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Abstract

We consider the van der Waals free energy functional in a bounded interval with
inhomogeneous Dirichlet boundary conditions imposing the two stable phases at
the endpoints. We compute the asymptotic free energy cost, as the length of the
interval diverges, of shifting the interface from the midpoint. We then discuss the
effect of thermal fluctuations by analyzing the φ4

1-measure with Dobrushin bound-
ary conditions. In particular, we obtain a non-trivial limit in a suitable scaling in
which the length of the interval diverges and the temperature vanishes. The limit-
ing state is not translation invariant and describes a localized interface. This result
can be seen as the probabilistic counterpart of the variational convergence of the
associated excess free energy.

1. Introduction

The van der Waals theory of phase transition is based on the functional

F(m) =
∫

dx

[
1

2
m′(x)2 + 2V (m(x))

]
, (1.1)

where the scalar field m(x) represents the local order parameter and V (m) is a
smooth, symmetric, double well potential whose minimum value, chosen to be
zero, is attained at m±; we also assume V ′′(m±) > 0. We restrict the discussion to
the one dimensional case x ∈ R. If (1.1) is considered in the whole line R, there
are infinitely many critical points. The most relevant ones are the constant profiles
m±, where F attains its minimum, and ±m(x), where m(x) is the solution to

m′′(x)− 2V ′(m(x)) = 0, lim
x→±∞ m(x) = m±, m(0) = 0, (1.2)

together with its translates ±mz(x) = ±m(x − z), z ∈ R. Note that mz min-
imizes F under the constraint that limx→±∞ m(x) = m±. Therefore mz is the
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stationary profile with the two pure phases m± coexisting to the right and to the
left of z. Accordingly, the van der Waals surface tension is σw = F(m). We set
M = {mz : z ∈ R}. We emphasize that we do not consider the sharp interface limit
which is obtained by introducing a scaling parameter in (1.1). In particular, even
if the convergence of mz to its asymptotic values is exponentially fast, the profile
mz describing the interface is not sharp but diffuse, we refer to it as a mesoscopic
interface.

Our first purpose is to analyze the finite size effects in the free energy F . More
precisely, we consider (1.1) in the bounded interval [−�, �] with the inhomogeneous
Dirichlet boundary conditions m(±�) = m±. If we think of m as the local mag-
netization, this condition models the effect of opposite magnetic fields applied at
the endpoints. We denote by F� the functional (1.1) with these stipulated boundary
conditions.

It is not difficult to show that the functional F� has a unique minimizer m∗
� ,

which by symmetry converges to m0 as � → ∞. On the other hand, the limiting
functional F is minimized, under the constraint m(±∞) = m±, by any shifted
interface mz ∈ M. It is therefore natural to introduce the excess free energy

G�(m) = eα�
[F�(m)− F�(m∗

�)
]
, (1.3)

in which the exponential rescaling eα� is chosen to get a non-trivial limit as � → ∞.
Indeed, in this paper we show there exists α = α(V ) for which G� converges to a
limiting functional G which is finite only on the set M, where it is given by

G(mz) = A [ch(αz)− 1] ,

for a suitable constant A = A(V ) > 0. The quantity e−α�G(mz) gives therefore
the asymptotic free energy cost needed to shift the interface by z and encodes the
leading finite size correction to the free energy F .

Actually, the above variational formulation of phase transitions neglects com-
pletely the microscopic fluctuations, which play an important role in various phe-
nomena. At the mesoscopic level, the effect of fluctuations can be modeled by
considering the probability measure, on the space of order parameter profiles, infor-
mally given by

dµε(m) = Z−1 exp
{
−ε−1F(m)

} ∏
x

dm(x). (1.4)

In the case V (m) = 1
4 (m

2 − 1)2, the above measure corresponds to the Euclidean
version of the quantum anharmonic oscillator and it is usually referred to as the
φ4

1-measure, here the subscript one stands for one dimension. This model has been
extensively analyzed because exhibits an interesting behavior in a simple setting,
see [17] and references therein.

In the van der Waals theory, the local order parameter m(x) represents the
empirical average, on a mesoscopic scale, of the microscopic observable. Accord-
ingly, the parameter ε is to be interpreted as the ratio between the microscopic scale
(say of the order of Angstroms) to the mesoscopic one (say of the order of tens of
microns). In this Gibbsian setting, the chosen inhomogeneous Dirichlet boundary
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conditions are usually referred to as Dobrushin boundary conditions, their effect
is to force an interface in the system. We denote by µε,� the probability measure
defined as in (1.4) with F replaced by F�. For � fixed and ε small, since the measure
µε,� concentrates on the minimizer of F�, a typical configuration is close to m∗

� . On
the other hand, since the model is one dimensional, for ε fixed and � → ∞ the mea-
sure µε,� forgets the prescribed boundary conditions and converges to the unique
infinite volume Gibbs state. The precise statement would be that the measure µε,�,
considered on C(R) with the topology of uniform convergence in compacts, con-
verges weakly as � → ∞ to an infinite volume Gibbs measure, defined as a solution
to the DLR equations. In the context of the φ4

1 model, uniqueness of solution to the
DLR equations follows from the analysis in [17, II.6], but we did not find in the
literature a detailed proof (see however the discussion in [10, Section II.5, VII.2])
of the weak convergence of µε,� to the unique infinite volume state. However this
is not really relevant in the present paper, in which we investigate a diagonal limit
ε → 0 and � → ∞. In particular, the aforementioned convergence of the excess
free energy G� suggests that a non-trivial limiting behavior could be obtained by
choosing ε = e−α�. We show this is indeed the case: with this choice, the measure
µε,� weakly converges to a measure µ with support M and there given by

dµ(mz) = N−1 exp{−G(mz)} dz. (1.5)

We call this limiting measure a Dobrushin state because it is not translation invari-
ant and describes a fluctuating interface. We emphasize, however, that the order
parameter profile is fixed and, with probability super-exponentially close to one as
L → ∞, the interface is localized in the bounded interval (−L , L).

In the case of short range, ferromagnetic, lattice models of statistical mechanics
(Ising models), phase transitions may occur only in dimension d � 2. The behav-
ior of interface fluctuations when the system is considered in a box of side � and
Dobrushin boundary conditions are imposed has been analyzed in detail. In d = 2
the interface behaves as a random walk having fluctuations of the order of

√
�; in

particular, in the thermodynamic limit � → ∞, the corresponding Gibbs measure
converges to a translation invariant state which is a mixture of the pure phases,
that is there are no Dobrushin states [7]. In d � 3, for low temperature, the inter-
face fluctuations remain bounded and a not translation invariant state is obtained in
the thermodynamic limit [6]. With respect to the above context, the diagonal limit
� → ∞, ε → 0, corresponds to a joint limit in which the size of the system diverges
and the temperature vanishes. This peculiar limiting procedure allows one to get
non-trivial Dobrushin states for d < 3. We also mention that a localized interface
can be obtained for long-range (power law decay) one-dimensional Ising models [3].

2. Notation and results

It will be convenient to denote by t the space variable and by x = x(t) a
continuous function of t . Let

X :=
{

x ∈ C(R) : lim
t→±∞ x(t) = ±1

}
, (2.1)
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endowed with the metric d(x, y) := ‖x − y‖∞ := supt∈R |x(t) − y(t)| and the
associated Borel σ -algebra. We emphasize that we need to use this topology and
not the one of uniform convergence on compacts because we need to distinguish
the behavior of x as |t | → ∞. Given � > 0, we also let

X� := {
x ∈ C(R) : x(t) = sgn(t) for |t | � �

}
,

which is a closed subset of X .
For the sake of concreteness, in this paper we restrict the analysis to the para-

digmatic case of the symmetric double well potential, that is we choose

V (x) = 1

4

(
x2 − 1

)2
, (2.2)

which attains its minimum at x = ±1. In this case the solution to (1.2) is given by
m(t) = th(t); for z ∈ R we set mz(t) := th(t − z), and define

M := {mz : z ∈ R}, (2.3)

which is a closed subset of X . Given � > 0, we denote by W 1,2
� the Sobolev

space W 1,2([−�, �]) and define the finite volume free energy as the functional
F� : X → [0,+∞] given by

F�(x) :=
∫ +�

−�
dt

[
1

2
x ′(t)2 + 2V (x(t))

]
(2.4)

if x ∈ X� and x �� ∈ W 1,2
� , while F�(x) := +∞ otherwise. Here x �� denotes the

restriction of x to (−�, �).
Our first statement concerns the limiting behavior of the sequence F�. This

result can be seen as a diffuse version of the classical Modica–Mortola result, see,
for example [2, Theorem 6.4]. More precisely, the latter result deals with the sharp
interface limit, and states that the limiting free energy is concentrated on profiles
taking values in {−1; 1} and counts the number of jumps. Here we instead show
that any minimizer of the limiting functional F is a profile in M.

Referring, for example to [2, Chapter 1] for more details, we next outline the
basic definitions and results of the Γ -convergence theory. Let X be a metric space.
A sequence of functionals Fn : X → [0,+∞] is equi-coercive iff from any
sequence xn such that limn Fn(xn) < +∞ it is possible to extract a converging
subsequence. The sequence Fn is equi-mildly-coercive iff there exists an non-empty
compact set K ⊂ X such that inf X Fn = inf K Fn for any n ∈ N. The sequence Fn

Γ -converges to a functional F : X → [0,+∞] iff the following conditions hold
for each x ∈ X . There exists a sequence xn → x such that limn Fn(xn) � F(x)
(Γ -limsup inequality) and for any sequence xn → x we have limn Fn(xn) � F(x)
(Γ -liminf inequality). If the sequence Fn is equi-mildly-coercive and Γ -converges
to F then inf X F = minX F = limn inf X Fn . Moreover, if xn is a precompact
sequence such that limn Fn(xn) = limn inf X Fn then every converging subsequence
of xn converges to a minimizer of F . Finally, if the sequence Fn is equi-coercive
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and Γ -converges to F then, for each open set A and each closed set C , we have

lim
n

inf
A

Fn � inf
A

F, lim
n

inf
C

Fn � inf
C

F,

which are the relevant estimates in the asymptotic analysis of the free energy.

Theorem 2.1. The sequence F� : X → [0,+∞] is equi-mildly-coercive and as
� → ∞ Γ -converges to

F(x) :=
⎧⎨
⎩
∫ +∞

−∞
dt

[
1

2
x ′(t)2 + 2V (x(t))

]
if x ′, 1 − x2 ∈ L2(R),

+∞ otherwise.

Moreover, the set of minimizers of F is M, as defined in (2.3). In particular, the
(van der Waals) surface tension is

σw = inf
X

F = F(m) = 4

3
. (2.5)

We remark that F� is not equi-coercive. Indeed, we can construct a real sequence
z� → +∞ and a sequence x� such that ‖x� − mz�‖∞ → 0 and F�(x�) → 4

3 . As
stated in the previous theorem, the limiting free energy F does not remember that
m∗
� , the unique minimizer of F�, converges to m0. The underlying reason is that

the finite volume free energy cost of profiles close to mz , z ∈ R, is infinitesimal as
� → ∞. We then introduce the excess free energy G� : X → [0,+∞] as

G�(x) := e4� [F�(x)− F�(m∗
�)
]
, (2.6)

in which the rescaling e4� has been chosen to get a non-trivial limit as � → ∞. In
fact, as shown in Proposition 3.1 below, the finite volume corrections to the surface
tension are O(e−4�), in particular lim� e4�

[F�(m∗
�)− σw

] = 16. In this setting the
limiting functional G will be finite only on M and describes the asymptotic cost
of shifting an interface from the origin. Indeed, in the next theorem we identify the
Γ -limit of G�. This is usually referred to as development by Γ -convergence.

Theorem 2.2. The sequence G� : X → [0,+∞] is equi-coercive and as � → ∞
Γ -converges to

G(x) :=
{

16 [ch(4z)− 1] if x = mz for some z ∈ R,

+∞ otherwise.
(2.7)

We now discuss the asymptotic behavior of the φ4
1-measure with Dobrushin

boundary conditions. We first recall the precise definition of the measure infor-
mally introduced in (1.4). Given ε > 0 we denote by �ε,� the probability measure
on X , whose support is X� and having there the law of the Brownian bridge with
diffusion coefficient ε, starting at time −� from −1 and arriving at time � to +1.
In other words, �ε,� is the Gaussian measure on X with mean

x�(t) := �ε,� (x(t)) =
{

t
�

if |t | � �,

sgn(t) if |t | > �,
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and covariance

�ε,� ([x(t)− x�(t)] [x(s)− x�(s)])

=
{
ε
2� (�+ s ∧ t)(�− s ∨ t) if s, t ∈ [−�, �],
0 otherwise,

where hereafter µ( f ) denotes the expectation of the measurable function f with
respect to the measureµ and, for a, b ∈ R, a ∧b (resp. a ∨b) denotes the minimum
(resp. maximum) between a and b.

The φ4
1 model at temperature ε with Dobrushin type boundary condition is the

probability measure µε,� on X with support X�, whose density with respect to �ε,�
is given by

dµε,�
d�ε,�

(x) = 1

Zε,�
exp

{
−ε−1

∫ �

−�
dt 2V (x(t))

}
, (2.8)

where

Zε,� := �ε,�

(
exp

{
−ε−1

∫ �

−�
dt 2V (x(t))

})
. (2.9)

From the Laplace–Varadhan theorem, it follows, see, for example [5,
Example 4.3.11], that for � fixed the probability µε,� satisfies a large deviation
principle with speed ε−1 and rate function F�(x) − F�(m∗

�). On the other hand,
by Theorem 2.2, the functional F�(x)− F�(m∗

�) behaves like e−4�G(x). Therefore
we expect that, in the diagonal limit � = 1

4 log ε−1 and ε → 0, the measure µε,�
converges to a non-degenerate limit µ, which should look like dµ(x) ≈ e−G(x) dx .
Our main result shows that this is indeed the case.

Theorem 2.3. Let � = 1
4 log ε−1, then the measure µε,� converges weakly in X as

ε → 0 to the measure µ defined on the Borel sets A ⊂ X by

µ(A) = µ̂ ({z ∈ R : mz ∈ A}) , (2.10)

where µ̂ is the probability measure on R given by

µ̂(dz) = e−16[ch(4z)−1]∫
dz′ e−16[ch(4z′)−1] dz. (2.11)

We emphasize that this non-trivial limiting behavior is due to the particular
choice � = 1

4 log ε−1, the coefficient 1
4 coming from the specific form (2.2) of

the double well potential V . From the analysis carried out in this paper it follows
that if we had considered � = ( 1

4 − δ
)

log ε−1 for some δ > 0, the measure µε,�
would have converged weakly to the probability concentrated on the single config-
uration m0. Moreover, it should be also possible to show that if we had considered
� = ( 1

4 + δ
)

log ε−1 for some δ > 0, then the familyµε,� would not have been tight
on X . On the other hand, the family µε,�, still for � = ( 1

4 + δ
)

log ε−1 and con-
sidered in C(R) endowed with the topology of uniform convergence on compacts,
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would converge weakly to 1
2 [δ−1 + δ1], where δ±1 denotes the Dirac measure

concentrated on the configuration identically equal to ±1: on this scale the interface
“went to infinity”. As it appears clear from the above discussion, the compactness
property of the familyµε,� is a key point; in particular tightness ofµε,� implies that
the interface remains localized in a compact set of R with probability close to one.
Strategy of the proof. As it is well known, see, for example [17], the measure describ-
ing theφ4

1 model in the whole line can be realized as the law of the stationary process
associated to the one-dimensional stochastic differential equation

dXt = aε(Xt ) dt + √
ε dwt , (2.12)

wherewt is a standard Brownian motion and the drift aε is the logarithmic derivative
of the ground state of the (quantum) anharmonic oscillator. More precisely, let us
denote by λε the smallest eigenvalue of the Schroedinger operator Hε := − 1

2ε
2∆+

2V on L2(R, dx), the corresponding eigenfunction, chosen strictly positive, is
denoted by φε. Then aε = ε∇ logφε; in particular φε(x)2 dx is the invariant mea-
sure of the process Xt . We mention that this representation of the infinite volume
φ4

1-measure allows, by means of Friedlin–Wentzell large deviations estimates [8],
a detailed study of the typical configurations as ε → 0. From the analysis in
[12], whose main motivation lies on semiclassical limits, the following picture
emerges. With probability exponentially close to one as ε → 0, we see x(t) ≈ ±1
for t in intervals of the order eε

−1σw ; the transition (tunneling) between the pure
phases taking place in a small neighborhood of mz for suitable z’s. Moreover, if
the lengths of the above intervals are properly normalized, they converge weakly to
an independent jump process with exponential distribution, as in the case of Ising
spin systems, either nearest-neighbors [16] or with long range interaction of Kac
type [4].

A representation in terms of a diffusion process can be obtained also in the pres-
ent setting of the φ4

1 model with Dobrushin boundary condition. From a statistical
mechanics viewpoint, this representation corresponds to transfer matrix arguments.
The probability µε,� can be realized as the law of the diffusion process (2.12) with
initial condition X−� = −1 conditioned to reach 1 at the time t = �. According
to the results in [11], this conditioned process can be also realized as the solution
to a stochastic differential equation with a time dependent drift. Let us denote by
X x

t the solution to (2.12) with initial condition X0 = x and introduce the transition
probability density pεt (x, y) by requiring that for each t > 0 and each Borel set
B ⊂ R,

P
(
X x

t ∈ B
) =

∫
B

dy pεt (x, y). (2.13)

For (t, x) ∈ (−�, �)× R, we define

âε,�(t, x) := −aε(x)+ ε∂x log pε�−t (1, x). (2.14)

Then, as follows from [11], the measure µε,� is the law of the process Y defined
as follows. For |t | � � we set Yt = sgn(t) while for |t | < � we define Yt as the
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solution to the stochastic differential equation
{

dYt = âε,�(t,Yt ) dt + √
ε dwt ,

Y−� = −1,
(2.15)

here wt , t ∈ [−�, �], is a standard Brownian with w−� = 0.
Theorem 2.3 can, therefore, equivalently, be rephrased in terms of the limiting

behavior of the solution to (2.15). We emphasize that we obtain a non-degenerate
limiting behavior as ε → 0 even if the noise term vanishes. This is due both to
the simultaneous divergence of the time interval and to the peculiar behavior of
the drift âε,�. We discuss the latter issue in some more detail. By the well-known
ground state transformation, see, for example [17], we can rewrite the transition
probability density in (2.13) in terms of the kernel of the semigroup generated
by Hε,

pεt (x, y) = 1

φε(x)
e−ε−1(Hε−λε)t (x, y) φε(y),

so that, recalling (2.14),

âε,�(t, x) = ε∂x log e−ε−1(Hε−λε)(�−t)(1, x). (2.16)

It is also not difficult to check that, by writing âε,�(t, x) = −∂x Sε(� − t, x), the
function Sε solves the viscous Hamilton–Jacobi equation

∂t Sε + 1

2
(∂x Sε)

2 − 2V = ε

2

[
∂xx Sε − 1

t

]
, (2.17)

of course Sε is singular as t ↓ 0. To analyze the solution to (2.15), as ε → 0, we
therefore, need sharp estimates on the semiclassical limit of the Schrodinger oper-
ator Hε. More precisely, we need good control on the kernel of the corresponding
semigroup up to times of order � = O(log ε−1). In the context of semiclassical
limits, see, for example [14], this scale of time is known as Erhenfest time and it
is the one in which the semiclassical approximation is not—in general—anymore
valid.

As it appears quite intricate to get good control on âε,� by direct semiclassical
methods or perturbation theory in Hamilton–Jacobi, we follow a different approach,
which we might call Euclidean semiclassical approximation. If �were fixed, by the
Feynmann–Kac formula and Laplace–Varadhan asymptotic in (2.16), we would
get, as ε → 0,

âε,�(t, x) ≈ −∂x S(�− t, x), (2.18)

where

S(t, x) := inf

{∫ t

0
ds

[
1

2
ψ̇(s)2 + 2V (ψ(s))

]
: ψ(0) = 1, ψ(t) = x

}

(2.19)
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is the action for a Newtonian particle of mass one in the potential −2V starting
at time zero from 1 and arriving at time t to x ; the change of sign in the potential
is due to the fact that we are looking at the Schroedinger semigroup. Note that S
solves (2.17) with ε = 0. As the right-hand side of (2.18) makes sense, we use it as
the drift term of an auxiliary diffusion process. Namely, we introduce the process
ξ as the solution to

dξt = −∂x S(�− t, ξt ) dt + √
ε dwt ,

where w is a standard Brownian motion. Since (2.18) is not an identity, the law of
ξ is not µε,�. On the other hand it is a good approximation of it in the sense that,
as shown in Proposition 4.1 below, their Radon–Nykodim derivative is “only” of
the order eO(�). Moreover, even if the drift term above is not really given explicitly,
standard methods for one-dimensional mechanical systems allow one to get sharp
estimates on it.

By exploiting the above strategy, we get enough control on the measure µε,� to
show that it concentrates in a small neighborhood of M and that it is tight in X .
The identification of its limit points with the measureµ defined in Theorem 2.3 will
be accomplished by a dynamical argument. We refer to [9] for a recent review on
the dynamics of stochastic interfaces. The probability µε,� can be in fact character-
ized, see [8, Theorem 5.1], as the unique invariant measure of the Markov process
X ≡ Xσ (t), (σ, t) ∈ R+ × R, in C(R+;X�) which solves the stochastic partial
differential equation

{
dXσ = [ 1

2∂t t Xσ − V ′(Xσ )
]

dσ + √
ε dWσ σ > 0, |t | < �,

Xσ (t) = sgn(t) σ � 0, |t | � �,
(2.20)

where W is the cylindrical Wiener process on L2([−�, �], dt). As shown in [1], in
the scaling limit � = 1

4 log ε−1 and ε → 0, Xε−1σ converges in law to mζσ where
ζ solves

dζσ = − 24 sh (4ζσ ) dσ +
√

3

4
dBσ , (2.21)

with B a standard Brownian motion. As the unique invariant measure of this one-
dimensional diffusion process is µ̂, see (2.11), we conclude the identification.

A final remark on the relationship between the equilibrium asymptotic stated
in Theorem 2.3 and the above dynamical result is due. A basic paradigm in non-
equilibrium statistical mechanics is the Einstein relation which connects dynamical
transport coefficients and thermodynamic potentials, see, for example [15, I.8.8].
The general structure of this relation is [drift] = 1

2 · [diffusion] · [thermodynamic
force], where the thermodynamic force is minus the derivative of the free energy.
It is worth noticing that such a relationship is verified also in the present setting of
a drift induced by the boundary conditions, namely

− 24 sh(4z) = −1

2
· 3

4
· d

dz
16 [ch(4z)− 1] .
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3. Asymptotic analysis of the free energy

In this section we analyze the asymptotic behavior of the free energy F� and
prove Theorems 2.1 and 2.2. We start by showing that for each � > 0 there exists a
unique minimizer m∗

� of F� and discuss its behavior as � → ∞. Recall that for the
choice (2.2) of V we have F(m) = 4

3 .

Proposition 3.1. The functional F� has a unique minimizer m∗
� in X�. Moreover

m∗
� ��∈ C2((−�, �)) and for |t | � � it is the unique solution to the boundary value

problem

{
1
2 x ′′(t)− V ′(x(t)) = 0, t ∈ (−�, �),
x(±�) = ±1.

(3.1)

Finally,

lim
�→∞ e2�

∥∥m∗
� − m0 ‖∞ < ∞, (3.2)

lim
�→∞ e4�

[
F�(m∗

�)− 4

3

]
= 16. (3.3)

Proof. The boundary value problem (3.1) is the Euler–Lagrange equation for the
stated variational problem. Equation (3.1) can be regarded as that of the motion of
a Newtonian particle of mass one in the potential −2V . By standard Weierstrass
analysis of one-dimensional mechanical systems, it is then straightforward to prove
that there exists a unique twice differentiable solution m∗

� to (3.1). Explicit estimates
yield the bounds (3.2) and (3.3), see Lemma A.1. We here prove uniqueness of the
minimizer with the given boundary conditions. The argument is rather standard,
and it is reported for completeness. Let us denote by Sσ (x), σ � 0, the gradient
flow associated to F�, that is u(σ, t) = Sσ (x)(t) solves

⎧⎪⎪⎨
⎪⎪⎩
∂σu(σ, t) = 1

2
∂t t u(σ, t)− V ′(u(σ, t)),

u(σ, t) = ±1, |t | � �,

u(0, t) = x(t).

By standard theory, for each x ∈ X�, we have that Sσ (x) ��∈ C2((−�, �)) for σ > 0
and ‖Sσ (x) − x‖∞ → 0 as σ → 0. This implies in particular that F�(Sσ (x)) �
F�(x) for any σ � 0. By the compactness of the level sets of F�(x) there exists at
least one minimizer, say x̃ . For what stated above we then have F�(Sσ (x̃)) = F�(x̃)
for any σ � 0. By taking the derivative we conclude that, for σ > 0, Sσ (x̃) is a
twice differentiable solution of (3.1); hence Sσ (x̃) = m∗

� . By continuity x̃ = m∗
� .��

Proof of Theorem 2.1. The argument is rather standard, and it is detailed below
for completeness. The equi-mildly-coerciveness of F� follows immediately from
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Proposition 3.1. We next prove the Γ -limsup inequality. Given x ∈ X we define

x�(t) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−1 if t ∈ (−∞,−�),
t + �− 1 + x(−�+ 1)(t + �) if t ∈ [−�,−�+ 1],
x(t) if t ∈ (−�+ 1, �− 1),

t − �+ 1 + x(�− 1)(�− t) if t ∈ [�− 1, �],
1 if t ∈ (�,+∞).

Clearly, x� → x in X . Moreover it is straightforward to check that F�(x�) → F(x)
since the contribution in the set [−�,−�+1]∪[�−1, �] vanishes as � → ∞ because
x(±(�−1)) → ±1 as � → ∞. We finally prove theΓ -liminf inequality. Pick x ∈ X
and a sequence x� → x ; if F�(x�) < +∞ we have x�(t) = sgn(t) for |t | � �.
Hence F�(x�) = F(x�), and we conclude by the lower semicontinuity of F , which
is established by noticing that F(x) = sup�

∫ �
−� dt

[ 1
2 x ′(t)2 + 2V (x(t))

]
.

To prove the last statement, we first show that F(x) � F(m) for any x ∈ X .
Indeed, using the inequality a2 + b2 � 2|ab| we have

F(x) � 2
∫ +∞

−∞
dt |x ′(t)|√V (x(t)) � 2

∣∣∣∣
∫ +∞

−∞
dt x ′(t)

√
V (x(t))

∣∣∣∣
= 2

∫ +1

−1
dy
√

V (y) =
∫ +1

−1
dy (1 − y2) = 4

3
= F(m).

On the other hand, in the above computation, we get an equality if and only if
|x ′(t)| = 2

√
V (x(t)) = |1 − x2(t)|. Since x(±∞) = ±1, this implies x = mz for

some z ∈ R. ��
Proof of Theorem 2.2. It is convenient to introduce the notation

F[a,b](x) :=
∫ b

a
dt

[
1

2
x ′(t)2 + 2V (x(t))

]
. (3.4)

The equi-coercivity of G� is proven in Lemma A.2. We next prove the Γ -limsup
inequality. By (2.7), it is enough to consider x ∈ M. Recall that m∗

� is the minimizer
of F� and note that, by the symmetry of V , m∗

�(0) = 0. Given z ∈ R, for � � |z|,
we define

m(�)
z (t) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1 if t ∈ (−∞,−�],
m∗
�+z(t − z) if t ∈ (−�, z],

m∗
�−z(t − z) if t ∈ (z, �],

1 if t ∈ (�+ ∞).

(3.5)

From (3.2) we get m(�)
z → mz in X . We claim that m(�)

z is a recovery sequence,
that is

lim
�→∞ G�

(
m(�)

z

)
= 16 [ch(4z)− 1] . (3.6)
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Indeed we have

F�
(

m(�)
z

)
= F[−�,z]

(
m(�)

z

)
+ F[z,�]

(
m(�)

z

)

= F[−�−z,0]
(
m∗
�+z

)+ F[0,�−z]
(
m∗
�−z

)

= 1

2

[F�+z
(
m∗
�+z

)+ F�−z
(
m∗
�−z

)]
,

where in the second step we used the translation covariance of F[a,b] while, in the
third one, that t �→ m∗

�(t) is an odd function and x �→ V (x) is an even function.
Therefore

G�
(

m(�)
z

)
= e4�

2

[
F�+z

(
m∗
�+z

)− 4

3

]
+ e4�

2

[
F�−z

(
m∗
�−z

)− 4

3

]

+e4�
[

4

3
− F�

(
m∗
�

)]
,

and (3.6) follows from (3.3).
We finally prove the Γ -liminf inequality. Let x ∈ X \M, from Theorem 2.1

and (3.3) it follows that, for any sequence x� → x , we have

lim
�→∞

F�(x�) � F(x) > 4

3
= lim
�→∞ F�(m∗

�),

whence G�(x�) → +∞ as � → ∞. It remains to show that for any z ∈ R and any
sequence x� → mz we have

lim
�→∞

G�(x�) � 16 [ch(4z)− 1] . (3.7)

It suffices to consider sequences x� → mz such that x�(t) = sgn(t) for |t | � �.
We next remark that, by symmetry, the function m∗

�(t), t ∈ [0, �], is the unique
minimizer of F[0,�](x) with the boundary conditions x(0) = 0, x(�) = 1. Analo-
gously, m∗

�(t), t ∈ [−�, 0], is the unique minimizer of F[−�,0](x)with the boundary
conditions x(−�) = −1, x(0) = 0. Since x� → mz , we can find a sequence z� → z
such that x�(z�) = 0. Recalling (3.5), by the translation covariance of F[a,b] we get

F�(x�) = F[−�,z�](x�)+ F[z�,�](x�)
� F[−�−z�,0]

(
m∗
�+z�

)+ F[0,�−z�]
(
m∗
�−z�

) = F�(m(�)
z� ).

The proof of (3.7) is completed by observing that (3.6) holds also if the sequence
m(�)

z is replaced by m(�)
z� with z� → z. ��
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4. Euclidean semiclassical approximation

From now on we set � = 1
4 log ε−1 and drop the subscript � from the nota-

tion. We suppose given a filtered probability space (Ω,S,St , P) equipped with a
standard Brownian motion wt , t ∈ [−�, �], with w−� = 0. By, for example [13,
Section 5.6.B], the Brownian bridge with diffusion coefficient ε, starting at time
−� from −1 and arriving at time � to +1, can be realized as the solution to the
stochastic differential equation

⎧⎨
⎩

dηt = 1 − ηt

�− t
dt + √

ε dwt ,

η−� = −1,
(4.1)

for t ∈ [−�, �), and ηt = sgn(t) for |t | � �. Note in fact that the solution to the
above equation satisfies limt↑� ηt = 1 almost surely.

Recalling the definition (2.19), given � > 0 and (t, x) ∈ [−�, �)× R we set

b(t, x) := −∂x S(�− t, x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

+√4V (x)+ Et,x if x < 1,

0 if x = 1,

−√4V (x)+ Et,x if x > 1,

(4.2)

where Et,x is such that

�− t =
∣∣∣∣∣
∫ 1

x

du√
4V (u)+ Et,x

∣∣∣∣∣ . (4.3)

The last equality in (4.2) can be seen to follow for instance from (4.3) and (A.5).
We then define the process ξ as the solution to the one -dimensional stochastic

differential equation

{
dξt = b(t, ξt ) dt + √

ε dwt ,

ξ−� = −1,
(4.4)

for t ∈ [−�, �) and ξt = sgn(t) for |t | � �. We shall denote by νε the law of ξ .
Note that b(t, x) > 0 for x < 1 while b(t, x) < 0 for x > 1; moreover b(t, x)
diverges as t ↑ � (unless x = 1). Therefore the drift in (4.4) drives the process
ξ from −1 at time −� to 1 at time �. Finally, for � large and (t, x) in compacts,
Et,x → 0, so that we expect the solution to (4.4) to converge, in the diagonal limit
ε → 0 and � → +∞, to some mz ∈ M which solves ẋ = √

4V (x). We emphasize
that in this limit some randomness will remain, as small deviation of the random
force affects the choice of z. Note indeed that b(−�,−1) = √

E−�,−1 = O(e−2�),
which is of the same order of the noise. The above picture will be substantiated
in the following. The required analysis is not completely standard as it involves
the joint limit ε → 0 and � → ∞, and depends crucially on the precise scaling
� = 1

4 log ε−1.
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Before analyzing the process ξ in itself, we show how it can be used in the study
of the φ4

1-measure with Dobrushin boundary conditions. Recalling (2.19), we let

S0(t, x) := S(t, x)− (1 − x)2

2t
. (4.5)

Note that 1
2t (1−x)2 is the action of a free particle, that is the infimum in (2.19) in the

case V = 0. Since S(t, x) satisfies the Hamilton–Jacobi equation with Hamiltonian
H(x, p) = 1

2 p2 − 2V (x), we get that S0 satisfies the equation

∂t S0(t, x)+ 1

2
[∂x S0(t, x)]2 − 1 − x

t
∂x S0(t, x)− 2V (x) = 0. (4.6)

We also define b0(t, x) := −∂x S0(� − t, x), so that b(t, x) = b0(t, x) + 1−x
�−t . It

is shown in Theorem A.3 that S0(t, x) is regular as t ↓ 0, therefore the drifts in
(4.1) and (4.4) have the same singular part. Indeed, we next show that ξ is abso-
lutely continuous with respect to the Brownian bridge η, and we obtain an explicit
expression for the density of µε with respect to νε. Recall the definition (2.4) of
F�, and its minimizer m∗

� considered in Proposition 3.1.

Proposition 4.1. We have

dµε
dνε

(x) = A−1
ε exp

{
−1

2

∫ �

−�
dt ∂xx S0(�− t, x(t))

}
, (4.7)

where

Aε := νε

(
e− 1

2

∫ �
−� dt ∂xx S0(�−t,x(t))

)
= Zε eε

−1[F�(m∗
�)−�−1].

In Section 5, we shall analyze the measure µε as a perturbation of νε. Notice
indeed that, while dµε

dρε
= eO(ε−1�), we have dµε

dνε
= eO(�).

Proof. Let ψ� : X� → X� be the map defined as follows. The function y =
ψ�(x) �� is the unique solution to

y(t) = x(t)+
∫ t

−�
ds
�− t

�− s
b0(s, y(s)), t ∈ [−�, �). (4.8)

By writing the integral form of (4.4) and using Duhamel formula with respect to
(4.1), we find that νε = �ε ◦ ψ−1

� . In particular the process ξ is well defined and
satisfies limt↑� ξt = 1 almost surely. This representation of νε, together with the
regularity of b0(t, x) proven in Theorem A.3, allows, by a standard truncation of
which we omit the details, to use Girsanov theorem to obtain an explicit expression
for the Radon-Nykodim derivative dνε

d�ε
. We get

dνε
d�ε

(η) = exp

{
1√
ε

∫ �

−�
b0(t, ηt ) dwt − 1

2ε

∫ �

−�
dt b0(t, ηt )

2
}
. (4.9)
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On the other hand, by Ito’s formula,

S0(0, η�)− S0(2�, η−�)

=
∫ �

−�
dt

[
−∂t S0(�− t, ηt )+ ∂x S0(�− t, ηt )

1 − ηt

�− t
+ ε

2
∂xx S0(�− t, ηt )

]

+√
ε

∫ �

−�
∂x S0(�− t, ηt ) dwt . (4.10)

We note that S(2�,−1) = F�(m∗
�), whence S0(2�,−1) = F�(m∗

�) − 1
�

and
S0(0, 1) = 0. Recalling b0(t, x) = −∂x S0(�− t, x), by plugging (4.10) into (4.9)
we obtain

dνε
d�ε

(η) = exp

{
ε−1

[
F�(m∗

�)− �−1
]

+ 1

2

∫ �

−�
dt ∂xx S0(�− t, ηt )

−ε−1
∫ �

−�
dt

[
∂t S0(�− t, ηt )− ∂x S0(�− t, ηt )

1 − ηt

�− t

+ 1

2
[∂x S0(�− t, ηt )]

2
]}

= exp

{
ε−1

[
F�(m∗

�)− �−1
]

+ 1

2

∫ �

−�
dt ∂xx S0(�− t, ηt )

− ε−1
∫ �

−�
dt 2V (ηt )

}
,

where in the last equality we used (4.6). Recalling (2.8), the identity (4.7) is thus
proven. ��

We now turn to the analysis of (4.4). Given x ∈ X�, we let Z(x) be the leftmost
zero of x , that is

Z(x) := inf{t ∈ [−�, �] : x(t) = 0}. (4.11)

In the next theorem, whose proof is the main content of the present section, we
estimate the probability that the process ξ lies in a small neighborhood of M and
Z(ξ) stays in a compact.

Theorem 4.2. There exists η0 > 0 such that, for any η ∈ (0, η0) the following
holds. There exist positive reals a0 and ε0 such that, for any ε ∈ (0, ε0] and
a ∈ [a0, �], we have

νε

({
x : d(x,M) > ε

1
2 −η}) � exp

{
−ε− 1

2 η
}
, (4.12)

νε ({x : |Z(x)| > a}) � exp
{
−ε− 1

2 η
}

+ 2 exp
{
−e

a
4

}
, (4.13)

νε ({x : ∃ t ∈ [−�+ a, a] such that x(t) < ma(t)}) � exp
{
−e

a
4

}
. (4.14)

By the aforementioned behavior of b(t, x), since the noise is of order
√
ε and

the time interval is of order log ε−1, the process ξ will essentially move inside the
interval [−1, 1]. The precise statement is the following.
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Lemma 4.3. For each δ > 0 we have

νε

(
sup
t∈R

|x(t)| > 1 + δ

)
� 8√

π

√
ε�

δ
exp

{
− δ2

16ε�

}
.

Proof. Let ξ be the solution of (4.4), and introduce the event

B :=
{
w : sup

t∈[−�,�]
|wt | < δ

2
√
ε

}
.

By the reflection principle,

P(B�) � 4P

(
w� � δ

2
√
ε

)
� 8√

π

√
ε�

δ
exp

{
− δ2

16ε�

}
. (4.15)

We claim that supt∈[−�,�] |ξt | < 1 + δ on the event B. We shall only prove
that inf t∈[−�,�] ξt > −1 − δ, a symmetric argument shows that we also have
supt∈[−�,�] ξt < 1 + δ. Let τ be the first time ξt hits −1 − δ. If there is no such τ
in the interval (−�, �) we are done. Otherwise let σ < τ be the last passage by −1
before τ . By integrating (4.4) in the time interval [σ, τ ] and using that b(t, x) � 0
for (t, x) ∈ (−�, �)× (−∞,−1], see (4.2), we get

−δ = ξτ − ξσ =
∫ τ

σ

ds b(s, ξs)+ √
ε (wτ − wσ ) � −2

√
ε sup

t∈[−�,�]
|wt |,

which gives a contradiction. ��
In the following lemma we show that, for t away from the boundary, the solution

of (4.4) is in a small neighborhood of some profile mz ∈ M with probability close
to one. We also identify z as a zero (it does not matter which one) of t �→ ξt .

Lemma 4.4. For each η ∈ (0, 1
2

)
and σ ∈ (0, 1 − 2η) there exists ε0 such that for

any ε ∈ (0, ε0] we have

νε

(
|Z(x)| < √

� ; sup
|t−Z(x)|�σ�

∣∣x(t)− mZ(x)(t)
∣∣ > ε

1
2 −η

)
� exp

{−ε−η} .

Proof. We shorthand Z(x) by z and define

τ− := sup
{

t � z : |x(t)− mz(t)| > ε
1
2 −η} ∨ (z − σ�),

τ+ := inf
{

t � z : |x(t)− mz(t)| > ε
1
2 −η} ∧ (z + σ�).

Let also

B1 :=
{
w : sup

t∈[−�,�]
|wt | < ε−

2
3 η

}
. (4.16)
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By the bound (4.15) we have P
(
B�

1

)
� exp

{−ε−η} for any ε small enough. The

proof will be completed by showing that on the event B1 ∩ {|z| < √
�} we have

τ± = z ± σ� for any ε small enough.
Let vt := ξt − mz(t). Integrating (4.4) and using m′

z = 1 − m2
z , we obtain that

for t ∈ [τ−, τ+],

vt =
∫ t

z
ds
[−2mz(s)vs + R(s, vs)

]+ √
ε [wt − wz], (4.17)

with

R(s, y) := b(s,mz(s)+ y)− [1 − m2
z (s)] + 2mz(s) y

=
√[

1 − (mz(s)+ y)2
]2 + Es,mz(s)+y − [1 − (mz(s)+ y)2] − y2,

(4.18)

where we used (4.2), with mz(s) + vs ∈ (−1, 1), which holds for any ε small
enough since, for η ∈ [0, 1

2

)
, σ ∈ (0, 1 − 2η), and s ∈ [τ−, τ+],

|mz(s)+ vs | � 1 − e−2|s−z| + ε
1
2 −η � 1 − e−2σ� + e−2�+4η� < 1.

Integration of (4.17), using that −2mz = (log m′
z)

′ and m′(t) = ch(t)−2 yields
that, on the event B1,

|vt | =
∣∣∣∣
∫ t

z
ds

ch2(s − z)

ch2(t − z)

[
R(s, vs)− 2

√
εmz(s) (ws − wz)

]+ √
ε (wt − wz)

∣∣∣∣
�
∣∣∣∣
∫ t

z
ds

ch2(s − z)

ch2(t − z)
R(s, vs)

∣∣∣∣+ 6 ε
1
2 − 2

3 η, (4.19)

where we used
∣∣∣∫ t

z ds ch2(s−z)
ch2(t−z)

∣∣∣ � 1.

We claim that, for each η ∈ [0, 1
2

)
and σ ∈ (0, 1 − 2η) there exists a constant

C > 0 such that, for any ε small enough,

sup
t∈[τ−,τ+]

Et,mz(t)+vt � C�4e−4(�−z), (4.20)

whose proof is given in Appendix A. By using (4.20) in (4.18) we get, for s ∈
[τ−, τ+],

|R(s, vs)| � v2
s + Es,mz(s)+vs

2
[
1 − (mz(s)+ vs)

2] � v2
s + C�4e−4(�−z)

1 −
(
|mz(s)| + ε

1
2 −η

)2

� v2
s + 2C�4 exp{−4(�− z)+ 2|s − z|},

where in the last inequality we used 1 − |mz(s)| � e−2|s−z| and e−2|s−z| > ε
1
2 −η

for |s − z| � σ�. Plugging this bound into (4.19) and using the estimate

ch2(s − z)

ch2(t − z)
� 4 e−2|t−s| for s ∈ [t ∧ z , t ∨ z],
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we get that, on the event B1 ∩{|z| < √
�}, for any t ∈ [τ−, τ+] and ε small enough,

|vt | �
∣∣∣∣
∫ t

z
ds 4 e−2|t−s| v2

s

∣∣∣∣+ 2C�4 exp{−4�+ 4z + 2|t − z|} + 6 ε
1
2 − 2

3 η

�
∣∣∣∣
∫ t

z
ds 4 e−2|t−s| v2

s

∣∣∣∣+ 2C�4 √
ε + 6 ε

1
2 − 2

3 η

�
∣∣∣∣
∫ t

z
ds 4 e−2|t−s| v2

s

∣∣∣∣+ 7 ε
1
2 − 2

3 η, (4.21)

where in the second inequality we used that −4�+ 4z + 2|t − z| < −4�+ 4
√
�+

2σ� < −2� for η ∈ [0, 1
2

)
, σ ∈ (0, 1 − 2η), and � large enough. By (4.21) and a

standard bootstrap argument it follows that τ± = z ± σ� for any ε small enough.
��

In order to complete the proof of Theorem 4.2 we need to analyze the behavior
of ξt for t close to ±�. We remark that while both the measures �ε and µε are
invariant with respect to the map x(t) �→ −x(−t), this symmetry property does
not hold for νε. We need therefore two separate arguments. We start with t < 0
and, in the next lemma, we give an upper bound for the probability that ξ(t) gets
above m−a(t) for t � −a and a large.

Lemma 4.5. There exist reals ε0 and a0 > 0 such that, for any a ∈ [a0, �] and
ε ∈ (0, ε0], we have

νε ({x : ∃ t ∈ [−�,−a] such that x(t) > m−a(t)}) � exp{−e
a
4 }.

Proof. We introduce the event

B1,a :=
{
w : |wt | < e

a
4 + (t + �) ∀ t ∈ [−�, �]

}
. (4.22)

The probability of B1,a can be computed explicitly, see, for example [13, Sec-
tion 4.3.C]. We give however a short proof of the bound

P(B�
1,a) � 2 exp

{
−2 e

a
4

}
. (4.23)

Indeed, let Mt := exp{2wt − 2(t + �)}, t ∈ [−�, �]. Since Mt is a mean one
continuous martingale, by Doob inequality we have

P
({

∃ t ∈ [−�, �] : wt � e
a
4 + t + �

})

= P

(
sup

t∈[−�,�]
Mt � exp

{
2 e

a
4

})
� exp

{
−2 e

a
4

}

and the bound (4.23) follows.
We next show that there exist ε0, a0 > 0 such that, for any a ∈ [a0, �] and

ε ∈ (0, ε0], on the event B1,a we have ξt < m−a(t) for any t ∈ [−�,−a]. Let
τ := inf{t � −� : ξt = m−a(t)} ∧ (−a). Note that, by continuity τ > −�;
we show that τ = −a on the event B1,a arguing by contradiction. Indeed, let
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σ ∈ [−�, τ ) be the last time for which ξt = m∗
�(t), the minimizer defined in Prop-

osition 3.1. We integrate the Equation (4.4) in the interval [σ, t] with t ∈ [σ, τ ],
getting

ξt = ξσ +
∫ t

σ

ds b(s, ξs)+ √
ε (wt − wσ ).

Since for s ∈ [σ, τ ], we have −1 � m∗
�(s) � ξs � m−a(s) � 0, from (4.2), the

inequality
√
α + β � √

α + √
β, α, β � 0, and (A.28) we have

ξt � m∗
�(σ )+

∫ t

σ

ds
[
1 − ξ2

s +
√

Es,m∗
�(s)

]
+ √

ε (wt − wσ ). (4.24)

Set vt := ξt − m−a(t) and note that Es,m∗
�(s)

= E−�,−1 = E�. Since m′−a(s) =
1 − m2−a(s) and

1 − ξ2
s − [1 − m−a(s)

2] = −2m−a(s)vs − v2
s � −2m−a(s)vs .

From (4.24) and (A.6), we get that, for ε small enough,

vt � − [
m−a(σ )− m∗

�(σ )
]+

∫ t

σ

ds
[−2m−a(s)vs + 9

√
ε
]

+√
ε (wt − wσ ). (4.25)

Next, we show that, on the event B1,a , we have vτ < 0 provided a is large enough
and ε is small enough, what contradicts the assumption τ ∈ [−�,−a). To this end
we integrate the inequality (4.25), proceeding as explained when getting (4.19)
from (4.17), obtaining

vτ � − ch2(σ + a)

ch2(τ + a)

[
m−a(σ )− m∗

�(σ )
]+ √

ε(wτ − wσ )

+√
ε

∫ τ

σ

dt
ch2(t + a)

ch2(τ + a)
(9 − 2m−a(t)[wt − wσ ]) . (4.26)

We now observe that, by (A.8),

m−a(σ )− m∗
�(σ ) � m−a(σ )− m0(σ )− A1

√
ε � e2σ

(
e2a − 2

)
− A1

√
ε,

where we used e2a � 1 + th(a) � 2e2a , a � 0. On the other hand, since

1

2
eβ−α � ch(α)

ch(β)
� eβ−α, α < β � 0, (4.27)

the inequality (4.26) yields

vτ < −1

4
e2(τ−σ) [e2σ

(
e2a − 2

)
− A1

√
ε
]

+ 2
√
ε
(
τ + �+ e

a
4

)

+√
ε

∫ τ

σ

dt e2(τ−t)
[
9 + 4

(
t + �+ e

a
4

)]
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� −1

4

√
ε e2(τ+�) {e2a − 2 − A1 − 8 e−2(τ+�)(τ + �+ e

a
4 )

− 4
∫ ∞

0
ds e−2s

[
9 + 4 (s + e

a
4 )
]}
.

By choosing a0 large enough the term inside the curly brackets above is strictly
positive for any a � a0. This yields vτ < 0 which is the contradiction announced
and, together with (4.23), concludes the proof of the lemma. ��

The analysis for t > 0 is somewhat more delicate. As a first step, which is the
content of the next lemma, we study the process ξt for t ∈ [−� + a, a] and show
that for a large it does not get below ma(·). In particular ξa � 0 with probability
close to one. In Lemma 4.7 below we then show that this property yields an upper
bound on the probability that ξt gets below ma(t) for some t ∈ [a, �].
Lemma 4.6. There exist a0, ε0 > 0 such that, for any a ∈ [a0, �] and ε ∈ (0, ε0],
we have

νε ({x : ∃ t ∈ [−�+ a, a] such that x(t) < ma(t)}) � exp
{
−e

a
4

}
.

Proof. The proof will be completed in three steps, each one taking place with prob-
ability close to one for a large and ε small. We first show that in the time interval
[−�,−� + a] the process ξt reaches the level −1 + √

ε e
a
3 . We then show that ξ·

hits the level ε
3
8 before hitting ma(·). Finally, once the process is above ε

3
8 it does

not go below zero.
Step 1. We introduce the event

B2,a :=
{
w : sup

t∈[−�,−�+a]
|wt | < e

a
3

}
. (4.28)

Note that, for a large enough, we have P(B�
2,a) � exp

{
−e

a
2

}
. We claim that on

the event B2,a there exists a time τ1 ∈ [−�,−�+ a] such that ξτ1 � −1 + √
ε e

a
3 .

We argue by contradiction. If there is no such τ1 we have ξt < −1+√
ε e

a
3 � 0 for

any t ∈ [−�,−�+ a] (we choose ε0 so small that
√
ε e

�
3 � 1). From the inequality

(1 + ξt )e�−t � e
a
3 , (4.2), and (A.29) we get

ξt � −1 + √
ε

∫ t

−�
ds 2es+�− a

3 − √
εe

a
3 � −1 + 2

√
ε e− a

3

(
et+� − 1

)
− √

ε e
a
3 .

In particular, for a large enough, ξ−�+a > −1 + √
ε e

a
3 which contradicts the

definition of τ1.
Step 2. Let τ1 ∈ [−�,−�+ a] be as in Step 1. We define τ2 := inf{t > τ1 : ξt �
ma(t)} ∧ a and τ3 := inf{t > τ1 : ξt � ε

3
8 } ∧ a. On the event B2,a , for a large

enough we have ξτ1 > ma(τ1); hence τ2, τ3 > τ1. Consider the event B1,a that has
been defined in (4.22). We claim that, by taking ε small enough and a large enough,
in the event B2,a ∩ B1,a we have τ3 < τ2. We argue by contradiction, that is we
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assume that ξt < ε
3
8 for any t ∈ (τ1, τ2]. Let T such that ma(T ) = −ε 3

8 and set
vt := ξt −ma(t). Integrating (4.4) in the time interval [τ1, t], with t ∈ [τ1, τ2 ∧ T ],
using (4.2) and m′

a = 1 − m2
a , we get

vt � ξτ1 − ma(τ1)+
∫ t

τ1

ds [−ma(s)− ξs] vs + √
ε [wt − wτ1 ]

� −1 + √
ε e

a
3 − ma(−�+ a)+

∫ t

τ1

ds
[
−ma(s)− ε

3
8

]
vs

+√
ε [wt − wτ1 ].

Note that ma(−� + a) � −1 + 2
√
ε. By integrating the above inequality,

proceeding as in (4.26), we thus find

vt � ch(τ1 − a)

ch(t − a)
e−ε 3

8 (t−τ1)
√
ε
(

e
a
3 − 2

)
+ √

ε[wt − wτ1]

+ √
ε

∫ t

τ1

ds
ch(s − a)

ch(t − a)
e−ε 3

8 (t−s)
[
−ma(s)− ε

3
8

]
[ws − wτ1 ],

whence, by (4.27) and the definition of the event B1,a (we suppose ε so small that

e−ε 3
8
(t − τ1) >

1
2 ),

vt >
1

4

√
ε e(t−τ1)

{
e

a
3 − 2 − 8e−(t−τ1)

[
e

a
4 + (t + �)

]

−9
∫ t

τ1

ds e−(s−τ1)
[
e

a
4 + s + �)

]}

� 1

4

√
ε e(t−τ1)

{
e

a
3 − 2 − 17

[
e

a
4 + a + 1

]}
,

where we used that τ1 + � � a. By choosing a0 large enough, we get that the term
inside the curly brackets above is strictly positive for any a � a0, so τ2 ∧ T = T .

Finally, by evaluating the above inequality for t = T , we conclude that ξT > 4ε
3
8

which gives the desired contradiction.
Step 3. Let τ3 be as in Step 2. We claim that on the event B2,a ∩B1,a we have ξt � 0
for any t ∈ [τ3, a]. Assume this is not the case, let σ+ > τ3 be the hitting time

of the level zero, and let σ− := sup{t ∈ [τ3, σ+) : ξt = ε
3
8 }. By using (4.2) for

t ∈ [σ−, σ+] we have

ξt � ε
3
8 + √

ε
(
wt − wσ−

)
.

Recalling (4.22) this gives the contradiction ξσ+ > 0. ��
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Lemma 4.7. For each η ∈ (0, 1
2 ) there exist a0, ε0 > 0 such that, for any a ∈ [a0, �]

and ε ∈ (0, ε0], we have

νε

({
x : ∃ t ∈ [a, �] such that x(t) < ma(t)− ε

1
2 −η})

� exp
{−ε−η}+ exp

{
−e

a
4

}
.

Proof. By Lemma 4.6, for a � a0, νε ({x : x(a) < 0}) � exp
{
−e

a
4

}
. Let τ :=

inf{t ∈ [a, �] : ξt � 1} ∧ �. Recalling B1 is defined in (4.16), we claim that on the

event B1 ∩ {ξa � 0} we have ξt � ma(t)− ε
1
2 −η for any t ∈ [a, τ ]. If τ = a there

is nothing to prove, otherwise let κ := ξa ∈ [0, 1] and define γt , t ∈ [a, τ ], as the
solution to

γt = κ +
∫ t

a
ds(1 − γ 2

s )+ √
ε (wt − wa) .

By (4.2) we have ξt � γt . Letting aκ := a − m−1
0 (κ) we note maκ

(t), t ∈ [a, τ ],
solves

maκ
(t) = κ +

∫ t

a
ds
[
1 − maκ

(s)2
]
.

By setting vt = γt − maκ
(t) and proceeding as in (4.19), on the event B1 ∩ B2,a ∩

B1,a , see (4.22) and (4.28), we get

|vt | �
∫ t

a
ds

ch2(s − aκ)

ch2(t − aκ)
v2

s + 10 ε
1
2 − 2

3 η.

By a standard bootstrap argument, we deduce that supt∈[a,τ ] |vt | � ε
1
2 −η for ε small

enough. This concludes the proof of the claim.
Finally, since b(t, x) � 0 for any (t, x) ∈ [−�, �] × (−∞, 1], by the same

argument given in the proof of Lemma 4.3 we get that, for each η ∈ (
0, 1

2

)
and ε

small enough,

P
({

∃ t ∈ [τ, �] : ξt < 1 − ε
1
2 −η}) � exp

{−ε−η} ,
which concludes the proof. ��

We have now collected all the ingredients needed to conclude the proof of the
main result of this section.

Proof of Theorem 4.2. Recall that Z(x) denotes the leftmost zero of x ∈ X�. The
bound (4.13) follows directly from Lemmata 4.5 and 4.7. The bound (4.14) is the
content of Lemma 4.6. In order to prove (4.12), by (4.13), it is enough to prove
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the following. For each η small enough there exists ε0 > 0 such that, for any
ε ∈ (0, ε0], we have

νε

(
sup

t∈[−�,�]
∣∣x(t)− mZ(x)(t)

∣∣ > ε
1
2 −η, |Z(x)| � a�

)
� 1

2
exp

{
ε−

1
2 η
}
,

(4.29)

where a� := log2 �.
We consider separately the cases t ∈ [−�,−σ�], t ∈ [σ�, �], and t ∈ [−σ�, σ�],

with σ < 1 suitably chosen. For the first case, we observe that by Lemma 4.3 with

δ = 1
2ε

1
2 −η and Lemma 4.5, for any ε small enough,

νε

(
∃ t ∈ [−�,−σ�] : x(t) /∈

(
−1 − 1

2ε
1
2 −η,m−a� (t)

))

� exp
{−ε−η}+ exp

{
−e

1
4 a�
}
.

We observe that m−a� (t) � −1 + 2ε
σ
2 e2a� for any t ∈ [−�,−σ�]. By choosing

σ ∈ [σ0, 1) with σ0 := 1 − 5
3η, the previous estimate implies

νε

(
sup

t∈[−�,−σ�]
∣∣x(t)− mZ(x)(t)

∣∣ > ε
1
2 −η, |Z(x)| � a�

)

� exp
{−ε−η}+ exp

{
−e

1
4 a�
}
.

Analogously, for the second case, by Lemma 4.3 with δ = 1
2ε

1
2 −η and Lemma 4.7

with η replaced by 2
3η, for any ε small enough we have

νε

(
∃ t ∈ [σ�, �] : x(t) /∈

(
ma� (t)− ε

1
2 − 2

3 η, 1 + 1
2ε

1
2 −η))

� exp
{
−ε− 2

3 η
}

+ exp
{−ε−η}+ exp

{
−e

1
4 a�
}
.

By choosing σ ∈ [σ0, 1) with σ0 as before, the previous estimate implies

νε

(
sup

t∈[σ�,�]
∣∣x(t)− mZ(x)(t)

∣∣ > ε
1
2 −η, |Z(x)| � a�

)

� exp
{−ε−η}+ exp

{
−ε− 2

3 η
}

+ exp
{
−e

1
4 a�
}
.

Finally, by applying Lemma 4.4 with η replaced by 2
3η, we have that, for any

σ ′ ∈ (0, 1 − 4
3η
)

and ε small enough (which implies a� �
√
�),

νε

(
sup

t∈[−σ ′�+a�,σ ′�−a�]

∣∣x(t)− mZ(x)(t)
∣∣ > ε

1
2 −η, |Z(x)| � a�

)

� νε

(
sup

t∈[−σ ′�+a�,σ ′�−a�]

∣∣x(t)− mZ(x)(t)
∣∣ > ε

1
2 − 2

3 η, |Z(x)| � a�

)

� exp
{
−ε− 2

3 η
}
.
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Since σ0 < 1 − 4
3η, we can choose σ ∈ (σ0, 1) and σ ′ ∈ (σ, 1); the bound (4.29)

follows. ��

5. Weak convergence of the measure

We first show, by using the representation of the measure µε given in
Proposition 4.1 and the sharp estimates of the previous section, thatµε concentrates
in a

√
ε-neighborhood of the manifold M. We also show that the interface remains

in a compact set of R with probability close to one. Recall that Z(x) is the leftmost
zero of x ∈ X�.

Theorem 5.1. For each η > 0, we have

lim
ε→0

µε

({
x : d(x,M) > ε

1
2 −η}) = 0, (5.1)

lim
L→∞ lim

ε→0
µε ({x : |Z(x)| > L}) = 0. (5.2)

We first prove a rougher bound showing that, uniformly in ε, the measure µε
of bounded sets is close to one.

Lemma 5.2. We have

lim
K→∞ lim

ε→0
µε ({x : ‖x‖∞ > K }) = 0.

Proof. We assume that K ∈ N ad use the representation of µε in Proposition 4.1
together with the bound |∂xx S0(t, x)| � A3(1 + |x |) proven in Theorem A.3. We
have

µε ({x : ‖x‖∞ > K }) =
∑
h�K

νε

(
e− 1

2

∫ �
−� dt ∂xx S0(�−t,x(t))1I{‖x‖∞∈[h,h+1)}

)

νε

(
e− 1

2

∫ �
−� dt ∂xx S0(�−t,x(t))

)

�
∑
h�K

eA3�(2+h) νε
(‖x‖∞ � h

)
e−3A3� νε

(‖x‖∞ � 2
)

�
∑
h�K

2 eA3�(5+h) e−c0(ε�)
−1h2

,

where we used that, by Lemma 4.3, if ε is small enough then νε
(‖x‖∞ � 2

)
� 1

2

and νε
(‖x‖∞ � h

)
� e−c0(ε�)

−1h2
for some c0 > 0. ��

Proof of Theorem 5.1. We first prove (5.1). By Lemma 5.2 it is enough to show
that for each K � 2 and η > 0 we have

lim
ε→0

µε (B) = 0, B :=
{

x : d(x,M) > ε
1
2 −η} ∩ {x : ‖x‖∞ � K

}
, (5.3)
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By the representation given in Proposition 4.1 and Theorem A.3,

µε (B) =
νε

(
exp

{
− 1

2

∫ �
−� dt ∂xx S0(�− t, x(t))

}
1IB
)

νε

(
exp

{
− 1

2

∫ �
−� dt ∂xx S0(�− t, x(t))

})

� eA3(4+K )�
νε

(
d(x,M) > ε

1
2 −η

)

νε
(‖x‖∞ � 2

) ,

which, by (4.12), concludes the proof of (5.1).
We next prove (5.2). By (5.1) it is enough to show that, for some η > 0,

lim
L→∞ lim

ε→0
µε
(Bε,L) = 0, Bε,L :=

{
x : |Z(x)| > L , d(x,M) � ε

1
2 −η} .(5.4)

Let

I�(x) := −1

2

∫ �

−�
dt ∂xx S0(�− t, x(t))− 1

2
log �.

By the representation given in Proposition 4.1,

µε
(Bε,L) = νε

(
eI� 1IBε,L

)
νε
(
eI�) .

We first observe that, by setting

A :=
{

d(x,M) � ε
1
2 −η} ∩ {|Z(x)| � a} ∩ {x(t) � ma(t) ∀ t ∈ [−�+ a, a]} ,

we have

νε

(
eI�
)

� νε

(
eI� 1IA

)
� e−A5a

(
1 − νε(A�)

)
,

where we used Proposition A.5. By choosing a large enough and applying
Theorem 4.2 we get limε→0 νε

(
eI�) > 0.

We next observe that, by Theorem A.3, we have |∂xx S0(�− t, x(t))| � 3A3 on
the event d(x,M) � 1, so that, for � large enough,

Bε,L = (Bε,L ∩ {|I�| � 2A5L
})

∪

[
7 A3

A5
�
]

⋃
h=L

(Bε,L ∩ {2h A5 < |I�| � 2A5(h + 1)
})
.

Accordingly,

νε

(
eI� 1IBε,L

)
� e2A5 Lνε (|Z| > L)

+

[
7 A3

A5
�
]

∑
h=L

e2A5(h+1) νε
(Bε,L ∩ {|I�| > 2h A5}

)
.
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Choosing η small enough and applying Proposition A.5, we get

νε
(Bε,L ∩ {|I�| > 2h A5}

)
� νε

(
d(x,M) � ε

1
2 −η, |I�| > 2A5 h

)

� νε (|Z(x)| > h) + νε ({∃ t ∈ [−�+ h, h] : x(t) < mh(t)}) .
By choosing L large enough and applying Theorem 4.2, we thus obtain

lim
ε→0

νε

(
eI� 1IBε,L

)
� 2 exp

{
2A5L − e

1
4 L
}

+
∞∑

h=L

3 exp
{

2A5(h + 1)− e
1
4 h
}
,

which concludes the proof. ��
We next conclude the proof of Theorem 2.3 by characterizing the limit points

of µε as the invariant measure of (2.21). By [8, Theorem 5.1] µε is the unique
invariant measure of the process X = Xσ in C(R+;X�) which solves (2.20) with
�= 1

4 log ε−1. For T > 0, we denote by P
ε
x0

the law of the process Xε−1σ ,σ ∈ [0, T ],
where X is the solution to (2.20) with initial datum x0 ∈ X�. We regard P

ε
x0

as a
probability on C([0, T ];X ), endowed with the topology of uniform convergence.
Let also Pz0 be the law of the one-dimensional diffusion solution to (2.21) with ini-
tial datum z0 ∈ R. We finally define Pz0 as the probability measure on C([0, T ];X )
with support C([0, T ];M) such that Pz0(A) = Pz0

(
mζ· ∈ A

)
. The analysis in [1],

see in particular Theorem 2.2, yields the weak convergence of P
ε
x0

to PZ(x0), recall
Z(x) is the leftmost zero of x . Moreover, for η small enough, the above convergence

is uniform for Z(x0) in compacts and x0 such that d(x0,M) � ε
1
2 −η.

Theorem 5.3. Let T > 0. There exists η1 > 0 such that for any η ∈ [0, η1] the fol-
lowing holds. For each L > 0 and each uniformly continuous and bounded function
F on C([0, T ];X ), we have

lim
ε→0

sup
z0∈[−L ,L]

sup
x0∈N ε

η (z0)

∣∣Pεx0
(F)− Pz0(F)

∣∣ = 0, (5.5)

where N ε
η (z0) :=

{
x ∈ X� : d(x,mz0) � ε

1
2 −η

}
.

Proof of Theorem 2.3. We set pε := µε ◦ Z−1, namely pε is the distribution of
the real random variable Z(x) when x is distributed according to µε. Note that pε
is tight by (5.2). Let also Qz(·) be a regular version of the conditional probability
µε ( · | Z = z).

Denote by πσ : C(R+;X ) → X the evaluation map at σ . Since µε is the
invariant measure of (2.20), for each σ ∈ R+ and each uniformly continuous and
bounded function F on X , we have

∫
dµε(x) F(x) =

∫
dµε(x0)P

ε
x0
(F ◦ πσ )

=
∫ L

−L
d pε(z0)

∫
N ε
η (z0)

dQz0(x0)P
ε
x0
(F ◦ πσ )+ RL ,ε(F), (5.6)
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where, by the compactness and tube estimate of Theorem 5.1, for each η > 0 we
have

lim
L→∞ lim

ε→0

∣∣RL ,ε(F)
∣∣

� ‖F‖∞ lim
L→∞ lim

ε→0
µε

(
{|Z(x)| > L} ∪

{
d(x,mZ(x)) > ε

1
2 −η}) = 0.

By the tightness of pε, there exists a probability measure p on R and a sub-
sequence, still denoted by pε, weakly convergent to p. By Theorem 5.3, for any
η ∈ [0, η1], the real function

z0 �→
∫

N ε
η (z0)

dQz0(x0)P
ε
x0
(F ◦ πσ )

converges to Pz0 (F ◦ πσ ) = Pz0(F(mζσ )) uniformly for z0 in compacts. By taking
in (5.6) the limit ε → 0 along the converging subsequence and then L → ∞, we
get

lim
ε→0

∫
dµε(x) F(x) =

∫
d p(z0) Pz0

(
F
(
mζσ

))
. (5.7)

As σ and F were arbitrary, (5.7) shows that p is an invariant measure for the
one-dimensional diffusion process (2.21). Since the latter has a unique invariant
measure given by µ̂ as in Equation (2.11), we conclude that p = µ̂, and, by (5.7),
the proof of the theorem. ��
Remark. From the above proof it follows that the stationary process associated to
(2.20), as a random element in C(R;X ), converges in law to mζ· , where ζ· is the
stationary process associated to (5.5).

Appendix A: Weierstrass analysis of the mechanical problem

Recall that S has been defined in (2.19). Since the potential −2V (x) attains its
global maximum at x = 1, for each (t, x) ∈ (0,∞)× R there is a unique solution
ψt,x (·) to the Newton equation

⎧⎪⎨
⎪⎩
ψ̈t,x = 2V ′(ψt,x ),

ψt,x (0) = 1,

ψt,x (t) = x .

(A.1)

As discussed in the proof of Proposition 3.1, ψt,x (·) is the minimizer for S(t, x),
that is,

S(t, x) =
∫ t

0
ds

[
1

2
ψ̇t,x (s)

2 + 2V (ψt,x (s))

]
. (A.2)

Integration of (A.1) yields that, for s ∈ (0, t),

ψ̇t,x (s)
2 − 4V (ψt,x (s)) = et,x , (A.3)
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for some non-negative constant et,x . Clearly et,1 = 0; otherwise, integrating (A.3)
by separation of variables, we get that et,x solves

t =
∣∣∣∣∣
∫ 1

x

du√
4V (u)+ et,x

∣∣∣∣∣ . (A.4)

Also, substitution of (A.3) into (A.2) gives

S(t, x) =
∣∣∣∣
∫ 1

x
du
√

4V (u)+ et,x

∣∣∣∣ − 1

2
t et,x . (A.5)

We finally notice that, by the symmetry of V , infX�
F� = S(2�,−1).

In the first two lemmata we prove the estimates used in Section 3 to prove the
variational convergence of G�.
Lemma A.1. Let E� := e2�,−1. Then

lim
�→∞ e4� E� = 64, (A.6)

lim
�→∞ e4�

[
S(2�,−1)− 4

3

]
= 16. (A.7)

Moreover, there exists a constant A1 > 0 such that for any � � 1,

sup
t∈[−�,�]

∣∣m∗
�(t)− m0(t)

∣∣ � A1 e−2�. (A.8)

Proof. Direct integration yields∣∣∣∣∣
∫ 1

x

du√
γ 2(1 − u)2 + β

∣∣∣∣∣ = 1

γ
arcsh

γ |x − 1|√
β

, β, γ > 0, (A.9)

which will be repeatedly used in the sequel. By (A.4) and the symmetry of V we
thus have

� =
∫ 1

0

du√
4V (u)+ E�

= 1

2
arcsh

2√
E�

+ R1(E�),

where

R1(E) :=
∫ 1

0

du√
4V (u)+ E

−
∫ 1

0

du√
4(1 − u)2 + E

. (A.10)

A straightforward computation yields

lim
E↓0

R1(E) = 1

2

∫ 1

0

du

1 + u
= 1

2
log 2. (A.11)

Since E� ↓ 0 as � → +∞, (A.6) follows.
To prove (A.7) we first observe that 4

3 = ∫ 1
−1 du

√
4V (u). We next show that

lim
�→∞

1

E�

[
S(2�,−1)−

∫ 1

−1
du
√

4V (u)

]
= 1

4
, (A.12)
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which, together with (A.6), yields (A.7). The identities (A.4), (A.5), and simple
computations give

1

E�

[
S(2�,−1)−

∫ 1

−1
du
√

4V (u)

]
= R2(E�),

where

R2(E) :=
∫ 1

0
du

E√
4V (u)+ E

(√
4V (u)+ √

4V (u)+ E
)2 .

By the change of variable 1 − u = 1
2

√
E y, we get

R2(E) = 1

2

∫ 2√
E

0
dy

1√
1 + y2(1 − 1

4

√
E y)2

× 1(
y(1 − 1

4

√
E y)+

√
1 + y2(1 − 1

4

√
E y)2

)2 ,

hence

lim
E↓0

R2(E) = 1

2

∫ ∞

0

dy√
1 + y2

(
y +√

1 + y2
)2 = 1

4
,

which gives (A.12).
To prove (A.8) we first note that it is enough to consider the case t � 0 as both

m∗
� and m0 are odd functions. Since m∗

� is the solution to (3.1), for t ∈ [0, �], we
have e�−t,m∗

�(t)
= e2�,−1 = E�, namely

t =
∫ m∗

�(t)

0

du√
4V (u)+ E�

.

On the other hand, since m′
0 = √

4V (m0), for t � 0,

t =
∫ m0(t)

0

du√
4V (u)

.

Then,

∫ m∗
�(t)

m0(t)

du√
4V (u)+ E�

=
∫ m0(t)

0
du

[
1√

4V (u)
− 1√

4V (u)+ E�

]
. (A.13)

We now have

1√
4V (u)

− 1√
4V (u)+ E�

� E�

2 [4V (u)]
3
2
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and ∫ m∗
�(t)

m0(t)

du√
4V (u)+ E�

�
(
m∗
�(t)− m0(t)

)
√

4V (m0(t))+ E�
=
(
m∗
�(t)− m0(t)

)
√

m′
0(t)

2 + E�
.

After substituting in (A.13), we obtain

m∗
�(t)− m0(t) � E�

√
m′

0(t)
2 + E�

∫ m0(t)

0

du

2 [4V (u)]
3
2

= E�
√

m′
0(t)

2 + E�

∫ t

0

ds

2 m′
0(s)

2 ,

that, recalling (A.6), yields (A.8). ��
Lemma A.2. Let x� be a sequence in X such that lim� G�(x�) < +∞. Then {x�}
is precompact.

Proof. Precompactness of a sequence x� in X is equivalent to its equi-continuity
together with

lim
K→∞ lim

�→∞ sup
t∈±[K ,∞)

|x�(t)∓ 1| = 0. (A.14)

Since lim� G�(x�) < +∞, by (3.3) there exists C > 0 such that F�(x�) � 4
3 +

C e−4�. This estimate implies immediately the equi-continuity of the sequence x�.
We next prove that

lim
K→∞

lim
�→∞

inf
t∈(−∞,−K ] x�(t) � −1. (A.15)

Given δ > 0, let τ δ� := inf {t ∈ [−�, �] : x�(t) = −1 − δ} ∧ � be the time of the
first passage by −1 − δ. The estimate (A.15) is then equivalent to lim� τ

δ
� > −∞

for any δ > 0. Since x� ∈ X�, we have τ δ� ∈ (−�, �]. If τ δ� = � (A.15) holds triv-
ially, otherwise we define σ δ� := sup

{
t ∈ [−�, τ δ� ] : x�(t) = −1 − δ

2

}
. Recalling

the notation (3.4), the equi-boundedness of the excess free energy G�(x�) yields

C e−4� � F�(x�)− F�(m∗
�)

= F[−�,τ δ� ](x�)− F[−�,τ δ� ](m
∗
�)+ F[τ δ� ,�](x�)− F[τ δ� ,�](m

∗
�)

�
∫ τ δ�

σ δ�

dt 2V (x�(t))− F[−�,τ δ� ](m
∗
�)

+ inf
x∈X�

x(τ δ� )=−1−δ
F[τ δ� ,�](x)− F[τ δ� ,�](m

∗
�).

Recalling (A.2), the second difference on the right-hand side above equals S(� −
τ δ� ,−1−δ)−S(�−τ δ� ,m∗

�(τ
δ
� )). Since x �→ S(t, x) is increasing and m∗

�(τ
δ
� ) > −1

we conclude that

C e−4� � 2V

(
−1 − δ

2

) (
τ δ� − σ δ�

)− F[−�,τ δ� ](m
∗
�),
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whence

lim
�→∞

F[−�,τ δ� ](m
∗
�) � lim

�→∞
2V

(
−1 − δ

2

) (
τ δ� − σ δ�

)
> 0,

where we used the equi-continuity of x�. We then conclude that lim� τ
δ
� > −∞

and (A.15) follows since δ > 0 was arbitrary. By symmetry we also have

lim
K→∞ lim

�→∞ sup
t∈[K ,∞)

x�(t) � 1. (A.16)

We next prove

lim
K→∞ lim

�→∞ sup
t∈(−∞,−K ]

x�(t) � −1. (A.17)

Given δ ∈ (0, 1) let T ≡ T δ� := inf{t ∈ (−�, �) : x�(t) = −1 + δ}; by continuity
of x� it follows that T ∈ (−�, �). We have

C e−4� � F�(x�) − 4

3
� inf

x∈X�
x(T )=−1+δ

F[−�,T ](x) + inf
x∈X�

x(T )=−1+δ
F[T,�](x) − 4

3

= S(�+ T, 1 − δ) + S(�− T,−1 + δ) − 4

3

=
∫ 1

1−δ
du

[√
4V (u)+ E+ −√

4V (u)
]

− 1

2
(�+ T ) E+

+
∫ 1

−1+δ
du

[√
4V (u)+ E− −√

4V (u)
]

− 1

2
(�− T ) E−,

where E± > 0 is the solution to

�± T =
∫ 1

±(1−δ)
du√

4V (u)+ E±
(A.18)

and we used the symmetry of V , the identity (A.5), and 4
3 = ∫ 1

−1 du
√

4V (u).
By computations similar to those used in proving (A.7), we get

E2±
2

∫ 1

±(1−δ)
du

√
4V (u)+ E±

(√
4V (u)+√

4V (u)+ E±
)2 � C e−4�,

which gives that for each δ ∈ (0, 1) we have

lim
�→∞ e4� E± < ∞. (A.19)

We rewrite (A.18) for E+ as

�+ T =
∫ 1

0

du√
4V (u)+ E+

−
∫ 1−δ

0

du√
4V (u)+ E+

= 1

2
arcsh

2√
E+

+ R1(E+)−
∫ 1−δ

0

du√
4V (u)+ E+

,
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where we recall that R1 is defined in (A.10). By taking the limit � → ∞ in this
identity and using the estimate (A.19) for E+ together with (A.11), we get that, for
each δ ∈ (0, 1),

lim
�→∞

T δ� � lim
�→∞

[
1

2
arcsh

2√
E+

− �

]
+ 1

2
log 2 − arcth(1 − δ) > −∞,

which yields (A.17). By symmetry

lim
K→∞

lim
�→∞

inf
t∈[K ,∞)

x�(t) � 1. (A.20)

The estimate (A.14) follows from (A.15), (A.16), (A.17), and (A.20). ��
Recall that S0 has been defined in (4.5). The regularity of S, whence of S0, is

standard for t > 0 and x ∈ R. In the next theorem, we show that S0 is actually
regular for t ↓ 0 and estimate its second derivative.

Theorem A.3. We have

lim
t↓0

S0(t, x) = lim
t↓0

∂x S0(t, x) = lim
t↓0

∂xx S0(t, x) = 0,

uniformly for x in compacts. Moreover

A3 := sup
(t,x)∈R+×R

1

1 + |x | |∂xx S0(t, x)| < +∞. (A.21)

Proof. Set c(x) := 2 + |x |. Then 0 � 4V (u) � c(x)2(1 − u)2 whenever x < 1
and u ∈ [x, 1] or x > 1 and u ∈ [1, x]. Recalling (A.9), from (A.4), we get

1

c(x)
arcsh

c(x) |1 − x |√
et,x

� t � |1 − x |√
et,x

,

whence

√
et,x = |1 − x |

t
[1 + g(t, x)] with

c(x) t

sh[c(x) t] − 1 � g(t, x) � 0.

(A.22)

Then, setting A(V, e) := √
4V + e − √

e and recalling (4.5), (A.5),

S0(t, x) = |1 − x |√et,x +
∣∣∣∣
∫ 1

x
du A(V (u), et,x )

∣∣∣∣ − 1

2
t et,x − (1 − x)2

2t

=
∣∣∣∣
∫ 1

x
du A(V (u), et,x )

∣∣∣∣− (1 − x)2

2t
g(t, x)2.

Analogously, recalling (4.2),

∂x S0(t, x) = sgn(x − 1)
√

4V (x)+ et,x − x − 1

t

= sgn(x − 1)A(V (x), et,x )− 1 − x

t
g(t, x).
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Since A(V, e) � 2V√
e
, we now have

|S0(t, x)| � t

1 + g(t, x)

2

1 − x

∫ 1

x
du V (u) + (1 − x)2

2t
g(t, x)2

and

|∂x S0(t, x)| � t

1 + g(t, x)

2V (x)

|1 − x | + |1 − x |
t

|g(t, x)|.

From the bound (A.22) on g(t, x)we then conclude that both S0(t, x) and ∂x S0(t, x)
vanish as t ↓ 0 (uniformly for x in compact sets).

Let us now consider the second derivative of S0(t, x). By differentiating the
identity (A.4), we have

∂x et,x = − 2√
4V (x)+ et,x

[∫ 1

x

du

[4V (u)+ et,x ] 3
2

]−1

. (A.23)

Plugging (A.23) in the explicit expression of ∂xx S0(t, x), we obtain

∂xx S0(t, x) = sgn(x − 1)
2V ′(x)√

4V (x)+ et,x

+ 1

4V (x)+ et,x

∣∣∣∣∣
∫ 1

x

du

[4V (u)+ et,x ] 3
2

∣∣∣∣∣
−1

− 1

t
. (A.24)

We now write ∣∣∣∣∣
∫ 1

x

du

[4V (u)+ et,x ] 3
2

∣∣∣∣∣ = |1 − x |
e

3
2
t,x

(1 − D(t, x))

with

0 � D(t, x) := 1 − e
3
2
t,x

1 − x

∫ 1

x
du

1

[4V (u)+ et,x ] 3
2

� 1 −
√

(1 + g(t, x))2

(1 + g(t, x))2 + t2c(x)2
, (A.25)

where we used V (u) � c(x)2(1 − u)2, (A.22), and the identity∣∣∣∣∣
∫ 1

x

du

[γ 2(1 − u)2 + β] 3
2

∣∣∣∣∣ = 1

β

|x − 1|√
γ 2(1 − x)2 + β

, β, γ > 0. (A.26)

Then (A.24) reads

∂xx S0(t, x) = sgn(x − 1)
2V ′(x) t√

4V (x)t2 + (1 − x)2[1 + g(t, x)]2

+ 1

t

{
(1 − x)2

4V (x)t2 + (1 − x)2[1 + g(t, x)]2

[1 + g(t, x)]3

1 − D(t, x)
− 1

}
. (A.27)
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From the above expression and the bounds (A.22) and (A.25) we have ∂xx S0(t, x) →
0 as t ↓ 0 (uniformly for x in compacts).

To prove the bound (A.21) we notice that the first term on the right-hand side
of (A.27) is bounded by 2|x |. Simple algebraic manipulations yield that the second
term can be rewritten as

1

t

[D(t, x)+ g(t, x)] [1 + g(t, x)]2

(1 − D(t, x)) [(1 + x)2t2 + [1 + g(t, x)]2] − (1 + x)2t

(1 + x)2t2 + [1 + g(t, x)]2 .

We analyze separately the two terms above. For the second one, by using the bound
(A.22) it is easy to show that

sup
(t,x)∈R+×R

1

c(x)

(1 + x)2t

(1 + x)2t2 + [1 + g(t, x)]2 < +∞.

For the first one we first notice that, by (A.22), (A.25), and simple computations,
we have

0 � g(t, x)+ D(t, x)

c(x)t
� 1

c(x)t

{
c(x)t

sh[c(x)t] − 1 + th2[c(x)t]
}
,

which is bounded for (t, x) ∈ R+ × R. To conclude it remains to show that

sup
(t,x)∈R+×R

[1 + g(t, x)]2

(1 − D(t, x)) [(1 + x)2t2 + [1 + g(t, x)]2] < +∞,

which can be easily checked using again (A.25) and (A.22). ��
Lemma A.4. Let et,x be the solution to (A.4) and set Et,x := e�−t,x , (t, x) ∈
[−�, �)× R. Then

− � � t � �, −∞ < x � y � 1 =⇒ Et,x � Et,y . (A.28)

Moreover,

(t, x) ∈ [−�, �] × (−∞, 0] =⇒ √
Et,x � 4 e−(�−t)

1 + e�−t [1 + x]+ . (A.29)

Finally,

4V (x)

sh2[(1 + x)(�− t)] � Et,x � 4(x − 1)2

sh2[2(�− t)] , (t, x) ∈ (−�, �)× [1,∞),

(A.30)

4(x − 1)2

sh2[2(�− t)] � Et,x � 4V (x)

sh2[(1 + x)(�− t)] , (t, x) ∈ (−�, �)× (−1, 1).

(A.31)
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Proof. The inequality (A.28) follows directly from the definition of Et,x . By
(A.28), to prove (A.29) it is enough to consider x ∈ [−1, 0]. In this case, from
(A.4) we get

�− t = 2
∫ 1

0

du√
4V (u)+ Et,x

−
∫ 1

−x

du√
4V (u)+ Et,x

� arcsh
2√
Et,x

− 1

2
arcsh

2 (1 + x)√
Et,x

� 1

2
log

16

Et,x + 4 (1 + x)
√

Et,x
,

where we used 4V (u) � 4(1−u)2 for u ∈ [0, 1] and (A.9) in the second inequality,
and that log(2y) � arcsh y � log(1 + 2y) for y � 0 in the last inequality. We thus
get

√
Et,x � 8e−2(�−t)

1 + x +√
(1 + x)2 + 4e−2(�−t)

,

from which the estimate (A.29) follows. Finally, to get the estimates (A.30) and
(A.31), it is enough to insert the bounds

{
4(1 − u)2 � 4V (u) � (1 + x)2(1 − u)2 if 1 � u � x,

(1 + x)2(1 − u)2 � 4V (u) � 4(1 − u)2 if x � u � 1
(A.32)

in (4.3) and use (A.9). ��
Proposition A.5. Let

Gε,L ,a :=
{

x : |Z(x)| � L , d(x,M) � ε
1
2 −η, x(t) � ma(t) ∀ t ∈ [−�+ a, a]

}
.

Then, for all η small enough there exists a real A5 > 0 such that for any L , a > 0,
and x ∈ Gε,L ,a we have

lim
ε→0

∣∣∣∣
∫ �

−�
dt ∂xx S0(�− t, x(t))+ log �

∣∣∣∣ � A5 (L + a). (A.33)

Proof. In the sequel we shall assume that ε is so small that ε
1
2 −η � 1

2 . We shall
denote by C a generic positive constant independent on ε, L , a whose numerical
value may change from line to line. Fix x ∈ Gε,L ,a and let z, |z| � L , be such

that |x(t) − mz(t)| � ε
1
2 −η for any t ∈ [−�, �]. Setting z∗ = z + th(1/2), by the

assumptions on ε we have
⎧⎪⎪⎨
⎪⎪⎩

ma(t) � x(t) � 1
2 if t ∈ [−�+ a, a ∧ z],

− 1
2 � x(t) � 3

2 if t ∈ [a ∧ z, �],
0 � x(t) � 3

2 if t ∈ [z∗, �].
(A.34)
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By (A.24), noticing Et,x = e�−t,x and
∫ �−1
−� dt 1

�−t = log(2�), we decompose

∫ �

−�
dt ∂xx S0(�− t, x(t))+ log � =

5∑
i=1

Ii − log 2, (A.35)

where

I1 =
∫ −�+2a

−�
dt

[
∂xx S0(�− t, x(t))+ 1

�− t

]
+
∫ �

�−1
dt ∂xx S0(�− t, x(t)),

I2 =
∫ �−1

−�+2a
dt sgn(x(t)− 1)

2V ′(x(t))√
4V (x(t))+ Et,x(t)

,

I3 =
∫ a∧z

−�+2a
dt G(�− t, x(t)),

I4 =
∫ z∗

a∧z
dt G(�− t, x(t)),

I5 =
∫ �−1

z∗
dt G(�− t, x(t)),

with

G(t, x) := 1

4V (x)+ et,x

∣∣∣∣∣
∫ 1

x

du

[4V (u)+ et,x ] 3
2

∣∣∣∣∣
−1

. (A.36)

Since |x(t)| � 3
2 , by Theorem A.3 we get |I1| + |I4| � C a. We next estimate the

other integrals separately.
Bound on I2. Since

sgn(x − 1)
2V ′(x)√

4V (x)
= 2x, ∀ x � −1

and recalling that x(t) > −1 for any t ∈ [−�+ 2a, �] we have

|I2| � 2
∫ �−1

−�+2a
dt |V ′(x(t))|

[
1√

4V (x(t))
− 1√

4V (x(t))+ Et,x(t)

]

+ 2
∫ �−1

−�+2a
dt |x(t)− mz(t)| + 2

∣∣∣∣
∫ �

−�+2a
dt mz(t)

∣∣∣∣
�
∫ �−1

−�+2a
dt

|V ′(x(t))|
[4V (x(t))] 3

2

Et,x(t) + 4 ε
1
2 −η (�− a)+ 4 |a − z|

� 3

2

∫ �−1

−�+2a
dt

Et,x(t)

4V (x(t))
+ C (L + a),
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where we used |x(t)| � 3
2 in the last inequality. Now, by (A.28), (A.30), and (A.31)

we have
∫ �−1

−�+2a
dt

Et,x(t)

4V (x(t))
�
∫ �−1

−�+2a

dt

sh2[2(�− t)] 1Ix(t)�1

+
∫ �−1

a∧z

dt

sh2[(1 + x(t))(�− t)] 1Ix(t)<1 +
∫ a∧z

−�+2a
dt

Et,ma(t)

4V (x(t))
1Ix(t)<1

�
∫ �−1

−�+2a

dt

sh2[2(�− t)] +
∫ �−1

a∧z

dt

sh2
[ 1

2 (�− t)
] + 4

∫ a∧z

−�+2a
dt

Et,ma(t)

[1 + ma(t)]2 ,

where we used (A.34). The first two integrals on the right-hand side above are
readily seen to be uniformly bounded in �. For the last one we need an upper bound
for Et,ma(t). To this end we observe that, for t � a,

�− t =
∫ 1

0

du√
4V (u)+ Et,ma(t)

+
∫ |ma(t)|

0

du√
4V (u)+ Et,ma(t)

�
∫ 1

0

du√
4V (u)+ Et,ma(t)

+ arcth |ma(t)|

=
∫ 1

0

du√
4V (u)+ Et,ma(t)

+ a − t,

from which, by (A.6), we get Et,ma(t) � Ce−4(�−a) for any t ∈ [−�, a]. Then,
∫ a∧z

−�+2a
dt

Et,ma(t)

[1 + ma(t)]2 � C
∫ a∧z

−�+2a
dt e−4(�−a)e−4(t−a) � C, (A.37)

so that |I2| � C(L + a).
Bounds on I3 and I5. From (A.32) and (A.26), we have

G(�− t, x) � Et,x

x − 1

1√
4V (x)+ Et,x

, if x ∈ (1,+∞), (A.38)

G(�− t, x) � Et,x

1 − x

√
4(1 − x)2 + Et,x

4V (x)+ Et,x
if x ∈ (−1, 1). (A.39)

By (A.28), (A.34), and (A.39),

I3 � C
∫ a∧z

−�+2a
dt

Et,ma(t)

[1 + ma(t)]2 ,

and the integral on the right-hand side has been bounded in (A.37). For I5, we
observe that, by (A.30), (A.31), (A.38), and (A.39),

G(�− t, x) � 4

sh2[2(�− t)]
th[(1 + x)(�− t)]

(1 + x)
if x ∈ (1,+∞),

G(�− t, x) � 1

sh2[(1 + x)(�− t)]

√
4 + (1 + x)2

sh2[(1 + x)(�− t)] if x ∈ (−1, 1).
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Then, recalling also (A.34),

I5 �
∫ �−1

z∗
dt

4(�− t)

sh2[2(�− t)] 1Ix(t)�1

+
∫ �−1

z∗
dt

1

sh2[(�− t)]

√
4 + 1

(�− t)2
1Ix(t)<1,

which is uniformly bounded. ��
Proof of (4.20). We assume ε so small that

ε
1
2 −η < 1

2
e−2σ�, � >

5

2
, log � < σ�. (A.40)

In particular, since m0(s) > 1 − 2e−2s for any s � 0, setting T = 1
2 log �, for

t ∈ [τ−, τ+] we have

ξt = mz(t)+ vt

{
< 0 if t − z < −T,

> 0 if t − z > T .

We shorthand Et = Et,mz(t)+vt and analyze separately three cases:
(i) Assume t ∈ [z − T, z + T ] ∩ [τ−, τ+]. By (4.3) with x = ξt = mz(t)+ vt , we
have:

� � z + T +
∫ 1

0

du√
4V (u)+ Et

+
∫ |ξt |

0

du√
4V (u)+ Et

.

By (A.40) we have |ξt | � m0(T )+ ε
1
2 −η � 1 − 1

2 e−2T , so that

∫ |ξt |

0

du√
4V (u)+ Et

� arcth

[
1 − 1

2
e−2T

]
� T + 1

2
log 4,

whence

�− z − 1

2
log 4 − log � �

∫ 1

0

du√
4V (u)+ Et

. (A.41)

(ii) Let t ∈ [z − σ�, z − T ] ∩ [τ−, τ+]. Since ξt < 0, by (4.3), we have:

� �
∫ 1

0

du√
4V (u)+ Et

+ t +
∫ |ξt |

0

du√
4V (u)+ Et

.

By (A.40) |ξt | � m0(|t − z|)+ ε
1
2 −η � 1 − 1

2 e−|t−z|, so that

t +
∫ |ξt |

0

du√
4V (u)+ Et

� t + arcth

[
1 − 1

2
e−2|t−z|

]
� z + 1

2
log 4,

whence

�− z − 1

2
log 4 �

∫ 1

0

du√
4V (u)+ Et

. (A.42)
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(iii) Finally let t ∈ [z + T, σ� + z] ∩ [τ−, τ+]. Since ξt � mz(t) − ε
1
2 −η �

1 − 3e−2(t−z), by (4.3), we have

�− t �
∫ 1

1−3e−2(t−z)

du√
4V (u)+ Et

� 1

2 − 3e−2(t−z)
arcsh

3e−2(t−z)
(
2 − 3e−2(t−z)

)
√

Et
.

Recalling t − z > 1
2 log �, for a suitable constant C > 0 and any ε small enough,

we get

Et � C exp{−4(t − z)− 4(�− t)+ 6(�− t)e−2(t−z)}
� C exp{−4(�− z)+ 6}. (A.43)

By comparing (A.41) and (A.42) with (A.6), we conclude that

lim
ε→0

sup
t∈[z−T,z+T ]∩[τ−,τ+]

e4(�−z)�−4 Et < ∞. (A.44)

The claim (4.20) now follows from (A.43) and (A.44). ��
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