose α small enough to get∫ T

0
dt

∫
�

du
(∇ρt)

2

χδ(ρt )
≤ C0{1 + IT (ρ|γ )}

for some constant C0. Applying Fatou’s lemma we obtain that Q(ρ) ≤ C0{1 +
IT (ρ|γ )}.

It remains to prove (4.15). Fix a path π in H1(χ(π)) and H in C∞
K (�T ). By

the explicit formula (4.11) for IT (π |γ ) and the variational formula (4.10) for the
norm ‖ · ‖−1,χ(π),

〈〈∂tπ − ∇(D(π)∇π) + (E/2)∇χ(π),H 〉〉 − α

2
‖H‖2

1,χ(π) ≤ 1

α
IT (π |γ )

for every α > 0. To conclude the proof, it remains to recall that C∞
K ([0, T ]×�) is

dense in L2([0, T ];H 1
0 (�)). �

PROOF OF THEOREM 4.2. To prove the lower semicontinuity we have to show
that for all λ ≥ 0, the set

Eλ = {π ∈ D([0, T ], M) : IT (π |γ ) ≤ λ}
is closed in D([0, T ], M). Fix λ ≥ 0 and consider a sequence {πn :n ≥ 1} in Eλ

converging to some π in D([0, T ], M). Thus for all G in C(�T ),

lim
n→∞〈〈G,πn〉〉 = 〈〈G,π〉〉.(4.16)

By Lemma 4.9, there exists a positive constant Cλ such that

sup
n≥1

Q(πn) ≤ Cλ and sup
n≥1

∫ T

0
dt‖∂tπn‖2−1 ≤ Cλ.

By (4.16), πn converges weakly to π in L2(�T ). Hence by Lemma 4.7, πn con-
verges strongly to π in L2(�T ). The proof of Lemma 4.1 shows that Q is lower
semicontinuous also for the strong L2(�T ) topology so that Q(π) ≤ Cλ < ∞.

Fix G in C∞
K (�T ). Since πn converges strongly to π in L2(�T ),

lim
n→∞

{〈〈πn, ∂tG〉〉 − 〈〈D(πn)∇πn,∇G〉〉 + (E/2)〈〈χ(πn),∇G〉〉 − ‖G‖2
1,χ(πn)

}
= 〈〈π, ∂tG〉〉 − 〈〈D(π)∇π,∇G〉〉 + (E/2)〈〈χ(π),∇G〉〉 − ‖G‖2

1,χ(π).

Since πn belongs to Eλ, the left-hand side is bounded by λ. Taking the supremum
over G in C∞

K (�T ) we obtain that ĨT (π |γ ) ≤ λ.
We claim that π belongs to Dγ . The proof of Lemma 4.4 with ĨT (·|γ ) in place

of ÎT (·|γ ) shows that π is uniformly continuous in time. In particular, π belongs
to C([0, T ], M). Furthermore, since πn ∈ Dγ converges to π in L2(�T ) and π ∈
C([0, T ], M), π(0, ·) = γ (·).
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To show that π(·,±1) = ρ±, recall that the boundary values are well defined for
any function ρ in H 1(�). Moreover,∫

∇ρH du = H(1)ρ(1) − H(−1)ρ(−1) −
∫

ρ∇H du

for all function H in C∞([−1,1]). Since Q(πn) ≤ Cλ, there exists a subsequence
nk and v in L2(�T ) such that ∇πnk

converges weakly in L2(�T ) to v. Since πn

converges in L2(�T ) to π , by an integration by parts formula for time-dependent
smooth functions H with compact support in [0, T ] × �, similar to the last dis-
played equation, vt = ∇πt for almost all t . Since πn belongs to Dγ , again by the
integration by parts formula π(·,±1) = ρ± for almost all t . This proves the claim
that π belongs to Dγ .

To conclude the proof of the lower semicontinuity, note that IT (π |γ ) ≤ λ in
view of (4.9) and the estimates Q(π) < ∞, ĨT (π |γ ) ≤ λ obtained above.

We now turn to the proof of the compact level sets. Consider a sequence of tra-
jectories {ρn :n ≥ 1} such that IT (ρn|γ ) ≤ λ. Since each trajectory is positive and
bounded by 1, there exists a subsequence, still denoted by {ρn :n ≥ 1}, which con-
verges weakly in L2(�T ) to some trajectory ρ. Repeating the arguments presented
in the first part of the proof, we may conclude that ρn converges strongly to ρ in
L2(�T ) and that Q(ρ) < ∞. The first part of the proof shows also that IT (·|γ )

is lower semicontinuous for the weak L2(�T ) topology so that IT (ρ|γ ) ≤ λ. By
Lemma 4.4, ρn, ρ are uniformly continuous in time. In particular, strong conver-
gence in L2(�T ) implies convergence in C([0, T ], M). �

5. IT (·|γ )-density. In this section we show that any path π ∈ D([0, T ], M)

with finite rate function, IT (π |γ ) < ∞, can be approximated by the smooth paths
introduced in Definition 3.6. As in the previous section, we work with an arbi-
trary smooth diffusion coefficient D uniformly positive and an arbitrary mobility
χ which satisfies the bounds (4.1). In particular, in the Definition 3.6 we need to
replace the hydrodynamic equation (2.1) by (4.2). The main theorem of this section
is stated as follows.

THEOREM 5.1. Fix γ ∈ M. The set D◦
T ,γ is IT (·|γ )-dense.

The proof of the IT (·|γ )-density of some set A relies on the next two results.
Recall from (4.12) that for each path π such that IT (π |γ ) < ∞, there exists P =
Pπ in L2(χ(π)−1) such that 〈〈π, ∂tH 〉〉 = 〈〈P,∇H 〉〉 for every H in C∞

K (�T ) and
〈Ptχ(πt )

−1〉1{〈χ(πt )
−1〉 < ∞} = 0.

LEMMA 5.2. Fix a trajectory π with IT (π |γ ) < ∞. Consider a sequence
{πn :n ≥ 1} such that IT (πn|γ ) < ∞ and:

1. πn, Pn = Pπn , ∇πn converge to π , Pπ , ∇π almost everywhere in �T ;
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2. {D(πn)∇πn}2/χ(πn), P 2
πn

/χ(πn) are uniformly integrable;

3.
∫ T

0 dt 1/〈χ(πn(t))
−1〉 converges to

∫ T
0 dt 1/〈χ(π(t))−1〉.

Then, IT (πn|γ ) converges to IT (π |γ ).

PROOF. Recall that D(·), χ(·) are continuous functions and recall the explicit
form (4.13) for the rate function IT (π |γ ). The assumptions of the lemma are tai-
lored for IT (πn|γ ) to converge to IT (π |γ ). �

The following elementary lemma will be used repeatedly in the sequel to prove
uniform integrability of sequences of functions.

LEMMA 5.3. Fix a measure space (�,μ, F ) and a function f in L1(μ).
There exists an increasing convex function � : R+ → R+ such that limx→∞ �(x)/

x = ∞ and ∫
�(|f |) dμ < ∞.

A family {fα} of functions satisfying

sup
α

∫
�(|fα|) dμ < ∞

for a function � such that limx→∞ �(x)/x = ∞ is uniformly integrable.

PROOF. For x ≥ 0 let G(x) := ∫∞
x dy μ(|f | > y). Then G(0) = ∫

dμ |f | <

∞ and G(x) ↓ 0 as x ↑ ∞. It is simple to check that the function �(x) =∫ x
0 dy G(y)−1/2 meets the requirements of the lemma. The second statement is

trivial. �

The proof of Theorem 5.1 strongly uses the smoothing effect of the hydrody-
namic equation. Denote by ρ the solution of the hydrodynamic equation (4.2) with
initial condition γ so that ÎT (ρ|γ ) = 0. We claim that∫ T

0
dt

∫ 1

−1
du

{∇ρ}2

χ(ρ)
< ∞,

∫ T

0
dt

∫ 1

−1
du

P 2
ρ

χ(ρ)
< ∞.(5.1)

Let F : [0,1] → R+ such that F ′′(α) = D(α)/χ(α), α ∈ (0,1). In view of our
assumptions, F is bounded but its derivative F ′(α) diverges as α → 0,1. Pick
a sequence of smooth functions Fn : R → R+ such that Fn(α) ↑ F(α), F ′′

n (α) ↑
F ′′(α), α ∈ (0,1), as n → ∞. The first estimate in (5.1) is proven by computing
the time derivative of

∫
� Fn(ρ(t, u)) du and taking the limit n → ∞.

Since, by (4.1), χ is equivalent to χ0, the first estimate in (5.1) shows that the
energy of ρ is finite: Q(ρ) < ∞. Therefore, by definition of IT (·|γ ), IT (ρ|γ ) =
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ÎT (ρ|γ ). Since ÎT (ρ|γ ) vanishes, IT (ρ|γ ) = 0. In particular, from the explicit
formula (4.13) for IT (ρ|γ ) we have that∫ T

0
dt‖Pt‖2

χ(ρt )−1 ≤ 2
∫ T

0
dt‖D(ρt)∇ρt − (E/2)χ(ρt )‖2

χ(ρt )−1 + 2
∫ T

0
dt Rt .

The finiteness of this expression follows from the boundedness of χ and from the
first estimate in (5.1).

We are now ready to prove the first result towards Theorem 5.1. Let F0 be the
subset of Dγ of all trajectories π such that IT (π |γ ) < ∞ and for which there exist
δ > 0 such that π is equal to the solution of the hydrodynamic equation (4.2) in the
time interval [0, δ]. More precisely, denote by ρ the solution of (4.2). There exists
δ > 0 such that π(t, u) = ρ(t, u) for (t, u) in [0, δ] × [−1,1].

LEMMA 5.4. The set F0 is IT (·|γ )-dense.

PROOF. Fix a path π such that IT (π |γ ) < ∞ and let ρ be the solution of the
hydrodynamic equation (4.2). For ε > 0, define πε as

πε(t, ·) =
⎧⎨⎩

ρ(t, ·), for 0 ≤ t ≤ ε,
ρ(2ε − t, ·), for ε ≤ t ≤ 2ε,
π(t − 2ε, ·), for 2ε ≤ t ≤ T .

For each ε > 0, πε belongs to Dγ because so does π and because ρ is the
solution of the hydrodynamic equation. Moreover, Q(πε) ≤ Q(π) + 2Q(ρ) < ∞
and πε converges to π as ε ↓ 0 because π belongs to C([0, T ], M). It remains to
show that ÎT (πε|γ ) converges to ÎT (π |γ ).

By lower semicontinuity, ÎT (π |γ ) ≤ lim infε→0 ÎT (πε|γ ). To prove the reverse
inequality, decompose the rate function ÎT (πε|γ ) as the sum of the contributions
on each time interval [0, ε], [ε,2ε] and [2ε, T ]. The first contribution vanishes be-
cause πε follows the hydrodynamic equation in this interval and the third contri-
bution is bounded by ÎT (π |γ ) because πε in this interval is just a time translation
of the path π .

On the interval [ε,2ε], πε is the solution of the equation

∂tρt = −∇(D(ρ)∇ρ) + (E/2)∇χ(ρ).

In particular, by Lemma 4.5, the contribution of the interval [ε,2ε] to the rate
function is equal to

sup
H∈C∞

K (�T )

{
2
∫ ε

0
dt

〈
D(ρt )∇ρt − E

2
χ(ρt ),∇Ht

〉
− 1

2

∫ ε

0
dt〈χ(ρt ), (∇Ht)

2〉
}
.

By the Schwarz inequality, the previous expression is less than or equal to

C0

{
ε +

∫ ε

0
dt

〈
(∇ρt )

2

χ(ρt )

〉}
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for some finite constant C0 which depends only on E, D(·) and χ(·). Since, by
(5.1), Q(ρ) is finite, this expression vanishes as ε ↓ 0 and we are done. �

Denote by F1 the subset of F0 of all trajectories π such that for all 0 < δ ≤ T ,
there exists ε > 0 such that ε ≤ π(t, u) ≤ 1 − ε for δ ≤ t ≤ T , −1 ≤ u ≤ 1.

LEMMA 5.5. The set F1 is IT (·|γ )-dense.

PROOF. Fix π in F0. In view of the previous lemma, it is enough to exhibit
a sequence {πε : ε > 0} in F1 which converges to π and such that IT (πε|γ ) con-
verges to IT (π |γ ).

For 0 < ε < 1, let πε = (1 − ε)π + ερ where ρ is the solution of the hydrody-
namic equation (4.2). We claim that πε belongs to F1 for each 0 < ε < 1. On the
one hand, πε belongs to Dγ because so do π and ρ. Moreover, Q(πε) ≤ C0 < ∞
because Q is convex and both Q(π), Q(ρ) are finite. By Lemma 4.9 and (5.1),
∂tπε belong to H−1(χ(πε)). Thus all assumptions of Lemma 4.6 are fulfilled so
that IT (πε|γ ) < ∞. Since π belongs to F0 and ρ is the solution of the hydro-
dynamic equation, there exists δ1 > 0, independent of ε, such that πε follows the
hydrodynamic path on an interval [0, δ1]. Finally, by Theorem 3.3.5 in [25] and
the Nash estimate, the unique solution of the hydrodynamic equation (4.2), de-
noted here by ρ, is bounded below by a strictly positive constant and above by a
constant strictly smaller than 1 in any compact subset of (0, T ] × [−1,1]. Hence
for each δ2 > 0 there exists a > 0 such that a ≤ πε(t, u) ≤ 1 − a for δ2 ≤ t ≤ T .
This proves the claim.

Since πε converges to π as ε ↓ 0, to conclude the proof of the lemma, we have
to show that limε→0 IT (πε|γ ) = IT (π |γ ). To this end we verify the assumptions
of Lemma 5.2. Let P̃ε = (1 − ε)Pπ + εPρ and note that P̃ε is not equal to Pπε

because it does not have mean zero. To fulfill this condition, let

Pε(t, ·) = P̃ε(t, ·) − 〈P̃ε(t, ·)χ(πε(t, ·))−1〉
〈χ(πε(t, ·))−1〉 ·(5.2)

This expression is well defined because πε is bounded away from 0 and 1 on (0, T ].
Of course, by definition of P̃ε , for every H in C∞

K (�T ) 〈〈πε, ∂tH 〉〉 = 〈〈Pε,∇H 〉〉
so that Pε is the function Pπε defined at the beginning of this section.

Clearly, as ε ↓ 0, πε , P̃ε , ∇πε converge a.e. to π , P , ∇π , respectively. We claim
that Pε also converges a.e. to P . To prove this statement, it is enough to show that
the second term on the right-hand side of (5.2) vanishes as ε ↓ 0 for almost all
0 < t ≤ T . This is proved in several steps.

We first show that 〈χ(πε(t, ·))−1〉 converges to 〈χ(π(t, ·))−1〉 for all 0 ≤ t ≤ T .
Fix 0 ≤ t ≤ T . On the one hand, since πε converges to π and since χ is continuous,
by Fatou’s lemma, 〈χ(π(t))−1〉 ≤ lim infε→0〈χ(πε(t))

−1〉. If 〈χ(π(t))−1〉 = ∞,
we obtained the sought convergence.
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Assume that 〈χ(π(t))−1〉 < ∞. Since χ and χ0 are equivalent, this means that
〈χ0(π(t))−1〉 < ∞. The concavity of χ0 shows that

1

χ0(πε)
≤ 1

(1 − ε)χ0(π) + εχ0(ρ)
≤ 1

(1 − ε)χ0(π)
.

Thus if � stands for the bounded continuous function χ0/χ ,

lim sup
ε→0

〈
1

χ(πε(t))

〉
= lim sup

ε→0

〈
�((πε(t))

χ0(πε(t))

〉
≤ lim sup

ε→0

1

(1 − ε)

〈
�((πε(t))

χ0(π(t))

〉
.

Since we assumed χ0(π(t))−1 to be integrable and since � is a continu-
ous bounded function, the previous limit is equal to 〈�((π(t))χ0(π(t))−1〉 =
〈χ(π(t))−1〉.

We now examine the term 〈P̃ε(t, ·)χ(πε(t, ·))−1〉. Since Pρ(t, ·) = D(ρt)∇ρt −
(E/2)χ(ρt ) + F(t) for some function F : [0, T ] → R, Pρ is bounded for every
t > 0. If 〈χ(π(t, ·))−1〉 is finite, an argument similar to the one presented in the
previous paragraphs shows that 〈P̃ε(t, ·)χ(πε(t, ·))−1〉 converges to 〈Pπ(t, ·) ×
χ(π(t, ·))−1〉. This expression vanishes by definition of Pπ .

Suppose now that 〈χ(π(t, ·))−1〉 = ∞. By the Schwarz inequality,( 〈Pπ(t, ·)χ(πε(t, ·))−1〉
〈χ(πε(t, ·))−1〉

)2

≤ 〈Pπ(t, ·)2χ(πε(t, ·))−1〉
〈χ(πε(t, ·))−1〉 .

We have already seen that the denominator diverges while the numerator remains
bounded by C0〈Pπ(t, ·)2χ(π(t, ·))−1〉 for some finite constant C0. This expres-
sion is finite a.s. in t because Pπ belongs to L2(χ(π)−1). On the other hand,
〈Pρ(t, ·)χ(πε(t, ·))−1〉 is bounded by C0〈χ(πε(t, ·))−1〉 for some finite constant
C0 which depends on ρ. Putting together the previous two assertions, we obtain
that the second term on the right-hand side of (5.2) vanishes if 〈χ(π(t, ·))−1〉 = ∞.
This concludes the proof that Pε converges a.e. to P .

To prove hypothesis (2) in Lemma 5.2, first note that it is enough to show
that {∇πε}2/χ0(πε), P 2

πε
/χ0(πε) are uniformly integrable sequences. By (5.1) and

Lemma 5.3, there exists a convex increasing function � such that∫ T

0
dt

∫ 1

−1
du�

({∇π}2

χ0(π)

)
< ∞,

∫ T

0
dt

∫ 1

−1
du�

({∇ρ}2

χ0(ρ)

)
< ∞.

By the Schwarz inequality, {∇πε(t, u)}2, which is equal to the right-hand side of
the next equation, is bounded above by{

(1 − ε)
∇π(s, u)√
χ0(π(s, u))

√
χ0(π(s, u)) + ε

∇ρ(s, u)√
χ0(ρ(s, u))

√
χ0(ρ(s, u))

}2

≤ {(1 − ε)χ0(π(s, u)) + εχ0(ρ(s, u))}

×
{
(1 − ε)

{∇π(s, u)}2

χ0(π(s, u))
+ ε

{∇ρ(s, u)}2

χ0(ρ(s, u))

}
.
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By the concavity of χ0 and Jensen’s inequality, this expression is less than or equal
to

χ0(πε(s, u))

{
(1 − ε)

{∇π(s, u)}2

χ0(π(s, u))
+ ε

{∇ρ(s, u)}2

χ0(ρ(s, u))

}
.

Hence since � is increasing and convex,∫ T

0
dt

∫ 1

−1
du�

({∇πε}2

χ0(πε)

)
≤ (1 − ε)

∫ T

0
dt

∫ 1

−1
du�

({∇π}2

χ0(π)

)

+ ε

∫ T

0
dt

∫ 1

−1
du�

({∇ρ}2

χ0(ρ)

)
.

Thus by Lemma 5.3, the sequence {∇πε}2/χ0(πε) is uniformly integrable. We may
proceed in a similar way to prove the uniform integrability of P 2

πε
/χ0(πε).

To prove assumption (3), note that it is enough to show that
limε→0〈χ(πε(t))

−1〉 = 〈χ(π(t))−1〉 for almost all 0 ≤ t ≤ T and to apply the
dominated convergence theorem because χ is bounded, but this has already been
proved. �

Denote by F2 the set of trajectories π in F1 for which there exists δ1, δ2 > 0
such that: π follow the hydrodynamic path in the time interval [0, δ1], is constant
in time in the interval [δ1, δ1 + δ2], and π is smooth in time in the time interval
(δ1, T ].

LEMMA 5.6. The set F2 is IT (·|γ )-dense.

PROOF. Fix a trajectory π in F1. Assume that π follows the hydrodynamic
equation in the time interval [0,2a] for some a > 0. Let a ≤ t0 ≤ 2a be such that
〈(∇πt0)

2/χ(πt0)〉 < ∞. This is possible because π follows the hydrodynamic path
ρ in the time interval [0,2a] and Q(ρ) < ∞. For 0 < ε < a, let T − 2ε < Tε <

T − ε such that 〈
(∇πTε)

2

χ(πTε)

〉
≤ 1

ε

∫ T −ε

T −2ε

〈
(∇πt)

2

χ(πt )

〉
dt + ε,

π(Tε,±1) = ρ±. Roughly speaking, the profile πTε minimizes locally the energy
and has the correct boundary conditions. The latter condition can be achieved
because π belongs to Dγ and Q(π) < ∞ so that π(t, ·) is continuous and
π(t,±1) = ρ± for almost all t . Clearly, 〈(∇πTε)

2/χ(πTε)〉 ≤ ε−1Q(π) + ε.
Define the path π̃ε by

π̃ε(t, ·) =

⎧⎪⎪⎨⎪⎪⎩
π(t, ·), for 0 ≤ t ≤ t0,
π(t0, ·), for t0 ≤ t ≤ t0 + ε,
π(t − ε, ·), for t0 + ε ≤ t ≤ Tε + ε,
π(Tε, ·), for Tε + ε ≤ t ≤ T .



LDP FOR THE WEAKLY ASYMMETRIC EXCLUSION PROCESS 2393

We claim that π̃ε belongs to F1 for each ε > 0. Moreover, as ε ↓ 0, π̃ε , IT (π̃ε|γ )

converge to π , IT (π |γ ), respectively.
By construction π̃ε belongs to Dγ and follows the hydrodynamic equation

in the time interval [0, t0]. It is also bounded below by a strictly positive con-
stant and above by a constant strictly less than 1 on each time interval [δ, T ],
δ > 0 because π is as well. Moreover, Q(π̃ε) is uniformly bounded by Q(π) +
ε〈(∇πt0)

2/χ(πt0)〉 + ε〈(∇πTε)
2/χ(πTε)〉 ≤ 2Q(π) + O(ε). Finally, to show that

ÎT (π̃ε|γ ) is uniformly bounded, for 0 ≤ t0 < t1 ≤ T , denote by Î[t0,t1](·|γ ) the
contribution of the time interval [t0, t1] to the rate function ÎT (π̃ε|γ ). On the one
hand, Î[0,t0]∪[t0+ε,Tε+ε](π̃ε|γ ) ≤ ÎT (π |γ ). On the other hand, Î[t0,t0+ε](π̃ε|γ ) ≤
C0ε〈(∇πt0)

2/χ(πt0)〉 and Î[Tε+ε,T ](π̃ε|γ ) ≤ C0ε〈(∇πTε)
2/χ(πTε)〉 for some finite

constant C0 depending only on E, D(·), χ(·). By definition of Tε , this expression
is bounded by

C0

∫ T −ε

T −2ε

〈
(∇πt)

2

χ(πt )

〉
dt + C0ε

2,

which vanishes as ε ↓ 0 because π has finite energy. This proves that π̃ε belongs
to F1 for each ε > 0.

Since π belongs to C([0, T ], M), π̃ε converges to π as ε ↓ 0. By lower semi-
continuity, to prove that ÎT (π̃ε|γ ) converges to ÎT (π |γ ) it is enough to show that
lim supε→0 ÎT (π̃ε|γ ) ≤ ÎT (π |γ ). This follows from the bound on ÎT (π̃ε|γ ) ob-
tained in the previous paragraph.

In conclusion, to prove the lemma, it is enough to show that every path π in F1
which follows the hydrodynamic equation in a time interval [0, b], is constant in
the time intervals [b, b+a], [T −a,T ], can be approximated by a sequence in F2.
Fix such a path π .

Denote by ι a smooth, positive function with support contained in [0,1] and
integral equal to 1. For ε > 0, let ιε(t) = ε−1ι(tε−1) be a smooth approximation
of the identity. For ε < a, consider the path πε defined by

πε(t, ·) =
⎧⎨⎩

π(t, ·), for 0 ≤ t ≤ b,∫
R

ds ιε(s)π(t + s, ·), for b ≤ t ≤ T ,

where we extended the definition of π to the time interval [T ,∞) by setting
π(t, u) = π(T ,u) for t ≥ T .

We claim that πε belongs to F2 for each ε < a. By construction it belongs to Dγ ,
follows the hydrodynamic equation in the time interval [0, b] and is bounded below
by a strictly positive constant and above by a constant strictly less than 1 on each
time interval [δ′, T ], δ′ > 0. It is constant in time in the interval [b, b + a − ε] and
smooth in time in the interval (b, T ] because we chose a smooth approximation
ιε of the identity. By convexity of Q, Q(πε) ≤ Q(π) + O(ε) because Q(π∗

b ) and
Q(π∗

T ) are finite. Here π∗
b , π∗

T are the trajectories constant in time and equal at
each time to πb and πT , respectively.
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It remains to show that πε , ÎT (πε|γ ) converge to π , ÎT (π |γ ), respectively. We
rely on Lemma 5.2.

Recall from (4.12) that there exists P = Pπ in L2(χ(π)−1) such that 〈〈π,

∂tH 〉〉 = 〈〈P,∇H 〉〉 for every H in C∞
K (�T ). An elementary computation shows

that 〈〈πε , ∂tH 〉〉 = 〈〈P̃ε,∇H 〉〉 if we define P̃ε by

P̃ε(t, ·) =
⎧⎨⎩

P(t, ·), for 0 ≤ t ≤ b,∫
R

ds ιε(s)P (t + s, u), for b ≤ t ≤ T .

Note that P̃ε belongs to L2(χ(πε)
−1) because P̃ε , πε coincide with P , π on the

interval [0, b] because π is bounded below by a strictly positive constant and above
by a constant strictly less than 1 on [b,T ] so that the denominator χ−1 is irrelevant
and because the square function is convex. In particular, by Lemma 4.6, ÎT (πε|γ )

is finite for every ε > 0.
Let

Pε(t, ·) = P̃ε(t, ·) − 〈P̃ε(t, ·)χ(πε(t, ·))−1〉
〈χ(πε(t, ·))−1〉 1{〈χ(πε(t, ·))−1〉 < ∞}

for Pε to have mean zero. We may remove the indicator function because πε is
bounded below and above on (0, T ].

Since π , ∇π , P belong to L1(�T ), πε , ∇πε , P̃ε converge in L1(�T ) to π , ∇π ,
P , respectively. Taking subsequences, if necessary, we obtain a.e. convergence and
convergence of P̃ε(t, ·) to P(t, ·) in L1(�) for a.e. 0 ≤ t ≤ T . Since πε is bounded
away from 0, 1, it is not difficult to show that Pε also converges a.e. to P .

Since D is bounded and χ is equivalent to χ0, to prove the uniform integra-
bility of {D(πε)∇πε}2/χ(πε), it is enough to estimate {∇πε}2/χ0(πε). Recall that
Q(π∗

T ) < ∞. By Lemma 5.3, there exists a convex increasing function � such that∫ T

0
dt

∫ 1

−1
du�

({∇π}2

χ0(π)

)
< ∞,

∫ 1

−1
du�

({∇πT }2

χ0(πT )

)
< ∞.(5.3)

By the Schwarz inequality, the concavity of χ0 and the Jensen inequality, for t ≥ b,

{∇πε(t, u)}2 =
(∫

ds ιε(s − t)
∇π(s, u)

χ0(π(s, u))1/2 χ0(π(s, u))1/2
)2

≤ χ0(πε(t, u))

∫
ds ιε(s − t)

{∇π(s, u)}2

χ0(π(s, u))
.

Hence, by the Jensen inequality, since � is convex and increasing,∫ T

b
dt

∫ 1

−1
du�

({∇πε}2

χ0(πε)

)
≤
∫ T

b
dt

∫ 1

−1
du

∫
ds ιε(s − t)�

({∇π(s, u)}2

χ0(π(s, u))

)
.
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Integrating in t the right-hand side, we get that∫ T

b
dt

∫ 1

−1
du�

({∇πε}2

χ0(πε)

)

≤
∫ T

b
ds

∫ 1

−1
du�

({∇π}2

χ0(π)

)
+ ε

∫ 1

−1
du�

({∇πT }2

χ0(πT )

)
< ∞.

It remains to add the piece corresponding to the time interval [0, b] to obtain, in
view of (5.3) and Lemma 5.3, the uniform integrability of {∇πε}2/χ0(πε) and,
therefore, the one of {D(πε)∇πε}2/χ(πε). The same argument shows the uniform
integrability of P 2

ε /χ(πε).
To prove the third condition of Lemma 5.2, it is enough to show that

limε→0〈χ(πε(t))
−1〉 = 〈χ(π(t))−1〉 for all 0 < t ≤ T . Fix t > 0. Since π be-

longs to F1, there exists δ > 0 and ε0 > 0 such that δ ≤ πε(t) ≤ 1 − δ for all
ε < ε0. Since πε(t) converges to π(t) a.s. as ε ↓ 0, condition (3) follows from the
dominated convergence theorem. �

Note that each path πε defined in the proof of this lemma is continuous on
(0, T ] × [−1,1]. The path πε is continuous on (0, b] × [−1,1] because it follows
the hydrodynamic equation. The continuity can be extended to [b, b + a − ε] ×
[−1,1] because πε(t, ·) is constant and equal to π(b, ·) in this interval. By con-
struction, πε is continuous in time on (0, T ] × [−1,1]. On the other hand, if we
denote by ∗ the convolution, since for t ≥ b πε(t, ·) = (π ∗ ιε)(t, ·), by the Schwarz
inequality, for b ≤ t ≤ T ,

〈(∇πε(t, ·))2〉 ≤
∫ ε

0
ιε(s)〈(∇πt+s)

2〉ds ≤ C1

ε

∫ t+ε

t
〈(∇πs)

2〉ds ≤ 2C1

ε
Q(π).

In the last step we used the fact that π is constant in the interval [T − a,∞) to
estimate the piece of the integral in the interval [T ,T + ε] by the energy of π .
It follows from this energy estimate that πε is uniformly continuous in space in
[b,T ]×[−1,1]. In particular, we could have required paths in F2 to be continuous,
but we do not need this property in the sequel.

Let F3 be the set of trajectories π in F1 (not F2) for which there exists δ > 0
such that: π follows the hydrodynamic path in the time interval [0, δ], is continu-
ous on (0, T ] × [−1,1] and smooth on [δ, T ] × [−1,1]. Note that F3 corresponds
to the set D◦

T ,γ introduced in Definition 3.6. For a path π in F3, denote by t(π)

the positive time at which smoothness may be violated. In the previous descrip-
tion, t(π) = b once one recalls that π is also smooth in (0, δ) × [−1,1] because it
follows the hydrodynamic equation.

PROOF OF THEOREM 5.1. Fix a trajectory π in F2. In view of the previous
lemma, it is enough to show that there exists a sequence {πε} in F3 such that πε ,
IT (πε|γ ) converge to π , IT (π |γ ), respectively.
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For ε > 0, denote by RD
ε , RN

ε : [−1,1]2 → R+ the resolvent of the Dirichlet,

respectively, Neumann Laplacian: R
D/N
ε = (I − ε�D/N)−1, where �D , �N stand

for the Laplacian with Dirichlet, Neumann boundary conditions. An elementary
computation gives an explicit form for the resolvent transcribed below:

RD
ε (u, v) =

√
λ

sinh{2√
λ}

{
sinh

{√
λ(1 + u)

}
sinh

{√
λ(1 − v)

}
, if u ≤ v,

sinh
{√

λ(1 − u)
}

sinh
{√

λ(1 + v)
}
, otherwise;

RN
ε (u, v) =

√
λ

sinh{2√
λ}

{
cosh

{√
λ(1 + u)

}
cosh

{√
λ(1 − v)

}
, if u ≤ v,

cosh
{√

λ(1 − u)
}

cosh
{√

λ(1 + v)
}
, otherwise;

where λ = ε−1. In contrast with RD , RN is a probability kernel.
Since π belongs to F2, there exists 0 < a < b ≤ T , such that π follows the

hydrodynamic equation in the time interval [0, a] and is constant in the time
interval [a, b]. Let j : R → [0,1] be a smooth nondecreasing function such that
j (t) = 0, 1, for t ≤ 0, t ≥ 1, respectively. For 0 < ε < b − a, let jε(t) = εj (tε−1),
βε(t) = jε(t − a) and

πε(t, ·) =
{

π(t, ·), for 0 ≤ t ≤ a,
ρ∗ + RD

βε(t)

(
π(t, ·) − ρ∗), for a < t ≤ T ,

where ρ∗ is the linear profile ρ−(1 − u)/2 + ρ+(1 + u)/2.
We claim that πε belongs to F3. Since π belongs to F2, by construction, πε be-

longs to Dγ , πε follows the hydrodynamic equation on the time interval [0, a]
and πε is smooth in space and time on the interval (a, T ] and continuous on
[a,T ]×[−1,1]. We prove at the end of the lemma that there exists a finite constant
C0 such that

χ0(R
N
βε(t)

π(t, u))

χ0(πε(t, u))
≤ C0(5.4)

for all t > a, −1 ≤ u ≤ 1, ε > 0. Since RN
ε is the resolvent of the Laplacian with

reflecting boundary conditions, infu∈[−1,1] f (u) ≤ (RN
ε f )(v) ≤ supu∈[−1,1] f (u)

for every v in [−1,1], ε > 0. In particular, there exists δ > 0 such that δ ≤
(RN

ε π)(t, u) ≤ 1 − δ for t ≥ a because π belongs to F2. It follows from (5.4)
that the same holds for πε . Therefore, πε is bounded away from 0 and 1 in the
time interval (a, T ]. Since πε follows the hydrodynamic equation in [0, a], for
every δ > 0, there exists ϕ > 0, independent of ε, such that ϕ ≤ πε ≤ 1 − ϕ in the
time interval [δ, T ] for all ε > 0.

We examine in this paragraph the energy of πε . An elementary computation
shows that ∇πε = RN

βε
∇π . Therefore, by the Schwarz inequality, for t ≥ a,

〈(∇πε)
2〉 = 〈(RN

βε
∇π)2〉 ≤ 〈RN

βε
(∇π)2〉 = 〈(∇π)2〉.

Since πε = π on the time interval [0, a] and since both paths are bounded away
from 0 and 1 in the time interval [a,T ], there exists a finite constant C0 = C0(π)

such that Q(πε) ≤ C0Q(π) uniformly over ε > 0.
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To show that ÎT (πε|γ ) is bounded, recall from (4.12) that there exists P = Pπ in
L2(χ(π)−1) such that 〈〈π, ∂tH 〉〉 = 〈〈P,∇H 〉〉 for every H in C∞

K (�T ). Fix such a
function H . A straightforward computation using the relation ∇RD

ε = RN
ε ∇ shows

that

〈〈πε, ∂tH 〉〉 = 〈〈RN
βε(t)

P ,∇H
〉〉−〈〈π − ρ∗,

(
∂tR

D
βε(t)

)
H
〉〉
.(5.5)

In the first term on the right-hand side, it must be understood that RN
βε(t)

P = P for
t ≤ a and in the second term that the time derivative concerns RD

βε(t)
exclusively.

We claim that the second term on the right-hand side of (5.5) is negligi-
ble in the sense that the linear functional �ε :C∞

K (�T ) → R, �ε(H) = 〈〈π −
ρ∗, (∂tR

D
βε(t)

)H 〉〉, is bounded in H−1(χ(πε)) by a constant which vanishes as
ε ↓ 0. More precisely, there exists a constant Cε(π), which vanishes as ε ↓ 0,
such that 〈〈

π − ρ∗,
(
∂tR

D
βε(t)

)
H
〉〉2≤ Cε(π)‖H‖2

1,χ(πε)
(5.6)

for every H in C∞
K (�T ). Indeed, since ∂tR

D
βε(t)

= β ′
ε(t)�D(RD

βε(t)
)2 where R2

stands for the composition of the operator R with itself, by the Schwarz inequality,
the left-hand side of (5.6) is bounded above by∫ T

0
[β ′

ε(t)]2〈{∇[πt − ρ∗]}2〉dt

∫ a+ε

a
〈(∇Ht)

2〉dt.

Since πε is bounded away from 0 and 1 in the time interval [a, a + ε], we may
include a factor χ(πε(t, ·)) in the second integral paying the price of a constant
C0 = C0(π) and then extend the time integral to the interval [0, T ]. Since β ′

ε(t)

vanishes outside the interval [a, a + ε] and is bounded uniformly in time and in
ε > 0, the previous expression is less than or equal to

C0(π)

∫ a+ε

a
〈{∇[πt − ρ∗]}2〉dt

∫ T

0
〈(∇Ht)

2χ(πε(t, ·))〉dt.

Since π and ρ∗ have finite energy, the first integral vanishes as ε ↓ 0. This proves
(5.6).

We claim that ∂tπε belongs to H−1(χ(πε)). In view of (5.5), (5.6), it is enough
to show that RN

βε(t)
P belongs to L2(χ(πε)

−1). This follows from the identities
πε = π , RN

βε(t)
P = P for t ≤ a, and the observation that 〈(RN

βε(t)
P )2〉 ≤ 〈P 2〉,

together with the fact that πε , π are bounded away from 0, 1 in the time interval
[a,T ], uniformly in ε > 0.

Since ∂tπε belongs to H−1(χ(πε)) and πε has finite energy, by Lemma 4.6,
ÎT (πε|γ ) is finite. To conclude the proof of the lemma, it remains to show that πε ,
ÎT (πε|γ ) converge to π , ÎT (π |γ ).

By construction, πε converges to π . Let

Pε = RN
βε

P − 〈RN
βε

Pχ(πε)
−1〉

〈χ(πε)−1〉 .
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By (5.5), for every H in C∞
K (�T ), 〈〈πε, ∂tH 〉〉 = 〈〈Pε,∇H 〉〉 + �ε(H), where,

by (5.6), �ε(H) is a negligible term. In particular, by Lemma 5.2, to show that
ÎT (πε|γ ) converges to ÎT (π |γ ) we just need to check the assumptions (1), (2), (3)
for πε , ∇πε and Pε .

By definition, for t > a, πε = ρ∗ + RD
βε

(π − ρ∗), ∇πε = RN
βε

∇π and RN
βε

P

converge a.e. to π , ∇π , P , respectively. Repeating the arguments presented in the
proof of the previous lemma, we can deduce from the a.s. convergence of RN

βε
P

that Pε converges a.e. to P .
We show that (∇πε)

2/χ(πε) is uniformly integrable. Since RN is a probability
kernel and since χ0 is concave, by the Schwarz and Jensen inequalities,

{∇πε(t, u)}2 =
(∫

dv RN
βε

(u, v)
∇π(t, v)

χ0(π(t, v))1/2 χ0(π(t, v))1/2
)2

≤ χ0(R
N
βε

π(t, u))

∫
dv RN

βε
(u, v)

{∇π(t, v)}2

χ0(π(t, v))
.

By (5.4) and proceeding as in the proof of the previous lemma, we end the proof of
the uniformly integrability of {∇πε}2/χ0(πε). The same argument applies to Pε .

Assumption (3) of Lemma 5.2 is proved as in the previous lemma. This con-
cludes the proof, modulo (5.4), which we now examine. Recall that λ = ε−1. Let
us first consider the case u ∈ [−1,−1 + √

ε]. By an explicit computation,

πε(t, u) ≥ ρ∗(u) − RD
ε ρ∗(u) = ρ−

sinh[√λ(1 − u)]
sinh 2

√
λ

+ ρ+
sinh[√λ(1 + u)]

sinh 2
√

λ
.

Since π ≤ 1, RN
ε π ≤ 1 so that

sup
ε≤1

sup
t∈[a,T ]

u∈[−1,−1+√
ε]

RN
βε(t)

π(t, u)

πε(t, u)
≤ C0

for some finite constant C0. By analogous computations

1 − πε(t, u) ≥ 1 − ρ∗(u) − RD
ε (1 − ρ∗)(u)

= (1 − ρ−)
sinh[√λ(1 − u)]

sinh 2
√

λ
+ (1 − ρ+)

sinh[√λ(1 + u)]
sinh 2

√
λ

.

Since 1 − RN
ε π = RN

ε (1 − π) ≤ 1, we get

sup
ε≤1

sup
t∈[a,T ]

u∈[−1,−1+√
ε]

1 − RN
βε(t)

π(t, u)

1 − πε(t, u)
≤ C0

for some finite constant C0, which yields the bound (5.4) for u ∈ [−1,−1 + √
ε].

Of course, the same argument applies for u ∈ [1 − √
ε,1].
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To analyze the case u ∈ Aε = [−1+√
ε,1−√

ε], we first show that there exists
a constant C1 such that∫ u

−1
dv cosh

[√
λ(1 + v)

]
π(t, v)

(5.7)
≤ C1

∫ u

−1
dv sinh

[√
λ(1 + v)

]
π(t, v)

for any 0 < ε ≤ 1, a ≤ t ≤ T , u in Aε .
Since π is bounded away from 0 and 1 in the time interval [a,T ], it is enough to

prove (5.7) without π . This estimate is elementary. It is enough to split the integral
in two pieces, the first one ranging from −1 to −1 + √

ε, to change variables v′ =√
λ(1 + v), and to observe that

∫ 1
0 coshv dv ≤ C1

∫ 1
0 sinhv dv, coshv ≤ C1 sinhv

for v ≥ 1.
An analogous argument shows that there exists a constant C1 such that∫ 1

u
dv cosh

[√
λ(1 − v)

]
π(t, v) ≤ C1

∫ 1

u
dv sinh

[√
λ(1 − v)

]
π(t, v)

for any 0 < ε ≤ 1, a ≤ t ≤ T , u in Aε .
By definition of πε , πε ≥ RD

βε
π . Therefore, by the previous estimate, (5.7) and

the explicit form of the kernels RN
ε , RD

ε , we easily get that

sup
0<ε≤1

sup
t∈[a,T ],u∈Aε

RN
βε(t)

π(t, u)

πε(t, u)
≤ sup

0<ε≤1
sup

t∈[a,T ],u∈Aε

RN
βε(t)

π(t, u)

RD
βε(t)

π(t, u)
≤ C0

for some finite constant C0 = C0(π). The same arguments with π replaced by
1 − π yields

sup
0<ε≤1

sup
t∈[a,T ],u∈Aε

1 − RN
βε(t)

π(t, u)

1 − πε(t, u)

≤ sup
0<ε≤1

sup
t∈[a,T ],u∈Aε

RN
βε(t)

(1 − π)(t, u)

RD
βε(t)

(1 − π)(t, u)
≤ C0,

which concludes the proof of (5.4). �

Let a be as in the previous proof and note that ∂tπε may be discontinuous at a.
The left time derivative is equal to ∂tρ where ρ is the solution of the hydrodynamic
equation (4.2) while the right time derivative vanishes because the derivative of j

vanishes at 0 and π is constant in time in the interval [a, b]. Since ∂tπε vanishes
at a for every ε > 0, we could have added this extra assumption in the definition
of the set F3 = D◦

T ,γ , but we do not need it.
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Recall the definition of t(π), given just before the proof of Theorem 5.1.

LEMMA 5.7. Fix a trajectory π in D◦
T ,γ . For each 0 ≤ t ≤ T , let Ht be the

unique solution of the elliptic equation{
∂tπt = ∇(D(πt )∇πt) − ∇{χ(πt )[(E/2) + ∇Ht ]},
Ht (±1) = 0.

(5.8)

For t = t(π), ∂tπt should be interpreted as the right derivative ∂t+πt . Then H

vanishes on [0, t(π))×[−1,1] and H is smooth on (t(π), T ]×[−1,1]. Moreover,

IT (π |γ ) = 1

2

∫ T

0
‖Ht‖2

1,χ(πt )
dt

and

IT (π |γ ) = 〈πT ,HT 〉 − 〈πt(π),Ht(π)

〉− ∫ T

t(π)
〈πt , ∂tHt 〉dt

+
∫ T

t(π)
〈D(πt)∇πt ,∇Ht 〉dt

− E

2

∫ T

t(π)
〈χ(πt ),∇Ht 〉dt − 1

2

∫ T

t(π)
〈χ(πt ), (∇Ht)

2〉dt.

PROOF. Fix a trajectory π in D◦
T ,γ . Since π is bounded away from 0 and 1 on

(0, T ]× [−1,1], equation (5.8) is strictly elliptic and, therefore, has a unique solu-
tion. Since π follows the hydrodynamic equation in the time interval [0, t(π)],
the unique solution Ht is identically equal to 0 on [0, t(π)) × [−1,1]. On
[t(π), T ] × [−1,1] H inherits the smoothness in space from π . Smoothness in
time in this interval follows from the smooth dependence on the force term of
solutions of strictly elliptic equations.

It remains to show that the rate function has the explicit forms claimed. This
follows from (4.11), or from the next elementary argument. Fix a function G in
C

1,2
0 (�T ) and recall the definition (4.6) of the functional ĴG. Since π solves (5.8),

an integration by parts shows that

ĴG(π) = 〈〈χ(π)∇H,∇G〉〉 − 1
2〈〈χ(π)∇G,∇G〉〉.

Therefore,

IT (π |γ ) = ÎT (π |γ )

= 1

2
〈〈χ(π)∇H,∇H 〉〉

− 1

2
inf

G∈C
1,2
0 (�T )

{〈〈χ(π)[∇H − ∇G], [∇H − ∇G]〉〉}.
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The last term vanishes because χ(π) is bounded and smooth functions vanishing
at the boundary are dense in L2(0, T ,H 1

0 (�)).
To prove the second identity, multiply (5.8) by H , integrate in space and in time

in the interval [t(π), T ], and integrate by parts to get that

〈πT ,HT 〉 − 〈πt(π),Ht(π)

〉− ∫ T

t(π)
〈πt , ∂tHt 〉dt +

∫ T

t(π)
〈D(πt )∇πt ,∇Ht 〉dt

= E

2

∫ T

t(π)
〈χ(πt ),∇Ht 〉dt +

∫ T

t(π)
〈χ(πt ), (∇Ht)

2〉dt.

Since H vanishes in the time interval [0, t(π)], we may replace in the last integral
t(π) by 0. The second formula for the rate function IT (π |γ ) follows from this
observation, the previous identity and the first formula for IT (π |γ ). �
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