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LARGE DEVIATIONS OF THE EMPIRICAL CURRENT IN
INTERACTING PARTICLE SYSTEMS∗

L. BERTINI† , A. DE SOLE‡ , D. GABRIELLI§ , G. JONA-LASINIO¶, AND C. LANDIM‖

Abstract. We study current fluctuations in lattice gases in the hydrodynamic scaling limit.
More precisely, we prove a large deviation principle for the empirical current in the symmetric simple
exclusion process with rate functional I. We then estimate the asymptotic probability of a fluctuation
of the average current over a large time interval and show that the corresponding rate function can be
obtained by solving a variational problem for the functional I. For the symmetric simple exclusion
process the minimizer is time independent so that this variational problem can be reduced to a
time-independent one. On the other hand, for other models the minimizer is time dependent. This
phenomenon is naturally interpreted as a dynamical phase transition.
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1. Introduction. In the last 20 years, interacting particle systems have become
a main subject of research in physics for the insight they provide on the dynamical
aspects of statistical physics. On the mathematical side they provide a source of
new, interesting problems in probability theory. Particularly relevant are the results
obtained on their hydrodynamical limits and the associated large deviations, since a
microscopic derivation of phenomelogical macroscopic laws can be rigorously estab-
lished. More precisely, for symmetric conservative interacting particle systems, it has
been shown that the empirical density satisfies a parabolic evolution equation. The
associated dynamical large deviations rate function measures the asymptotic proba-
bility, as the number of particles diverges, of fluctuations from the hydrodynamical
evolution. As discussed in [1], this rate function provides a new approach to the anal-
ysis of stationary nonequilibrium states. These states describe a physical situation in
which there is a macroscopic flow through the system and the Gibbsian description is
not applicable. Rigorous proofs of the dynamical large deviation principle have been
obtained for some equilibrium models (see, e.g., [9], [12]) and for the nonequilibrium
simple exclusion process (see [2]).

Besides the empirical density, a very important observable is the current, which
measures the flux of particle. This quantity gives information that cannot be recovered
from the density because from a density trajectory we can determine the current
trajectory only up to a divergence-free vector field. In [3], [4] we have introduced, at
a heuristic level, the large deviation principle for the empirical current. In the present
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paper we prove it in the case of the symmetric simple exclusion and illustrate some
relevant applications.

The simple exclusion process is a lattice gas with an exclusion principle: a particle
can move to a neighboring site only if this is empty. The particle dynamics is given by

a Markov process on the state space {0, 1}Td
N , where Td

N = (Z/NZ)d is the discrete d-
dimensional torus with Nd points. We denote by η = {η(x), x ∈ Td

N} a configuration,
so that η(x) = 1 when the site x is occupied, and η(x) = 0 otherwise. Let πN be the
empirical density of particles. The hydrodynamic limit for this model is particularly
simple: in the limit N → ∞ the empirical density πN satisfies the heat equation. To
discuss the large deviation asymptotics we need to introduce the mobility χ(π), which
describes the response to an external field; for the symmetric simple exclusion we have
χ(π) = π(1−π). We introduce the integrated empirical current WN

t , which measures
the total net flow of particles in the time interval [0, t], associated with a trajectory η.
We shall prove a large deviation principle which can be informally written as follows.
Fix a possible path Wt, t ∈ [0, T ], of the integrated empirical current; then

PN
{
WN

t ≈ Wt, t ∈ [0, T ]
}
∼ exp

{
−Nd I[0,T ](W)

}
,(1.1)

where the rate functional is

I[0,T ](W) =
1

2

∫ T

0

dt

〈[
Ẇt +

1

2
∇πt

]
,

1

πt(1 − πt)

[
Ẇt +

1

2
∇πt

]〉
.(1.2)

In the above formula Ẇt is the instantaneous current at time t. Moreover πt, which
represents the associated fluctuation of the empirical density, is obtained from Ẇ by
solving the continuity equation ∂tπ + ∇ · Ẇ = 0. Finally, 〈·, ·〉 denotes integration
with respect to the space variables. Note that (1.2) can be interpreted, in analogy to
the classical Ohm’s law, as the total energy dissipated in the time interval [0, T ] by the
extra current Ẇ + 1

2 ∇π. The large deviation principle of the empirical density [12],
as we show, can also easily be deduced from (1.1), (1.2).

Using (1.1), (1.2) we then analyze the fluctuations properties of the mean em-

pirical current WN
T /T = T−1

∫ T

0
dtẆt over a large time interval [0, T ]. This is the

question addressed in [6] in one space dimension by postulating an “additivity princi-
ple” which relates the fluctuation of the current in the whole system to the fluctuations
in subsystems. We show that the probability of observing a given, divergence-free,
time averaged fluctuation J can be described by a rate functional Φ(J); i.e., as N → ∞
and T → ∞ we have

PN

{
WN

T

T
≈ J

}
∼ exp

{
−Nd T Φ(J)

}
.

The functional Φ is characterized by a variational problem for the functional I[0,T ],

Φ(J) = lim
T→∞

inf
W

1

T
I[0,T ](W),(1.3)

where the infimum is carried over all paths Wt such that WT = TJ.
Let us denote by U the functional obtained by restricting the infimum in (1.3)

to the paths W such that Ẇt is divergence free for any t ∈ [0, T ]. The associated
density profile πt does not evolve. We get

U(J) = inf
ρ

1

2

〈[
J +

1

2
∇ρ)

]
,

1

ρ(1 − ρ)

[
J +

1

2
∇ρ

]〉
,(1.4)
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where the infimum is carried out over all the density profiles ρ. This is the functional
introduced in [6] in one space dimension. For the symmetric simple exclusion process
we prove that the additivity principle postulated in [6] gives the correct answer, that
is, Φ = U . On the other hand, while Φ is always convex, the functional U may be
nonconvex. In general (see [3], [4]) we interpret the strict inequality Φ < U as a
dynamical phase transition. In such a case the minimizers for (1.3) become in fact
time dependent and the invariance under time shifts is broken. In [4] we have shown
that, for the one-dimensional Kipnis–Marchioro–Presutti (KMP) model (see [5], [11]),
which is defined by a harmonic chain with random exchange of energy between neigh-
boring oscillators, the following holds when it is considered with a periodic boundary
condition. The functional U is given by U(J) = 1

2 J
2/χ(m) = 1

2 J
2/m2, where m

is the (conserved) total energy. Moreover, for J large enough, Φ(J) < U(J). This
inequality is obtained by constructing a suitable traveling wave current path whose
cost is less than U(J). In the present paper we give a more formal presentation of
these results. We finally mention that the strict inequality Φ < U also occurs for the
weakly asymmetric exclusion process for a sufficiently large external field [7].

2. Notation and results. For N � 1, let Td
N = (Z/NZ)d be the discrete

d-dimensional torus with Nd points. Consider the symmetric simple exclusion pro-

cess on Td
N . This is the Markov process on the state space XN := {0, 1}Td

N whose
generator LN is given by

(LNf)(η) =
N2

2

∑
x,y∈Td

N , |x−y|=1

{
f(σx,yη) − f(η)

}
.

In this formula η = {η(x), x ∈ Td
N} ∈ XN is a configuration of particles, so that

η(x) = 0 (respectively, η(x) = 1), if and only if site x is vacant (respectively, occupied)
for η, and σx,yη is the configuration obtained from η by exchanging the occupation
variables η(x), η(y):

(σx,yη)(z) =

⎧⎪⎨⎪⎩
η(z) if z 
= x, y,

η(y) if z = x,

η(x) if z = y.

Notice that we speed up time by N2. Denote by {ηt : t � 0} the Markov pro-
cess with generator LN and by PN

μN the probability measure on the Skorokhod

space D(R+,XN ) induced by the Markov process ηt and a probability measure μN

on XN , standing for the initial distribution. When μN is a Dirac measure concen-
trated on a configuration ηN , we denote PN

μN by PN
ηN . An elementary computation

shows that this process is reversible with respect to any Bernoulli product measure

on {0, 1}Td
N with parameter m ∈ [0, 1].

Denote by M(Td) the space of finite signed measures on Td, the d-dimensional
torus of side 1, endowed with the weak topology, and by F = F+,1(T

d) the set of
positive, measurable functions bounded by 1 endowed with the same weak topology.
For a finite signed measure m we let 〈m,F 〉 be the integral of a continuous function
F : Td → R with respect to m. Likewise for a profile π ∈ F and F ∈ C(Td) we
denote by 〈π, F 〉 the integral of πF .

For N � 1 and a configuration η ∈ XN , denote by πN = πN (ηN ) the empirical
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density of particles. It is defined as

πN (u) =
∑

x∈Td
N

1I
{
uN ∈ B(x)

}
η(x),

where, for x = (x1, . . . , xd) ∈ Td
N , B(x) is the cube [x1, x1 + 1) × · · · × [xd, xd + 1).

Set πN
t = πN (ηt) and notice that πN

t belongs to F for each t � 0.
For t � 0 and two neighboring sites x, y ∈ Td

N , denote by Jx,y
t the total number of

particles that jumped from x to y in the macroscopic time interval [0, t]. Let {ek : 1 �
k � d} be the canonical basis of Rd; the difference W

x,x+ej
t = J

x,x+ej
t − J

x+ej ,x
t

represents the net flow of particles across the bond {x, x+ej} in the time interval [0, t].
For t � 0, we define the empirical integrated current WN

t = (WN
1,t, . . . ,W

N
d,t) ∈

Md = {M(Td)}d as the vector-valued finite signed measure on Td induced by the
net flow of particles in the time interval [0, t]:

WN
j,t = N−(d+1)

∑
x∈Td

N

W
x,x+ej
t δx/N , j = 1, . . . , d,

where δu stands for the Dirac measure concentrated on u. Notice the extra factor N−1

in the normalizing constant which corresponds to the diffusive rescaling of time. In
particular, for a continuous vector field F = (F1, . . . , Fd) ∈ C(Td; Rd) the integral
of F with respect to WN

t , also denoted by 〈WN
t ,F〉, is given by

〈
WN

t ,F
〉

= N−(d+1)
d∑

j=1

∑
x∈Td

N

Fj

(
x

N

)
W

x,x+ej
t .(2.1)

The purpose of this article is to prove a large deviation principle for the empirical
integrated current WN

t and discuss the asymptotic behavior as t → ∞. We start with
the law of large numbers. Fix a profile λ ∈ F and let {μN : N � 1} be a sequence of
measures on XN associated with λ in the sense that the empirical density converges
to λ in probability with respect to μN . Namely, for each F ∈ C(Td) and δ > 0, we
have

lim
N→∞

μN

{∣∣∣∣〈πN , F
〉
−
∫
Td

λ(u)F (u) du

∣∣∣∣ > δ

}
= 0.(2.2)

It is well known (see, e.g., [10]) that in such a case the empirical density πN
t converges

in probability to ρ = ρ(t, u) which solves the heat equation⎧⎨⎩ ∂tρ =
1

2
Δρ,

ρ(0, ·) = λ(·),
(2.3)

where Δ = ∇ ·∇ stands for the Laplacian and ∇ for the gradient. We claim that the
empirical current converges to the time integral of − 1

2 ∇ρ. This is the content of the
next result, which is proved in subsection 3.1 in a more general context.

Proposition 2.1. Fix a profile λ ∈ F and consider a sequence of probability
measures μN associated with λ in the sense of (2.2). Let ρ be the solution of the heat
equation (2.3). Then, for each T > 0, δ > 0, and F ∈ C(Td;Rd),

lim
N→∞

PN
μN

{∣∣∣∣〈WN
T ,F

〉
+

1

2

∫ T

0

dt

∫
Td

F(u) · ∇ρ(t, u) du

∣∣∣∣ > δ

}
= 0.
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We turn now to the large deviations of the pair (WN , πN ). Fix T > 0 and denote
by D([0, T ],Md×F) the space of càdlàg trajectories with values in Md×F endowed
with the Skorokhod topology. Fix a profile γ ∈ C2(Td) bounded away from 0 and 1:
there exists δ > 0 such that δ � γ � 1 − δ. To focus on the dynamical fluctuations,
we assume that the process starts from a deterministic initial condition ηN which is
associated with γ in the sense that πN (ηN ) → γ in F .

Let Aγ be the set of trajectories (W, π) in C([0, T ], Md × F) such that for any
t ∈ [0, T ] and any F ∈ C1(Td)

〈πt, F 〉 − 〈γ, F 〉 = 〈Wt,∇F 〉, W0 = 0.(2.4)

Note that Aγ is a closed and convex subset of C([0, T ], Md×F). Equation (2.4) is the

weak formulation of the continuity equation π̇t+∇·Ẇt = 0, π0 = γ, W0 = 0. For each
F ∈ C1,1([0, T ] × Td;Rd), define the convex and lower semicontinuous functional JF

as follows. If (W, π) ∈ C([0, T ];Md ×F), we set

JF(W, π) = 〈WT ,FT 〉 −
∫ T

0

dt 〈Wt, ∂tFt〉

− 1

2

∫ T

0

dt
〈
πt,∇ · Ft

〉
− 1

2

∫ T

0

dt
〈
χ(πt), |Ft|2

〉
,(2.5)

where, here and in what follows, χ(a) = a(1− a) is the mobility. We set JF(W, π) =
+∞ if (W, π) /∈ C([0, T ];Md × F). Since C([0, T ];Md × F) is a closed subset
of D([0, T ];Md × F), the argument in [10, section 10.1] proves the convexity and
lower semicontinuity of JF.

Let finally

J(W, π) = sup
F∈C1,1

JF(W, π), I(W, π) =

{
J(W, π) if (W, π) ∈ Aγ ,

+∞ otherwise.
(2.6)

Notice that the functional J is convex and lower semicontinuous, properties which
are inherited by I because Aγ is a closed and convex subset of C([0, T ],Md × F).
Notice furthermore that the continuity equation (2.4) determines the trajectory π as
a function of W and the initial condition γ. Therefore, the rate function I(W, π) can
be thought of as a function of W and the initial density profile. In subsection 3.3 we
derive a more explicit formula for the rate function (2.6). If I(W, π) < ∞, we have

I(W, π) =
1

2

∫ T

0

dt
〈
χ(πt), |Ft|2

〉
,

where the vector-valued function Ft is the solution of

∂tWt +
1

2
∇πt = χ(πt)Ft.

Thus, formally,

I(W, π) =
1

2

∫ T

0

dt

〈
1

χ(πt)

∣∣Ẇt − Ẇt(π)
∣∣2〉,

where Ẇt = ∂tWt is the instantaneous current at time t for the path (W, π) and
Ẇt(π) = − 1

2 ∇πt is the typical instantaneous current at time t associated with the
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density profile πt. Recall in fact that the hydrodynamic equation (2.3) is in our case
the heat equation.

Theorem 2.1. Consider a profile γ ∈ C2(Td) bounded away from 0 and 1 and
a sequence {ηN : N � 1} such that πN (ηN ) → γ in F . Then, for each closed set F
and each open set G of D([0, T ],Md ×F), we have

lim sup
N→∞

1

Nd
log PN

ηN

{(
WN , πN

)
∈ F

}
� − inf

(W,π)∈F
I(W, π),

lim inf
N→∞

1

Nd
log PN

ηN

{(
WN , πN

)
∈ G

}
� − inf

(W,π)∈G
I(W, π).

We next state a “large deviation principle” for the mean empirical current WN
T /T

in the interval [0, T ] as we let first N → ∞ and then T → ∞.

Let us denote by B ⊂ Md the set of divergence-free measures, i.e.,

B :=
{
J ∈ Md : 〈J,∇f〉 = 0 for any f ∈ C1(Td)

}
(2.7)

which is a closed subspace of Md. Given m ∈ (0, 1), we introduce the set of profile
with mass m, i.e., we set Fm := {ρ ∈ F :

∫
Td du ρ(u) = m}. We finally define

Um : Md → [0,+∞] by

Um(J) := inf
ρ∈Fm∩C2(Td)

0<ρ<1

1

2

〈[
j +

1

2
∇ρ

]
,

1

ρ(1 − ρ)

[
j +

1

2
∇ρ

]〉
(2.8)

if J ∈ B, J(du) = j du, and Um(J) = +∞ otherwise. In section 5.1 we show that Um

is a lower semicontinuous convex functional.

In section 5.1 we also prove that in the one-dimensional case, where J ∈ B and
J(du) = j du imply that j is constant du-a.e., we simply have

Um(J) :=

⎧⎪⎨⎪⎩
1

2

j2

m(1 −m)
if J = j du for some j which is du-a.e. constant,

+∞ otherwise.

(2.9)

Theorem 2.2. Let m ∈ (0, 1), let γ ∈ C2(Td) ∩ Fm be bounded away from 0
and 1, and let ηN ∈ XN be a sequence such that πN (ηN ) → γ in F . Then, for each
closed set C and each open set G of Md, we have

lim sup
T→∞

lim sup
N→∞

1

TNd
log PN

ηN

{
1

T
WN

T ∈ C

}
� − inf

J∈C
Um(J),

lim inf
T→∞

lim inf
N→∞

1

TNd
log PN

ηN

{
1

T
WN

T ∈ G

}
� − inf

J∈G
Um(J).

3. Large deviation for the empirical current on a fixed time interval. In
this section we prove Theorem 2.1. The proof is similar to that of the large deviation
principle for the empirical density; see [12] or [10, Chap. 10]. We therefore present
only the main modifications.
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3.1. Weakly asymmetric exclusion processes. In this subsection we prove
the law of large numbers for the empirical current of weakly asymmetric exclusion
processes. Proposition 2.1 follows as a particular case.

Fix T > 0 and a time-dependent vector-valued function F = (F1, . . . , Fd) ∈
C1,1([0, T ]×Td; Rd). Denote by LF,N the time-dependent generator on XN given by

(LF,Nf)(η) =
N2

2

d∑
j=1

∑
x∈Td

N

cFx,x+ej (t, η)
{
f(σx,x+ejη) − f(η)

}
,

where the rate cFx,x+ej (t, η) is given by

η(x)
[
1 − η(x + ej)

]
eN

−1Fj(t,x/N) + η(x + ej)
[
1 − η(x)

]
e−N−1Fj(t,x/N).

Hence, for N large, instead of jumping from x to x+ej (respectively, from x+ej to x)
with rate 1

2 , at a macroscopic time t particles jump with rate 1
2 {1 +N−1Fj(t, x/N)}

(respectively, 1
2 {1 − N−1Fj(t, x/N)}) and a small drift appears due to the external

field F. For a probability measure μN on XN , denote by PN
F,μN the measure on the

path space D(R+,XN ) induced by the Markov process ηt with generator LF,N and
initial distribution μN .

Let ρF,λ be a unique weak solution of the parabolic equation⎧⎨⎩ ∂tρ =
1

2
Δρ−∇ ·

{
χ(ρ)F

}
,

ρ(0, ·) = λ(·).
(3.1)

Write the previous differential equation as

ρ̇t + ∇ · ẆF(ρt) = 0,

where ẆF(ρ) is the instantaneous current associated with the profile ρ and is given by

ẆF(ρ) = −1

2
∇ρ + χ(ρ)F.

The main result of this section states that WN
t converges in probability to the time

integral of ẆF(ρ).
Lemma 3.1. Fix a profile λ : Td → [0, 1] and consider a sequence of probability

measures {μN : N � 1} on XN associated with λ in the sense of (2.2). For each t > 0,
δ > 0, G ∈ C(Td), and H ∈ C1(Td; Rd),

lim
N→∞

PN
F,μN

{∣∣∣〈πN
t , G

〉
−
〈
ρF,λ
t , G

〉∣∣∣ > δ
}

= 0,

lim
N→∞

PN
F,μN

{∣∣∣∣〈WN
t , H

〉
−
∫ t

0

ds
〈
ẆF(ρF,λ

s ), H
〉∣∣∣∣ > δ

}
= 0,

where 〈ẆF(ρF,λ
s ),H〉 stands for

1

2

〈
ρF,λ
s , ∇ · H

〉
+
〈
χ
(
ρF,λ
s

)
, Fs · H

〉
.
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Proof. The law of large numbers for the empirical density follows from the usual
entropy method; see, e.g., [10, Chap. 6]. For each t � 0 the empirical density πN

t

converges in probability to ρF,λ(t, ·).
To derive the hydrodynamic equation for the current, fix t > 0 and a smooth

vector field H : Td → Rd. Let W̃N,H
t be the martingale defined by

W̃N,H
t =

〈
WN

t ,H
〉
−
∫ t

0

ds
N2

2Nd+1

∑
j,x

Hj

(
x

N

)
ηs(x)[1 − ηs(x + ej)] e

Fj(s,x/N)/N

+

∫ t

0

ds
N2

2Nd+1

∑
j,x

Hj

(
x

N

)
ηs(x + ej)

[
1 − ηs(x)

]
e−Fj(s,x/N)/N .

An elementary computation shows that the quadratic variation of this martingale
vanishes in L1(PN

F,μN ) as N ↑ ∞. On the other hand, after a Taylor expansion and
few summations by parts, the time integral can be rewritten as∫ t

0

ds

〈
πN
s ,

1

2
∇ · H + Fs · H

〉
+ OF,H(N−1)

−
∫ t

0

ds
1

Nd

d∑
j=1

∑
x∈Td

N

Hj

(
x

N

)
Fj

(
s,

x

N

)
ηs(x) ηs(x + ej),

where OF,H(N−1) is an expression whose absolute value is bounded by CN−1 for
some constant depending only on F and H. By the two block estimates and the
law of large numbers for the empirical density, as N ↑ ∞, the previous expression
converges in PN

F,μN -probability to

1

2

∫ t

0

ds
〈
ρF,λ
s , ∇ · H

〉
+

∫ t

0

ds
〈
χ(ρF,λ

s ), Fs · H
〉
.

Since the martingale W̃N,H
t vanishes in L2 as N ↑ ∞, the lemma is proved.

The same result holds for the generator L̃F,N defined by(
L̃F,Nf

)
(η) =

N2

2

∑
x,y∈Td

N
|x−y|=1

η(x)
[
1 − η(y)

]
eN

−1F(t,x/N)·(y−x)
{
f(σx,yη) − f(η)

}
.

However, the computations of the exponential martingales in the next subsection are
slightly more complicated if we use this expression instead of LF,N .

3.2. Large deviations upper bound. We first remark that Lemma 3.2 below
implies that the probability of the event (WN , πN ) 
∈ C([0, T ];Md × F) is super-
exponentially small as N → ∞. Recalling the definition (2.6) of the rate function I,
it is therefore enough to prove the upper bound for closed subsets of C([0, T ]; Md×F).
We shall first prove it for compacts and then show the exponential tightness.

We start by recalling the superexponential estimate of [9], [12]. For a positive
integer � and x in Zd, denote by η�(x) the empirical density of particles on a box of
size 2� + 1 centered at x: η�(x) = (2� + 1)−d

∑
|y−x|�� η(y). Moreover, for 1 � j � d,

ε > 0, let

Vj,N,ε(η) =
1

Nd

∑
x∈Td

N

∣∣∣∣ 1

(2εN + 1)d

∑
|y−x|�εN

η(y) η(y + ej) −
[
ηNε(x)

]2∣∣∣∣.



10 L. BERTINI, A. DE SOLE, D. GABRIELLI, G. JONA-LASINIO, AND C. LANDIM

Theorem 3.1. For each 1 � j � d, T > 0, each sequence of measures {μN :
N � 1}, and each δ > 0,

lim sup
ε→0

lim sup
N→∞

1

Nd
log PN

μN

{∣∣∣∣ ∫ T

0

Vj,N,ε(ηt) dt

∣∣∣∣ > δ

}
= −∞.

Fix a vector-valued function F : [0, T ]×Td → Rd in C1,1, and by dPN
F,μN /dPN

μN (T )

denote the Radon–Nikodým derivative of PN
F,μN with respect to PN

μN restricted to the

time interval [0, T ]. A long but elementary computation gives that

1

Nd
log

dPN
F,μN

dPN
μN

(T ) =
1

Nd+1

d∑
j=1

∑
x∈Td

N

∫ T

0

Fj

(
t,

x

N

)
dW

x,x+ej
t

− 1

2

∫ T

0

dt
〈
πN
t , ∇ · Ft

〉
− 1

4

∫ T

0

dt
1

Nd

d∑
j=1

∑
x∈Td

N

Fj

(
t,

x

N

)2

τxhj(ηt) + OF(N−1),

where hj(η) = η(0) + η(ej) − 2η(0) η(ej) and τx denotes the translation of x. In
particular, on the set

d∑
j=1

∣∣∣∣ ∫ T

0

Vj,N,ε(ηt) dt

∣∣∣∣ � δ,

integrating by parts the first term on the right-hand side of the penultimate formula,
we obtain that N−d log{dPN

F,μN /dPN
μN }(T ) is bounded below by JF,ε,δ(W

N , πN ) −
C(F) × {ε + δ} for every ε > 0. Here

JF,ε,δ(W, π) = 〈WT ,FT 〉 −
∫ T

0

dt 〈Wt, ∂tFt〉

− 1

2

∫ T

0

dt〈πt,∇ · Ft〉 −
1

2

∫ T

0

dt
〈
χ(πε

t ), |Ft|2
〉
,

C(F) is a finite constant depending only on F, and πε
t is the function defined by

πε
t (u) = (2ε)−d

∫
[u−ε1,u+ε1]

dv πt(v), where [u − ε1, u + ε1] is the hypercube [u1 − ε,

u1 + ε] × · · · × [ud − ε, ud + ε].
For each ε > 0, δ > 0, and F of class C1,1, the functional JF,ε,δ is continuous

in C([0, T ];Md ×F). By repeating the arguments presented in [10, section 10.4], we
then obtain that for each compact set K of C([0, T ], Md ×F),

lim sup
N→∞

1

Nd
log PN

ηN

{(
WN , πN

)
∈ K

}
� − inf

(W,π)∈K
J(W, π),

where J is defined in (2.6).
To extend the upper bound from compact to closed sets, we next prove the expo-

nential tightness of the sequence (WN , πN ). As stated before, the following lemma
also implies that the probability of the event (WN , πN ) 
∈ C([0, T ];Md×F) is super-
exponentially small.
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Lemma 3.2. Fix a sequence of measures {μN : N � 1}, a continuous function
G : Td → R, a vector-valued function H : Td → Rd in C1, and ε > 0. Then,

lim
δ→0

lim sup
N→∞

1

Nd
log PN

μN

{
sup

|t−s|�δ

∣∣〈πN
t , G

〉
−
〈
πN
s , G

〉∣∣ > ε

}
= −∞,

lim
δ→0

lim sup
N→∞

1

Nd
log PN

μN

{
sup

|t−s|�δ

∣∣〈WN
t , H

〉
−
〈
WN

s , H
〉∣∣ > ε

}
= −∞.

Proof. The proof of the first estimate is similar to that of the exponential tightness
of the empirical measure presented in [10, section 10.4]. In our context the initial
configuration is not, however, the invariant measure. The necessary modifications are
worked out in what follows in the proof of the second statement of the lemma.

To prove the second estimate, first observe that by a triangular inequality and
since

lim sup
N→∞

N−d log{aN + bN} � max
{

lim sup
N→∞

N−d log aN , lim sup
N→∞

N−d log bN

}
,(3.2)

it is enough to estimate

max
0�k�Tδ−1

lim sup
N→∞

1

Nd
log PN

μN

{
sup

tk�t�tk+1

∣∣ 〈WN
t , H

〉
−
〈
WN

tk
, H

〉∣∣ > ε

3

}
,(3.3)

where tk = kδ. By (3.2), we may also disregard the absolute value in the previous
expression provided we estimate the same term with −H in place of H. Fix a > 0 and
denote by Mt = Mt(a,H) the mean one exponential martingale whose logarithm is
given by

a

N

d∑
j=1

∑
x∈Td

N

∫ t

0

Hj

(
s,

x

N

)
dW x,x+ej

s

−N2
d∑

j=1

∑
x∈Td

N

∫ t

0

ds ηs(x)
[
1 − ηs(x + ej)

]{
eaN

−1Hj(s,x/N) − 1
}

−N2
d∑

j=1

∑
x∈Td

N

∫ t

0

ds ηs(x + ej)
[
1 − ηs(x)

]{
e−aN−1Hj(s,x/N) − 1

}
.

Since Hj are C1 functions, a Taylor expansion and a summation by parts show that the
expressions inside the integrals in the last two terms are bounded by CHa(1 + a)Nd,
where CH is a finite constant depending only on H. Therefore, by multiplying by aNd,
adding and subtracting the appropriate integrals and exponentiating, we get that

PN
μN

{
sup

tk�t�tk+1

〈
WN

t , H
〉
−
〈
WN

tk
, H

〉
>

ε

3

}

� PN
μN

{
sup

tk�t�tk+1

Mt

Mtk

> exp

{
1

6
aNdε

}}
provided CH(1 + a) δ � ε/6. Since Mt/Mtk is a positive martingale equal to 1
at time tk, by Doob’s inequality, the last expression is bounded by exp{− 1

6 aN
dε}.
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Therefore, (3.3) is less than or equal to −aε/6 for all δ small enough. This shows that
the second expression in the statement of the lemma is bounded by −aε/6. Letting
a ↑ ∞, we conclude the proof.

Standard arguments, presented in [10, section 10.4], together with Lemma 3.2
permit us to extend the upper bound for compact sets to closed sets.

We conclude this subsection, proving that we may set J(W, π) = +∞ on the set
of paths (W, π) which do not belong to Aγ .

Lemma 3.3. Fix a sequence of measures {μN : N � 1} and a function H : [0, T ]×
Td → R in C1,2. Let

LT (πN , H) =
〈
πN
T , HT

〉
−
〈
πN

0 , H0

〉
−
∫ T

0

dt
〈
πN
t , ∂tHt

〉
,

VT

(
πN , WN , H

)
= LT

(
πN , H

)
(3.4)

− 1

Nd+1

d∑
j=1

∑
x∈Td

N

∫ T

0

(∂ujH)

(
t,

x

N

)
dW

x,x+ej
t .

Then, for any δ > 0,

lim sup
N→∞

1

Nd
log PN

μN

{∣∣VT

(
π, WN , H

)∣∣ > δ
}

= −∞.

Proof. Fix a function H : [0, T ]×Td → R in C1,2. A summation by parts shows
that

1

Nd+1

d∑
j=1

∑
x∈Td

N

∫ T

0

N

{
H

(
t, x +

ej
N

)
−H

(
t,

x

N

)}
dW

x,x+ej
t

=
1

Nd

∑
x∈Td

N

∫ T

0

H

(
t,

x

N

) d∑
j=1

d
{
W

x−ej ,x
t −W

x,x+ej
t

}
.

Since
∑d

j=1{W
x−ej ,x
s −W

x,x+ej
s } increases by one each time a particle jumps to x and

decreases by one each time a particle leaves x, this sum is equal to ηs(x) − η0(x). In
particular, an integration by parts gives that the previous integral is equal to LT (πN, H)
defined in (3.4). Therefore, by a second order Taylor expansion,

VT (πN , WN , H) =
1

Nd+2

d∑
j=1

∑
x∈Td

N

∫ T

0

(∂2
uj
H)

(
t,

x

N

)
dW

x,x+ej
t

+
oH(1)

Nd+2

d∑
j=1

∑
x∈Td

N

{Jx,x+ej
t + J

x+ej ,x
t },

where oH(1) depends on H and vanishes as N ↑ ∞.

We prove that the first expression on the right-hand side is superexponentially
small, with the argument for the second one being similar. For simplicity, set
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Fj = ∂2
uj
H. By Chebyshev’s inequality, for every a > 0,

PN
μN

{∣∣∣∣∣ 1

Nd+2

d∑
j=1

∑
x∈Td

N

∫ T

0

Fj

(
t,

x

N

)
dW

x,x+ej
t

∣∣∣∣∣ > δ

}

� e−aδNd

EN
μN

[
exp

{
aN−2

∣∣∣∣∣
d∑

j=1

∑
x∈Td

N

∫ T

0

Fj

(
t,

x

N

)
dW

x,x+ej
t

∣∣∣∣∣
}]

.(3.5)

Since e|x| � ex + e−x, we estimate this last expectation without the absolute value.
Denote by MT the mean one exponential martingale whose logarithm is given by

a

N2

d∑
j=1

∑
x∈Td

N

∫ T

0

Fj

(
t,

x

N

)
dW

x,x+ej
t

−N2
d∑

j=1

∑
x∈Td

N

∫ T

0

dt ηt(x)
[
1 − ηt(x + ej)

]{
eaN

−2Fj(t,x/N) − 1
}

−N2
d∑

j=1

∑
x∈Td

N

∫ T

0

dt ηt(x + ej)
[
1 − ηt(x)

]{
e−aN−2Fj(t,x/N) − 1

}
.

Since Fj are continuous functions, a Taylor expansion and a summation by parts show
that the last two integrals can be written as{

aoF(1) +
C(F) a2

N2

} d∑
j=1

∑
x∈Td

N

∫ T

0

dt ηt(x) �
{
aoF(1) +

C(F) a2

N2

}
dNdT,

where oF(1) is an expression depending on F which vanishes as N ↑ ∞.
Since MT is a mean one exponential martingale, the right-hand side of (3.5) is

bounded above by

exp
{
aNd

(
− δ + oF(1) dT + C(F) adN−2T

)}
.

In particular,

lim sup
N→∞

1

Nd
log PN

μN

{∣∣∣∣∣ 1

Nd+2

d∑
j=1

∑
x∈Td

N

∫ T

0

Fj

(
t,

x

N

)
dW

x,x+ej
t

∣∣∣∣∣ > δ

}
� −aδ

for every a > 0. This proves the lemma.
From this lemma, (3.2), and Lemma 3.2 it follows that for every closed set F ,

every δ > 0, and every finite family {Hj , 1 � j � �} of functions in C1,2

lim sup
N→∞

1

Nd
log PN

μN

{(
WN , πN

)
∈ F

}
� − inf

(W,π)∈F∩A�

J(W, π),

where

A� =

�⋂
j=1

{
(W, π) :

∣∣VT (π,W, Hj)
∣∣ � δ

}
.
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Since this inequality holds for every δ > 0 and every finite sequence Hj , letting δ ↓ 0
and considering a dense family of functions Hj , we obtain that

lim sup
N→∞

1

Nd
log PN

μN

{(
WN , πN

)
∈ F

}
� − inf

(W,π)∈F∩A
J(W, π),

where A is the set of paths (W, π) such that π̇t+∇·Ẇt = 0. Up to this point, we did
not need any assumption on the sequence of initial measures μN ; but the hypothesis
that we are starting from a deterministic profile now plays a role in replacing the
set A in the previous formula with the set Aγ , proving the upper bound of the large
deviation principle.

3.3. The rate function. To prove the lower bound of the large deviation
principle in Theorem 2.1, we first obtain an explicit representation of the functional I
on the paths with a finite rate function.

Given a path π ∈ D([0, T ];F), we denote by L2(π) the Hilbert space of vector-
valued functions G : [0, T ] × Td → Rd endowed with the inner product 〈·, ·〉π de-
fined by

〈H,G〉π =

∫ T

0

dt

∫
Td

duχ
(
π(t, u)

)
H(t, u) · G(t, u).

Fix a pair (W, π) such that I(W, π) < ∞. In particular, (W, π) ∈ C([0, T ];
Md ×F). Following the arguments in [10, section 10.5], from Riesz’s representation
theorem, we derive the existence of a function G in L2(π) such that⎧⎪⎪⎨⎪⎪⎩

I(W, π) =
1

2

∫ T

0

dt
〈
χ(πt), |Gt|2

〉
,

∂tWt +
1

2
∇πt = χ(πt)Gt,

(3.6)

where the last equation has to be understood in the weak sense: For each H ∈
C1(Td;Rd) and each 0 � s � t � T , we have

〈Wt,H〉 − 〈Ws,H〉 =
1

2

∫ t

s

dr 〈πr, ∇ · H〉 +

∫ t

s

dr 〈χ(πr), Gr · H〉.

3.4. The lower bound. In this subsection we prove the lower bound in The-
orem 2.1. Denote by S the set of trajectories (W, π) in Aγ for which there exists a
vector-valued function G in C1,1([0, T ]×Td) such that (W, π) is the solution of (3.6).

For paths (W, π) in S, we may repeat the arguments presented in the proof
of the lower bound in the large deviation principle for the empirical density in [10,
section 10.5] to conclude that for each open set G

lim inf
N→∞

1

Nd
log PN

ηN

{(
WN , πN

)
∈ G

}
� − inf

(W,π)∈G∩S
I(W, π).

To conclude the proof, it remains to show that for all pairs (W, π) with finite rate
function, I(W, π) < ∞, there exists a sequence (Wk, πk) in S converging to (W, π)
and such that limk→∞ I(Wk, πk) = I(W, π). When this occurs, we shall say that the
sequence (Wk, πk) I-converges to (W, π). In the context of the symmetric exclusion
process, the argument is not too difficult because the rate function is convex. We
follow the proof of the lower bound presented in [2].



CURRENT LARGE DEVIATIONS 15

The proof is divided into two steps. We first show that there exists a sequence
(Wk, πk) which I-converges to (W, π) and such that, for each k, πk is bounded away
from 0 and 1 uniformly in [0, T ] × Td. To do this, following [2] we consider a convex
combination of (W, π) with the solution of the hydrodynamic equation (3.1) with
external field F = 0 and initial condition π0 = γ, W0 = 0.

Consider now a pair (W, π) whose empirical density π is bounded away from 0
and 1. Since I(W, π) is finite, by subsection 3.3, there exists a vector-valued func-
tion G in L2(π) satisfying (3.6). Since π is bounded away from 0 and 1, L2(π) coincides
with the usual L2 space associated with the Lebesgue measure on [0, T ]×Td. Consider
a sequence of smooth vector-valued functions Gn : [0, T ]×Td → Rd converging in L2

to G and denote by (Wn, πn) the pair in Aγ which solves (3.6) with Gn instead of G.
Repeating the arguments presented in [2, section 3.6], one can prove that (Wn, πn)
I-converges to (W, π). This concludes the proof of the lower bound.

3.5. Large deviations for the empirical density. In this subsection we show
that the large deviation principle for the empirical density, proved in [12], follows from
Theorem 2.1. Indeed, the large deviation principle for the empirical density can be
recovered from that for the current density by the contraction principle. The rate
function I is given by the variational formula

I(π) = inf
W∈Wπ

I(W, π),(3.7)

where Wπ stands for a set of currents W satisfying π̇t + ∇ · Ẇt = 0, as formulated
in (2.4).

This variational problem is simple to solve. Let us first assume that π is smooth
and bounded away from 0 and 1. Fix a current W in Wπ and denote by G the
external field associated with W through (3.6). For 0 � t � T , let Ht be the solution
of the elliptic equation

∇ ·
(
χ(πt)Gt

)
= ∇ ·

(
χ(πt)∇Ht

)
and set Ft = χ(πt){Gt − ∇Ht}. By definition, ∇ · Ft = 0. Let w be the current
defined by

ẇt +
1

2
∇πt = χ(πt)∇Ht.(3.8)

w belongs to Wπ because by construction ∇ · ẇ = ∇ · Ẇ. Moreover, by the explicit
formula (3.6) for the rate function and by definition of F,

I(W, π) =
1

2

∫ T

0

dt
〈
χ(πt), |Gt|2

〉
=

1

2

∫ T

0

dt
{〈

χ(πt), |∇Ht|2
〉

+ 2〈Ft · ∇Ht〉 + 〈χ(πt)
−1|Ft|2〉

}
.

Since ∇ · F = 0, an integration by parts shows that the cross term vanishes. On the
other hand, by the explicit formula (3.6) for the rate function and by (3.8), the first
term on the right-hand side is I(w, π). Thus, I(W, π) � I(w, π). In particular, in
the variational problem (3.7), we can restrict our attention to currents W for which
the associated external fields G are in gradient form.

Now, consider two currents W1, W2 in Wπ and assume that both external
fields G1, G2 associated with these currents through (3.6) are in gradient form:
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Gj = ∇Hj , j = 1, 2. Taking the divergence of (3.6) and recalling that π̇t+∇·Ẇt = 0,
we obtain that

π̇t =
1

2
Δπt −∇ ·

(
χ(πt)∇Hj

t

)
for j = 1, 2 and each 0 � t � T . In particular, ∇ ·

(
χ(πt)∇[H1

t −H2
t ]
)

= 0. Taking
the inner product with respect to H1

t −H2
t and integrating by parts, we get that∫

Td

duχ(πt) |∇H1
t −∇H2

t |2 = 0

for every 0 � t � T . In particular, I(W1, π) = I(W2, π). This proves that the
variational problem (3.7) is attained on currents for which the associated external
field is in gradient form:

I(π) = inf
W∈Wπ

I(W, π) =
1

2

∫ T

0

dt
〈
χ(πt) |∇Ht|2

〉
,

where Ht is given by

π̇t =
1

2
Δπt −∇ ·

(
χ(πt)∇Ht

)
.

This is exactly the large deviations rate function for the empirical density obtained
in [12]. This identity has been obtained for smooth paths π bounded away from 0
and 1. However, by the arguments of the previous subsection, we can extend it to all
paths π.

4. Large deviations of the mean current on a long time interval. In
this section we investigate the large deviations properties of the mean empirical cur-
rent WN

T /T as we let first N → ∞ and then T → ∞. We emphasize that the analysis
carried out in this section does not depend on the details of the symmetric simple
exclusion process so that it holds in a general setting.

Given a profile γ ∈ C2(Td), T > 0, and W ∈ D([0, T ]; Md), let π ∈ D([0, T ]; F)
be the solution of (2.4) and denote by I[0,T ](W | γ) the functional defined in (2.6), in
which we made explicit the dependence on the time interval [0, T ] and on the initial
profile γ. We define ΦT (· | γ) : Md → [0,+∞] as the functional

ΦT (J | γ) = T−1 inf
W∈AT,J

I[0,T ](W | γ),(4.1)

where

AT,J :=
{
W ∈ D

(
[0, T ]; Md

)
: WT = TJ

}
.

Recalling that the set B of divergence-free measures has been defined in (2.7), we also
define

Φ̃(J | γ) :=

{
infT>0 ΦT (J | γ) if J ∈ B,
+∞ otherwise.

(4.2)

Finally, denote by Φ(J | γ) := supU�J infJ′∈U Φ̃(J′ | γ), where U ⊂ Md is open, the

lower semicontinuous envelope of Φ̃(· | γ).
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Remark 4.1. The functional Φ(· | γ) depends on the initial condition γ only
through its total mass m =

∫
du γ(u). This holds in the present setting of periodic

boundary conditions; in the case of Dirichlet boundary conditions, when the density
is fixed at the boundary, Φ(· | γ) would be completely independent on γ. Furthermore
the functional Φ(· | γ) is convex.

Theorem 4.1. Let γ ∈ C2(Td) be bounded away from 0 and 1 and let ηN ∈ XN

be a sequence such that πN (ηN ) → γ in F . Then, for each closed set C and every
open set U of Md, we have

lim sup
T→∞

lim sup
N→∞

1

TNd
log PN

ηN

{
1

T
WN

T ∈ C

}
� − inf

J∈C
Φ(J | γ),

lim inf
T→∞

lim inf
N→∞

1

TNd
log PN

ηN

{
1

T
WN

T ∈ U

}
� − inf

J∈U
Φ(J | γ).

If T were fixed, the above large deviation principle would directly follow from
Theorem 2.1. The asymptotic T → ∞ is related to the so-called Γ-convergence of
the rate functions. We first discuss this issue in a general setting. Let X be a
metric space; we recall that a sequence FT : X → [0,+∞] of functions Γ-converges to
F : X → [0,+∞] as T → ∞ if and only if for each x ∈ X the following holds:

For any sequence xT → x we have F (x) � lim inf
T→∞

FT (xT ),(4.3)

there exists a sequence xT → x such that F (x) � lim sup
T→∞

FT (xT ).(4.4)

Lemma 4.1. Let PN,T be a two parameter family of probabilities on X endowed
with its Borel σ-algebra. Assume that for each fixed T > 0 the family {PN,T }N∈N

satisfies the weak large deviation principle with rate function TFT ; that is, for each K
compact and U open in X , we have

lim sup
N→∞

1

N
logPN,T (K) � −T inf

x∈K
FT (x),(4.5)

lim inf
N→∞

1

N
logPN,T (U) � −T inf

x∈U
FT (x).(4.6)

Assume also that the sequence FT Γ-converges to F as T → ∞. Then for each K
compact and U open in X , we have

lim sup
T→∞

lim sup
N→∞

1

NT
logPN,T (K) � − inf

x∈K
F (x),(4.7)

lim inf
T→∞

lim inf
N→∞

1

NT
logPN,T (U) � − inf

x∈U
F (x).(4.8)

Proof. To deduce (4.7), (4.8) from (4.5), (4.6) we need to show that for each K
compact and U open in X we have

lim inf
T→∞

inf
x∈K

FT (x) � inf
x∈K

F (x), lim sup
T→∞

inf
x∈U

FT (x) � inf
x∈U

F (x).

These bounds are a direct consequence of (4.3), (4.4); see, e.g., [8, Proposition 1.18].
The following lemma follows from Theorem 2.1 by the contraction principle.
Lemma 4.2. Consider a profile γ ∈ C2(Td) bounded away from 0 and 1 and a

sequence {ηN : N � 1} such that πN (ηN ) → γ in F . Then for each T > 0 we have
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the following large deviation principle for the mean empirical current WN
T /T . For

each C closed and each U open in Md

lim sup
N→∞

1

Nd
log PN

ηN

{
WN

T

T
∈ C

}
� −T inf

J∈C
ΦT (J | γ),

lim inf
N→∞

1

Nd
log PN

ηN

{
WN

T

T
∈ U

}
� −T inf

J∈U
ΦT (J | γ),

where we recall the functional ΦT is defined in (4.1).
Proposition 4.1. Let γ ∈ C2(Td) be bounded away from 0 and 1. The sequence

of functionals ΦT (· | γ) Γ-converges to the functional Φ(· | γ) defined after (4.2).
The previous proposition, together with Lemmas 4.1 and 4.2, proves the “large

deviation principle” stated in Theorem 4.1 for compact sets. For its proof, we need
a few preliminary lemmas. For each J /∈ B, since the empirical density is bounded,
by the continuity equation (2.4), we have that ΦT (J | γ) = +∞ if T is sufficiently
large. We next show that this holds uniformly for all J whose distance from B is
uniformly bounded below. To this end we introduce the following metric on Md.
Pick a sequence of smooth vector fields Gk ∈ C1(Td; Rd), k � 1, dense in the unit
ball of C(Td; Rd); for J,J′ ∈ Md we then define

�(J,J′) =

∞∑
k=1

1

2k
1 ∧

∣∣〈J − J′,Gk〉
∣∣.

It is easy to show that � is a metric inducing the weak topology of Md.
Lemma 4.3. For each δ ∈ (0, 1) there exists T0 = T0(δ) ∈ R+ such that for any

T � T0 we have ΦT (J | γ) = +∞ for any J ∈ Md such that �(J,B) � δ.

Proof. Given J ∈ Md let us denote by Ĵ ∈ B its projection on the subspace B.
If J(du) = j du for some j ∈ L2(T

d; Rd), this is simply the orthogonal projection

of j to B. In general Ĵ ∈ Md is defined by 〈Ĵ,∇F 〉 = 0 for any F ∈ C1(Td) and

〈Ĵ, B〉 = 〈J,B〉 for any B ∈ C1(Td;Rd) such that ∇ · B = 0. It is easy to verify

that Ĵ is uniquely defined by the above requirements. We then have

δ � �(J,B) � �(J, Ĵ) =

∞∑
k=1

1

2k
(
1 ∧

∣∣〈J − Ĵ,Gk〉
∣∣) =

∞∑
k=1

1

2k
(
1 ∧

∣∣〈J,∇Fk〉
∣∣),

where Fk ∈ C1
(
Td

)
is obtained from Gk by solving the Poisson equation ΔFk = ∇·Gk

so that Gk = ∇Fk + Bk with ∇ · Bk = 0. Note that ‖Fk‖L2 � C0‖Gk‖L2 � C0 for
some constant C0 not depending on k.

From the previous inequality we get that k = k(J) exists such that |〈J,∇Fk̄〉| � δ.
Let W ∈ AT,J and denote by πt, t ∈ [0, T ], the corresponding solution of the con-
tinuity equation (2.4). By choosing F = Fk̄ and using that WT = TJ, from (2.4)
we get

〈πT − γ, Fk̄ 〉 = T 〈J,∇Fk̄ 〉.

Since −1 � πT − γ � 1, the absolute value of the left-hand side above is bounded
above by C0. On the other hand, since �(J,B) � δ, the absolute value of the right-
hand side above is bounded below by δT . By taking T0 > C0 δ

−1, the lemma follows.
Lemma 4.4. Consider a profile γ ∈ C2(Td) bounded away from 0 and 1 and let

J ∈ B, T > 0. We then have ΦT (J | γ) < +∞ if and only if J(du) = j du for some
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j ∈ L2(T
d; Rd). Moreover there exists a constant C1 ∈ (0,∞) (depending on γ) such

that for any T > 0 and any J(du) = j du we have

1

C1
〈 j, j 〉 � ΦT (J|γ) � C1

[
〈 j, j〉 + 1

]
.(4.9)

Proof. Let W ∈ AT,J; by choosing the vector field F in the variation expres-
sion (2.6) constant in time and divergence-free we get

1

T
I[0,T ](W | γ) � 〈J,F〉 − 1

2

1

4
〈F, F〉,

where we used that χ(π) � 1
4 . Recalling that J ∈ B, by optimizing over F ∈ B we

see that ΦT (J | γ) = +∞ unless J(du) = j du for some j ∈ L2(T
d; Rd). In fact this

argument also proves the first inequality in (4.9). To prove the second inequality
in (4.9) it is enough to construct an appropriate path W ∈ AT,J; we simply take
Wt(du) = t j du. The solution of the continuity equation (2.4) is then given by πt = γ
and, by (3.6),

1

T
I[0,T ](W | γ) =

1

2

〈
1

χ(γ)
,

∣∣∣∣ j +
1

2
∇γ

∣∣∣∣2
〉
.

Recalling that γ is bounded away from 0 and 1, χ(γ) = γ(1 − γ), the result follows.
We next show that on divergence-free measures J the functional T ΦT (· | γ) is

subadditive.
Lemma 4.5. Consider a profile γ ∈ C2(Td) bounded away from 0 and 1 and let

J ∈ B. Then, for each T, S > 0, we have

(T + S) ΦT+S(J | γ) � T ΦT (J | γ) + S ΦS(J | γ).

Proof. By (4.1), given ε > 0 there are W1 ∈ AT,J and W2 ∈ AS,J such that

ΦT (J | γ) � T I[0,T ](W
1 | γ) − 1

2
ε, ΦS(J | γ) � S I[0,S](W

2 | γ) − 1

2
ε.

Let Wt, t ∈ [0, T + S], be the path obtained by gluing W1 with W2, i.e., we define
Wt := W1

t∧T + 1I[T,T+S](t)W
2
t−T and denote by πt the corresponding solution of the

continuity equation (2.4). Then W ∈ AT+S,J and, by the invariance of I[0,T ] with
respect to time shifts,

(T + S) ΦT+S(J | γ) � I[0,T+S](W | γ) = I[0,T ](W
1 | γ) + I[0,S](W

2|πT )

� T ΦT (J | γ) + S ΦS(J | γ) + ε,

where we used that J ∈ B, W1 ∈ AT,J implies πT = γ. The lemma is proved.

Recall that Φ̃(· | γ) is defined in (4.2) and note that, by Lemmas 4.3 and 4.4,

Φ̃(J | γ) equals +∞ unless J(du) = j du for some divergence-free j ∈ L2(T
d;Rd). By

the subadditivity proved above we have that Φ̃(J | γ) = limT→∞ ΦT (J | γ) pointwise
in J. However, the pointwise convergence does not imply the Γ-convergence, and some
more efforts are required.

Lemma 4.6. Consider a profile γ ∈ C2(Td) bounded away from 0 and 1, and let
J ∈ B. Then, for each open neighborhood U of J, we have

lim sup
T→∞

inf
J∈U

ΦT (J | γ) � inf
J∈U

Φ̃(J | γ).
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Proof. Thanks to Lemma 4.4 we can assume that the set U is a bounded subset
of L2(T

d;Rd). Pick S > 0 and let k := [T/S], R := T − kS ∈ [0, S); by Lemma 4.5
we get

lim sup
T→∞

inf
J∈U

ΦT (J | γ) � lim sup
k→∞

inf
J∈U∩B

[
kS

kS + R
ΦS(J | γ) +

R

kS + R
ΦR(J | γ)

]
� lim sup

k→∞

[
kS

kS + R
inf

J∈U∩B
ΦS(J | γ) +

R

kS + R
sup

J∈U∩B
ΦR(J | γ)

]
= inf

J∈U∩B
ΦS(J | γ),

where we used again Lemma 4.4 to get supJ∈U∩B ΦR(J | γ) < ∞. By taking the
infimum over S > 0 we get the result.

Lemma 4.7. Given m ∈ (0, 1), let Sm : Fm → R+ be the functional

Sm(ρ) :=

∫
Td

du

{
ρ(u) log

ρ(u)

m
+
[
1 − ρ(u)

]
log

1 − ρ(u)

1 −m

}
.

Then for each δ > 0 there exists T0 = T0(δ) > 0 such that the following holds. For
each γ1, γ2 ∈ Fm there exists a path (W, π) ∈ C([0, T0]; Md × F) ∩ Aγ1 such that
π0 = γ1, πT0 = γ2,∣∣〈WT0 , F〉

∣∣ � 1

2
T0‖∇ · F‖L2 + δ‖F‖L2 for any F ∈ C1(Td; Rd),(4.10)

and

I[0,T0]

(
(W, π)

∣∣ γ1

)
� Sm(γ2) + δ.(4.11)

Proof. The strategy to construct the path π is the following. Starting from γ1

we follow the hydrodynamic equation (2.3) until we reach a small neighborhood (in a
strong topology) of the constant profile m, paying no cost, then we move “straight,”
paying only a small cost, to a suitable point in that small neighborhood which is chosen
so that starting from it we can follow the time reversed hydrodynamic equation to
get to γ2; the cost of this portion of the path is Sm(γ2). The current W is chosen
so that (2.4), (3.8) hold; i.e., it is the one whose cost is minimal among the ones
compatible with the density path π.

Let λ ∈ Fm and denote by Ptλ the solution of the Cauchy problem (2.3) (Pt

is indeed the heat semigroup on Td). By the regularizing properties of the heat
semigroup, given δ1 > 0 there exists a time T1 such that ‖Ptλ‖H1 +‖Ptλ−m‖∞ � δ1,
for any t � T1. Here ‖ϕ‖H1 = ‖∇ϕ‖L2 is the standard Sobolev norm on Td and the
time T1 is independent on λ because 0 � λ � 1. We now choose δ1 < 1

2 [m ∧ (1−m)]
and let T0 := 2T1 + 1, γi = PT1γi, i = 1, 2. The density path π is then constructed as

πt :=

⎧⎪⎨⎪⎩
Ptγ1 for t ∈ [0, T1],

γ1[1 − (t− T1)] + γ2[t− T1] for t ∈ (T1, T1 + 1),

PT0−tγ2 for t ∈ [T0 − T1, T0]

while the associated current path W is such that

Ẇt =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
− 1

2 ∇Ptγ1 for t ∈ [0, T1],

− 1
2 ∇πt + χ(πt)∇Ht for t ∈ (T1, T1 + 1),

1
2 ∇PT0−tγ2 for t ∈ [T0 − T1, T0],
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where H ∈ C1,2((T1, T1 + 1) × Td) solves

∇ ·
[
χ(πt)∇Ht

]
= −∂tπt +

1

2
Δπt.

Note there exists a unique solution since the right-hand side is orthogonal to the
constants (note that γi ∈ Fm, i = 1, 2).

It is straightforward to verify that (π,W) ∈ Aγ1 ; i.e., the continuity equation (2.4)
holds. Thanks to the invariance of I with respect to time shifts, the cost of this path is

I[0,T0]

(
(W, π) | γ1

)
= I[0,T1]

(
(W, π) | γ1

)
+ I[0,1]

(
(W• −T1

, π• −T1
) | γ1

)
+ I[0,T1]

(
(W• −(T1+1), π• −(T1+1)) | γ2

)
.(4.12)

Since in the time interval [0, T1] the path follows the hydrodynamic equation, the first
term on the right-hand side of (4.12) vanishes. By considering the time reversal of
the portion of the path in the interval [T0 −T1, T0], it is straightforward to verify (see
[2, Lemma 5.4]) that

I[0,T1]

(
(W• −(T1+1), π• −(T1+1))

∣∣γ2

)
= Sm(γ2) − Sm(γ2) � Sm(γ2).

It remains to bound the second term on the right-hand side of (4.12). Note that,
by construction, in the interval (T1, T1 + 1) we have

inf
u

γ1(u) ∧ inf
u

γ2(u) � πt � sup
u

γ1(u) ∨ sup
u

γ2(u)

which implies, by the choice of δ1,

1

2

[
m ∧ (1 −m)

]
� πt � 1 − 1

2

[
m ∧ (1 −m)

]
,

i.e., the path πt is uniformly bounded away from 0 and 1. By the same computations
as in [2, Lemma 5.7], it is not difficult to show that there exists a constant C > 0
depending only on m such that

I[0,1]
(
W• −T1

, π• −T1

∣∣γ1

)
� C

∫ 1

0

dt

∥∥∥∥∂tπt+T1
+

1

2
Δπt+T1

∥∥∥∥2

H−1

� C ′[‖γ2‖2
H1

+ ‖γ1‖2
H1

]
which, by taking δ1 small enough, concludes the proof of (4.11). The bound (4.10)
follows easily from the construction of the path W by using the Cauchy–Schwarz
inequality and what is proved above.

Lemma 4.8. Consider a profile γ ∈ C2(Td) bounded away from 0 and 1, and let
J ∈ B. Then, for each open neighborhood U of J, we have

lim inf
T→∞

inf
J∈U

ΦT (J | γ) � inf
J∈U

Φ̃(J | γ).

Proof. Recalling definition (4.2), it is enough to show

lim inf
T→∞

inf
J∈U

ΦT (J | γ) � lim inf
T→∞

inf
J∈U∩B

ΦT (J | γ).(4.13)

Given T > 0 there exist J1 ∈ U and W1 ∈ AT,J1 such that

inf
J∈U

ΦT (J | γ) � 1

T
I[0,T ](W

1 | γ) − 1

T
.
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Let π1
t , t ∈ [0, T ], be the density path associated with W1, δ > 0, and T0 as in

Lemma 4.7. We now define, on the time interval [0, T + T0], the path

Wt := W1
t∧T + 1I[T,T+T0](t)W

2
t−T ,

where W2
t , t ∈ [0, T0], is the path constructed in Lemma 4.7 with γ1 = π1

T and
γ2 = γ. Finally, let J = WT+T0

/(T +T0) = TJ1/(T +T0)+W2
T0
/(T +T0); note that,

by construction, J ∈ B. From Lemma 4.7 it now follows that, for T large enough,
J ∈ U and

1

T + T0
I[0,T+T0](W | γ) � 1

T + T0
I[0,T ](W

1 | γ) +
1

T + T0

[
Sm(γ) + δ

]
.

By taking the limit T → ∞, (4.13) follows. The lemma is proved.
Proofs of Proposition 4.1 and Remark 4.1. By Lemmas 4.3, 4.6, and 4.8 we have

that, for each J ∈ Md and any neighborhood U of J,

lim
T→∞

inf
J∈U

ΦT (J | γ) = inf
J∈U

Φ̃(J | γ).

The Γ-convergence of the sequence ΦT (· | γ) to the lower semicontinuous envelope

of Φ̃(· | γ) now follows from the topological definition of Γ-convergence; see, e.g., [8,
section 1.4].

We next prove Remark 4.1. Let m ∈ (0, 1); by using the path introduced in
Lemma 4.7 it is straightforward to check that, for each γ1, γ2 ∈ Fm and J ∈ B, we
have Φ̃(J | γ1) = Φ̃(J | γ2), which proves the first statement.

Since Φ(· | γ) is the lower semicontinuous envelope of Φ̃(· | γ), it is enough to prove
the convexity of the latter. As B is a closed convex subset of Md, it is furthermore
enough to show that for each J1,J2 ∈ B, each p ∈ (0, 1), and each γ ∈ C2(Td)
bounded away from 0 and 1, we have

Φ̃(pJ1 + (1 − p)J2 | γ) � p Φ̃(J1 | γ) + (1 − p) Φ̃(J2 | γ).(4.14)

Given ε > 0 we can find T > 0, W1 ∈ ApT,J1
, and W2 ∈ A(1−p)T,J2

so that

Φ̃(J1 | γ) � 1

pT
I[0,pT ](W

1 | γ) − ε,

Φ̃(J2 | γ) � 1

(1 − p)T
I[0,(1−p)T ](W

2 | γ) − ε.

By the same arguments used in Lemma 4.5, the path obtained by gluing W1 to W2

is in the set AT,pJ1+(1−p)J2
. The bound (4.14) follows.

We conclude this section by proving the exponential tightness needed to complete
the proof of Theorem 4.1.

Lemma 4.9. Fix a sequence ηN ∈ XN . There exists a sequence of compact sets
{K� : � � 1} of Md such that

lim sup
T→∞

lim sup
N→∞

1

TNd
log PN

ηN

{
1

T
WN

T ∈ Kc
�

}
� −�.

Proof. Fix a vector field H : Td → Rd. We claim that for every A > 0,

PN
ηN

{∣∣〈WN
T ,H

〉∣∣ � AT
}

� 2 exp
{
− TNd[AC(H)−1 − 7]

}
,(4.15)
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where

C(H) = max
j

{
1 ∨ ‖Hj‖2

∞ ∨ ‖∂ujHj‖∞
}
.

Indeed, by the Chebyshev exponential inequality,

PN
ηN

{〈
WN

T ,H
〉

� AT
}

� e−θATNd

E
N
ηN

[
MT (θ,H) efN (T,η,H)

]
for every θ > 0. Here Mt(θ,H) is the mean one exponential martingale defined just
after (3.3), with a now time-independent vector field H, and

fN (T, η,H) = N2
d∑

j=1

∑
x∈Td

N

∫ T

0

ds ηs(x)
[
1 − ηs(x + ej)

]{
eθN

−1Hj(x/N) − 1
}

+N2
d∑

j=1

∑
x∈Td

N

∫ T

0

ds ηs(x + ej)
[
1 − ηs(x)

]{
e−θN−1Hj(x/N) − 1

}
.

A Taylor expansion shows that the absolute value of fN (T, η,H) is bounded by
C(H)TNd{θ + 2θ2eθC(H)}. To conclude the proof of the claim it remains to choose
θ = C(H)−1, to remind us that Mt(θ,H) has mean one and to repeat the same
argument with −H in place of H.

Recall the definition of the sequence {Gk : k � 1} defined just after Proposi-
tion 4.1 and assume, without loss of generality, that C(Gk) � k. For each � � 1, the
set K� of measures defined by

K� =
⋂
k�1

{
J :

∣∣〈J,Gk〉
∣∣ � (k + 7)2 �

}
is compact. On the other hand, by (4.15),

PN
ηN

{
1

T
WN

T ∈ Kc
�

}
� 4e−TNd�

provided N is sufficiently large. This proves the lemma.

5. Dynamical phase transitions. In this section we analyze the variational
problem (4.2) defining the functional Φ̃. For the symmetric simple exclusion process

we prove, in subsection 5.1, that Φ̃ = U , where U is defined in (2.8). Therefore
no dynamical phase transition occurs in this case. In subsection 5.2 we consider a
system with general transport coefficients and show that, under suitable convexity
assumptions, it is possible to construct a traveling wave whose cost is, for J large,
strictly less than the constant profile. These convexity hypotheses are satisfied for the
KMP model [5], [11], and therefore we prove that a dynamical phase transition takes
place.

5.1. Symmetric simple exclusion process. The following statement is es-
sentially proved in [4]; for the reader’s convenience we reproduce below its proof in
a more formal setting. Together with Theorem 4.1 it concludes the proof of Theo-
rem 2.2.

Proposition 5.1. For each m ∈ (0, 1) the functional Um : Md → [0,∞] defined
in (2.8) is lower semicontinuous. Moreover if γ ∈ C2(Td) ∩ Fm is bounded away
from 0 and 1, we have Um(J) = Φ(J | γ) for any J ∈ Md.
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Proof. We first prove the lower semicontinuity of Um. Given (J, ρ) ∈ Md × Fm

we define

U(ρ,J) := sup
F

VF(ρ,J),

where

VF(ρ,J) := 〈J,F〉 − 1

2
〈ρ,∇ · F〉 − 1

2

〈
F, χ(ρ)F

〉
and the supremum is carried over all smooth vector fields F ∈ C1(Td; Rd). Note
that, if J(du) = j du for some j ∈ L2(T

d; Rd) and ρ ∈ C2(Td) is bounded away
from 0 and 1, we have

U(ρ,J) =
1

2

〈[
j +

1

2
∇ρ

]
,

1

ρ(1 − ρ)

[
j +

1

2
∇ρ

]〉
.

Recalling definition (2.8), by the approximation arguments in subsection 3.4, we have
Um(J) = infρ∈Fm

U(ρ,J).
By the concavity of χ(ρ) we have that, for each fixed F, the functional VF(·, ·) :

F × Md → R is convex and lower semicontinuous. The lower semicontinuity of U ,
and hence of Um, now follows easily. We also note that the previous argument shows
that U is a convex functional on F ×Md.

We next prove that for each γ ∈ C2(Td)∩Fm bounded away from 0 and 1 we have

Um(J) = Φ̃(J | γ). From the definitions (2.8), (4.2) and Lemma 4.4, we can assume
that J(du) = j du for some j ∈ L2(T

d; Rd) divergence free.
We first show that for each T > 0, and each path (W, π) such that W ∈ AT,J,

we have

1

T
I[0,T ]

(
(W, π) | γ

)
� Um(J).

Indeed, thanks to the approximation constructed in section 3.4 we can assume that π
is a smooth path bounded away from 0 and 1. For such a smooth path, (3.6) yields

1

T
I[0,T ]

(
(W, π) | γ

)
=

1

T

∫ T

0

dtU(πt,Ẇt) � U
(

1

T

∫ T

0

dt πt, J

)
� Um(J),

where we used, in the second step, the joint convexity of the functional U and Jensen’s
inequality. In the last step we finally used that by conservation of mass, πt ∈ Fm for
any t ∈ [0, T ].

To show the converse inequality it is enough to construct, for each T large enough,
an appropriate path. Given ε > 0 there exists ρ ∈ C2(Td)∩Fm bounded away from 0
and 1 such that

Um(j du) � U(ρ, j) − ε.

For T > 2 we construct the path (W, π) such that

Ẇt(du) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ŵ du if t ∈ [0, 1),

T

T − 2
j du if t ∈ [1, T − 1],

−ŵ du if t ∈ (T − 1, T ],
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where ŵ solves ∇ · ŵ = γ − ρ. It exists because γ, ρ ∈ Fm, i.e., they have the same
mass. The density path π is the corresponding solution of (2.4), i.e.,

πt =

⎧⎪⎨⎪⎩
γ(1 − t) + ρt if t ∈ [0, 1),

ρ if t ∈ [1, T − 1],

ρ(T − t) + γ(T + 1 − t) if t ∈ (T − 1, T ].

It is straightforward to verify that W ∈ AT,J. Moreover

lim
T→∞

1

T
I[0,T ]

(
(W, π) | γ

)
= U(ρ,J) � Um(J) + ε,

which concludes the proof.
We conclude this section by showing that in the one-dimensional case the func-

tional Um is given by (2.9).
Lemma 5.1. Let m ∈ (0, 1), d = 1, and J(du) = j du for some j ∈ R. Then

Um(J) =
1

2

j2

χ(m)
.

Remark. As it will be apparent from the proof, this lemma holds whenever the
real function ρ �→ 1/χ(ρ) is convex.

Proof. Let ρ ∈ C2(T) ∩ Fm be bounded away from 0 and 1. We have∫
T

du
[j + ρ′(u)/2]2

χ(ρ(u))
=

∫
T

du
j2

χ(ρ(u))
+

∫
T

du
[ρ′(u)/2]2

χ(ρ(u))

because the cross term vanishes upon integration. By Jensen’s inequality,∫
T

du
j2

χ(ρ(u))
� j2

χ(m)
.

On the other hand, by considering the constant profile ρ(u) = m, we trivially have
Um(j du) � 1

2 j
2/χ(m). The lemma is therefore proved.

5.2. Other models. The general structure of the hydrodynamic equation ob-
tained for the scaling limit of the empirical density for stochastic lattice gases with a
weak external field B has the form (see [10], [13])

∂tρ + ∇ · Ẇ(ρ) = 0, Ẇ(ρ) = −1

2
D(ρ)∇ρ + χ(ρ)B,

where D(ρ) is the diffusion coefficient and χ(ρ) is the mobility.
In this general context, for smooth profiles, we set

U(ρ,J) =
1

2

〈[
J − Ẇ(ρ)

]
,

1

χ(ρ)

[
J − Ẇ(ρ)

]〉
.

The integrated empirical current is expected to satisfy (see [4] for a heuristic deriva-

tion) a large deviation principle with rate function I[0,T ](W) =
∫ T

0
dtU(πt,Ẇt) in

which π is obtained from Ẇt by solving the continuity equation ∂tπ + ∇ · Ẇ = 0.
We analyze the variational problem (4.2) in this general setting and show that,

under some assumptions on D(ρ), χ(ρ), a time-dependent strategy is more convenient
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than taking a density path π constant in time, so that Φ < U . For simplicity, we
here discuss only the one-dimensional case d = 1 and assume that there is no external
field, B = 0; see [4, section 6.2] for more details.

Given a mass m and v ∈ R, let Ψv : R → R+ be defined by

Ψv(J) = inf
ρ

1

2

∫ 1

0

du
{J + v [ρ(u) −m] − w(ρ(u))}2

χ(ρ(u))
,(5.1)

where w(ρ) = Ẇ (ρ) = − 1
2 D(ρ)∇ρ and the infimum is carried over the profiles ρ of

mass m, i.e., over Fm. It will be convenient to write the term D(ρ)∇ρ as ∇d(ρ),
i.e., d(ρ) is an antiderivative of D(ρ).

We claim that for each v ∈ R

Φ � Ψv.(5.2)

Indeed, consider a profile ρ0 in Fm. Let T = v−1 and set ρ(t, u) = ρ0(u − vt),
w(t, u) = J +v[ρ0(u− tv)−m] in the time interval [0, T ]. An elementary computation
shows that the continuity equation holds and that the time average over the time
interval [0, T ] of w(·, u) is equal to J . In particular,

Φ(J) � 1

T

∫ T

0

dtU
(
ρ(t), w(t)

)
.

On the other hand, it is easy to show by periodicity that the right-hand side is
equal to

1

2

∫ 1

0

du
{J + v[ρ0(u) −m] − w(ρ0)}2

χ(ρ0(u))
.

Optimizing over the profile ρ0, we conclude the proof of (5.2).
We next show that, if the real function ρ �→ 1/χ(ρ) is convex and χ′′(m) > 0 for

some 0 < m < 1, then Φ(J) < U(J) for |J | sufficiently large.
To prove the previous statement, we first note that, in view of (5.2) and of

Lemma 5.1, it is enough to show that there exists λ ∈ R such that

lim sup
|J|→∞

ΨλJ(J)

J2
<

1

2χ(m)
.(5.3)

Fix a mass m, a current J , and take v = λJ . For ρ ∈ Fm, by expanding the
square we get that

(5.4)∫ 1

0

du
{J + λJ [ρ−m] + 1

2 ∇d(ρ)}2

χ(ρ)
= J2

∫ 1

0

du
{1 + λ[ρ−m]}2

χ(ρ)
+

1

4

∫ 1

0

du
[∇d(ρ)]2

χ(ρ)

because the cross term vanishes. Expand the square on the first integral. Let
F (r) = Fλ,m(r) be the smooth function defined by F (r) = {1 + λ[r − m]}2/χ(r).
An elementary computation shows that

F ′′(m) =
1

χ(m)3

{
2χ(m)2λ2 − 4χ(m)χ′(m)λ + 2χ′(m)2 − χ(m)χ′′(m)

}
.

Let λ = χ′(m)/χ(m). For this choice F ′′(m) < 0. In particular, we can choose a
nonconstant profile ρ(u) in Fm close to m such that F ′′(ρ(u)) < 0 for every u. Hence,
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by Jensen’s inequality, the coefficient of J2 in (5.4) is strictly less than χ(m)−1. This
completes the proof of the claim.

For the KMP model [5], [11] we have D(ρ) = 1 and χ(ρ) = ρ2. In particular χ
and 1/χ are convex functions. Hence, by the above results, we have Φ(J) < U(J) for
all sufficiently large currents J .

For the weakly asymmetric exclusion process with large external field, a similar
phenomenon occurs. More precisely, as shown in [7], there exists a traveling wave
whose cost is strictly less than the constant (in space and time) profile. A numerical
computation [7] suggests also that the minimizer of the variational problem (4.2) is
indeed a traveling wave.
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