
Digital Object Identifier (DOI) 10.1007/s00220-005-1399-1
Commun. Math. Phys. 261, 323–378 (2006) Communications in

Mathematical
Physics

Renormalization Group in the Uniqueness Region:
Weak Gibbsianity and Convergence�

Lorenzo Bertini1, Emilio N.M. Cirillo2, Enzo Olivieri3

1 Dipartimento di Matematica, Università di Roma La Sapienza, Piazzale Aldo Moro 2, 00185 Roma,
Italy. E-mail: bertini@mat.uniroma1.it
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Abstract: We analyze the block averaging transformation applied to lattice gas models
with short range interaction in the uniqueness region below the critical temperature. We
prove weak Gibbsianity of the renormalized measure and convergence of the renormal-
ized potential in a weak sense. Since we are arbitrarily close to the coexistence region we
have a diverging characteristic length of the system: the correlation length or the critical
length for metastability, or both. Thus, to perturbatively treat the problem we have to
use a scale–adapted expansion. Moreover, such a model below the critical temperature
resembles a disordered system in the presence of Griffiths’ singularity. Then the cluster
expansion that we use must be graded with its minimal scale length diverging when the
coexistence line is approached.

1. Introduction

In this paper we analyze, from a rigorous point of view, the well known Renormaliza-
tion Group (RG) map called Block Averaging Transformation (BAT). Following [15] we
say that a stochastic field is strongly, resp. weakly, Gibbsian if its family of conditional
probabilities has the Gibbsian form with respect to a potential absolutely uniformly,
resp. pointwise almost surely, converging. Thus in both cases the DLR equations are
satisfied but with different notions on the summability properties of the potential. We
refer to [19] for a general description of the Gibbs formalism especially in connection
with renormalization–group maps and to [5, 15, 26] for a discussion of the weak Gibbs
property.

Under suitable strong mixing conditions, i.e. exponential decay of truncated expec-
tations, for the original (object) system we establish the weak Gibbs property of the
renormalized (image) measure and the convergence, in a suitable sense, of the renor-
malized potential under iteration of BAT. A relevant application will be the standard
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two–dimensional Ising model in the uniqueness region. For this case, when the tem-
perature is higher than the critical value Tc, actually we have strong Gibbsianity of the
renormalized measure for all large enough scales of the transformation as shown in [1].
On the other hand for T < Tc, violation of strong Gibbsianity is expected and actually
proven for T � Tc, see [19]. In the present paper we prove the weak Gibbsianity of the
renormalized measure.

Let us focus, for the moment, on the two–dimensional Ising model. A more general
setup will be introduced in the following section. We give here some specific definitions.
The state space of the object system is S = ⊗x∈LSx, with Sx = {−1,+1}, L = Z

2;
for � ⊂ L we set S� = ⊗x∈�Sx . The (negative) Hamiltonian in a finite volume � with
boundary condition τ ∈ SL\� is

H�(στ) = β
∑

{x,y}⊂�:
|x−y|=1

σxσy + β
∑

x∈�,y �∈�:
|x−y|=1

σxτy + βh
∑

x∈�

σx

with β = 1/T > 0 the inverse temperature, h ∈ R the magnetic field and σ ∈ S�.
Notice that in this section we use the magnetic language whereas in the following we
will use the equivalent lattice gas formulation. The corresponding finite volume Gibbs
measure is

µτ
β,h,�(σ ) = exp{H�(στ)}

∑

σ ′∈S�

exp{H�(σ ′τ)}
.

We denote by µ = µβ,h the unique infinite volume Gibbs measure in the uniqueness
region deprived of the critical point given by {β < βc} ∪ {β > βc, h �= 0}, where
βc = 1/Tc = log(1 + √

2)/2 is the inverse critical temperature, see for instance [21].
Let L(�) = (�Z)2, � ∈ N and partition L as the disjoint union of �–block Q�(i) =

Q�(0)+ i, where i ∈ L(�), and Q�(0) is the square of side � with the origin the site with
smallest coordinates. We associate with each i ∈ L(�) a renormalized spin mi taking
values in

S(�)
i =

{
−�d − �dm̄√

�dχ
,
−�d + 2 − �dm̄√

�dχ
, . . . ,

�d − �dm̄√
�dχ

}
,

where m̄ = m̄β,h = µβ,h(σ0) is the equilibrium magnetization and χ = χ(β, h) =∑
x∈L[µβ,h(σ0σx) − µβ,h(σ0)µβ,h(σx)] is the susceptibility. For I ⊂ L(�) we write

S(�)
I = ⊗i∈IS(�)

i ; we also set S(�) = ⊗i∈L(�)S(�)
i .

The renormalized measure ν(�) = ν
(�)
β,h on the renormalized space S(�) is defined via

its finite dimensional distributions; let I ⊂⊂ L(�), where ⊂⊂ means finite subset, and
pick m̃ ∈ S(�)

I , then set

ν
(�)
β,h

({m ∈ S(�) : mI = m̃}) =
∫

S
dµβ,h(σ )

∏

i∈I

δ(Mi(σQ�(i)) − m̃i), (1.1)

where for all i ∈ L(�) and η ∈ SQ�(i) we have introduced the empirical magnetization,
centered and normalized,

Mi(η) = 1√
�dχ

∑

x∈Q�(i)

[ηx − m̄]. (1.2)
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We writeν(�)
β,h=T (�)µβ,h and note that the semigroup property holds namely,T (�) T (�′) =

T (��′). The image measure ν
(�)
β,h represents the distribution of the empirical block mag-

netization under the object measure µβ,h.
We would like to analyze the map on the potentials induced by the map T (�) that

was defined on (infinite volume) measures. A preliminary condition for this program
is that the renormalized measure is strongly or weakly Gibbsian with respect to the
renormalized potential, see [19].

We introduce, now, the finite volume setup. Let I ⊂⊂ L(�) be a finite box in L(�)

and consider the corresponding box � = Q�(I) ⊂ L. We introduce the renormalized
Hamiltonian H(�),τ

I with boundary condition τ ∈ SL\� by setting

eH(�),τ
I (m) =

∑

σ∈S�

eH
τ
�(σ)

∏

i∈I

δ(Mi(σQ�(i)) − mi) (1.3)

for each m ∈ S(�)
I . In the computation of the renormalized potential associated with the

renormalized Hamiltonian H(�),τ
I , a crucial role is played by the constrained systems

obtained by conditioning the object system to a fixed renormalized spin configuration,
see the pioneering paper [7]. More precisely, the equilibrium probability measure of the
constrained model associated with the renormalized configuration m ∈ S(�)

I on the finite
volume � = Q�(I) ⊂⊂ L is given by

µ
(�),τ
m,� (σ ) = eH

τ
�(σ)

∏
i∈I δ(Mi(σQ�(i)) − mi)∑

η∈S�
eH

τ
�(η)

∏
i∈I δ(Mi(ηQ�(i)) − mi)

(1.4)

for all σ ∈ S�. Notice that from (1.3) it follows that the renormalized Hamiltonian
H(�),τ

I (m) is equal to the logarithm of the partition function of the corresponding con-
strained system which is defined as

Z
(�),τ
m,� =

∑

σ∈S�

eH
τ
�(σ)

∏

i∈I

δ(Mi(σQ�(i)) − mi). (1.5)

The measure µ
(�),τ
m,I can be called multi–canonical, because it is nothing but the original

measure constrained to the assigned magnetizations in the �–blocks contained in �. Of
course µ

(�),τ
m,I does not depend at all on the magnetic field h.

It has been shown in [19] that for any � ∈ N even there exists β0 = β0(�) such
that the renormalized measure ν

(�)
β,h, arising from the application of the BAT map to the

Ising measure µβ,h, is non–Gibbsian at any h and β > β0. This pathological behavior
is a consequence of violation of quasi–locality, a continuity property of its conditional
probabilities which constitutes a necessary condition for Gibbsianity, see [16, 17, 19].
This, in turn, is a consequence of a first order phase transition with long range order of a
particular constrained model: the one corresponding to mi = 0 for all i ∈ L(�). It is clear
that this pathology is completely independent of the value of the magnetic field h acting
on the object system. On the other hand it is also clear that this “bad” configuration,
inducing non–Gibbsianity, is very atypical with respect to ν

(�)
β,h for h �= 0. Thus it is

reasonable to expect the validity of a weaker property of Gibbsianity.
Before discussing this point let us recall the main result of [1] on strong Gibbsiani-

ty above Tc in two dimensions which will be useful for a comparison with the results
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obtained in the present paper for the case with T < Tc. The case d > 2 will be discussed
later on.

Theorem 1.1. Consider the two–dimensional Ising system with β < βc and h ∈ R

given. Then there exists �0 ∈ N such that for any � large enough multiple of �0 the
measure ν(�) = ν

(�)
β,h is Gibbsian in the sense that for each Y ⊂⊂ L(�) and for each

local function f : S(�)
Y → R we have

ν(�)(f ) =
∫

S(�)

ν(�)(dm′)
1

ZY (m′)
∑

m∈S(�)
Y

f (m)

× exp
{ ∑

X∩Y �=∅
[ψ(�)

X (mY∩Xm′
Y c∩X) + φ

(�)
X (mY∩Xm′

Y c∩X)]
}
, (1.6)

where

ZY (m
′) =

∑

m∈S(�)
Y

exp
{ ∑

X∩Y �=∅
[ψX(mY∩Xm′

Y c∩X) + φX(mY∩Xm′
Y c∩X)]

}
. (1.7)

The family {φ(�)
X + ψ

(�)
X , X ⊂⊂ L(�)}, with φ

(�)
X , ψ

(�)
X : S(�)

X → R, is translationally
invariant and satisfies the uniform bound

∑

X�0

eα|X| sup
m∈S(�)

X

(∣∣ψ(�)
X (m)

∣∣+ ∣∣φ(�)
X (m)

∣∣
)
< ∞ (1.8)

for a suitable α > 0. Moreover, there exists κ ∈ N such that �(�)
X = 0 if diam(X) ≥ κ .

Finally we have that for the same α as in (1.8),

lim
�→∞

∑

X�0

eα|X| sup
m∈S(�)

X

∣∣φ(�)
X (m)

∣∣ = 0, (1.9)

ψ
(�)
{i} (mi) = −m2

i /2, for i ∈ L(�), and there exists a > 0 such that

lim
�→∞

sup
m∈S(�)

X
|mi |≤�a ,i∈X

∣∣ψ(�)
X (m)

∣∣ = 0 for |X| ≥ 2.

The crucial point to obtain the above result is the validity of a strong mixing condition
for the object system uniformly in the magnetic field h. This fails below Tc, because of
the phase transition at h = 0. By only assuming strong mixing of the object system,
without uniformity in h, we can expect only weak Gibbsianity since, as we said before,
for T < Tc violation of strong Gibbsianity has been proven in [19]. Let us now state
our main results on weak Gibbsianity and convergence of the renormalized potential as
� → ∞; this theorem is an immediate consequence of the more general results that will
be stated in Theorems 2.1 and 2.2.



Renormalization Group in the Uniqueness Region: Weak Gibbsianity and Convergence 327

Theorem 1.2. Consider the two–dimensional Ising model. Given (β, h) ∈ {β < βc} ∪
{β > βc, h �= 0}, there exists �0 such that for any large enough � multiple of �0, the
measure ν(�) is weakly Gibbsian in the sense that it satisfies the DLR equations (1.6)
with respect to a potential {ψ(�)

X + φ
(�)
X , X ⊂⊂ L(�)}, ψ(�)

X , φ
(�)
X : S(�)

X �→ R, satisfying
the following.

There exists a measurable set S̄(�) ⊂ S(�), such that ν(�)(S̄(�)) = 1, and functions
r
(�)
i : S̄(�) �→ N \ {0}, for all i ∈ L(�), such that for each m ∈ S̄(�), if X � i and

diam(X) > r
(�)
i (m), then ψ

(�)
X (m) = 0. Furthermore, for each i ∈ L(�) and m ∈ S̄(�)

there exists a real c(�)i (m) ∈ [0,∞) such that
∑

X�i

|ψ(�)
X (mX)| ≤ c

(�)
i (m). (1.10)

There exists C independent of � such that

sup
m∈S(�)

sup
i∈L(�)

∑

X�i

|φ(�)
X (m)| < C. (1.11)

For each i ∈ L(�) we have ψ
(�)
{i} (m) = −m2

i /2 and for each q ∈ [1,+∞),

lim
�→∞

sup
i∈L(�)

ν(�)
(∣∣∣

∑

X�i: |X|≥2

ψ
(�)
X

∣∣∣
q) = 0 (1.12)

and

lim
�→∞

sup
m∈S(�)

sup
i∈L(�)

∑

X�i

|φ(�)
X (m)| = 0. (1.13)

Remark. From the more general result stated in Theorems 2.1 and 2.2 below, we get that
Theorem 1.2 extends to the case d > 2, h �= 0, β > β0(d, |h|) for a suitable function
β0 : N×R

+ → R
+. Indeed in this case the required strong mixing condition is satisfied.

In this low–temperature case we have a diverging scale even when we are far away
from the critical point. It is not the correlation length but, rather, the “critical length
for metastability”, diverging when h → 0 as 1/h, representing the scale for which the
magnetic field decides the phase; this is given as the scale for which the boundary condi-
tions are “screened” by the magnetic field h. Notice that in the region {β < βc} ∪ {β >

βc, h �= 0}, where for d = 2 the strong mixing is satisfied [25, 30], both the critical
length and the correlation length can diverge even simultaneously.

Let us discuss, now, the result of Theorem 1.2. As we said above it is sufficient that
there exists one “bad” renormalized configuration giving rise to long range order for the
corresponding constrained system, to induce violation of Gibbsianity. For BAT it has
been shown in [19] that for any magnetic field h, a bad configuration is mi ≈ 0 for all
i ∈ L(�). For h �= 0 this is a very atypical configuration; however with small but positive
probability we have arbitrarily large bad regions with mi close to zero. To be more pre-
cise we shall call “good” a block magnetization mi belonging to a suitable interval such
that: inside such an interval the system has a good behavior in the strong mixing sense
and the probability to be bad (not good) is sufficiently small, see Subsect. 4.3. In order
to prove weak Gibbsianity the key property is that bad regions are far apart: larger and
larger bad regions are sparser and sparser.
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As we discussed in [2] this situation is similar to that of disordered systems in the pres-
ence of the Griffiths’singularity. A multi–scale analysis is needed. The natural approach,
quite complicated from the technical point of view, is to use a graded cluster expansion.
For disordered systems there are clever methods, see [3,10], avoiding cluster expansion,
that enable to prove results like exponential decay of correlations for almost all realiza-
tions of the disorder. In the case of BAT, in order to compute renormalized potentials in
the weakly Gibbsian case, the use of the full theory of the graded cluster expansion (like
the one in [20]) appears to be unavoidable. Since we want to study a region of parameters
arbitrarily close to the critical point (h �= 0, 0 < T ≤ Tc) the distinctive character of
our graded cluster expansion is that the minimal scale may be chosen arbitrarily large
and diverging as T → Tc and/or h → 0. The minimal scale involved in our discussion
being divergent, we need to use a scale–adapted cluster expansion, see [1,27,28], based
on a finite size mixing condition.

In this case, contrary to low and high temperature expansion or high magnetic field
expansion, the small parameter is the ratio between the diverging length and the suitably
large finite size where the mixing condition holds. We want to stress again that in our
approach, according to the general renormalization group ideology, we first fix the val-
ues of the thermodynamic parameters of the object system and, subsequently, the value
of the scale of BAT. In other words we take advantage from choosing the scale � of the
transformation large enough. On the other side we cannot exclude that, for given values
of β and h, if � is not sufficiently large, weak Gibbsianity ceases to be valid. In [5, 26]
the authors study decimation transformation, see [19], at large β and arbitrary h. They
first fix the scale of the transformation and, subsequently, choose the temperature below
which they get weak Gibbsianity.

In the present paper, in the context of weak Gibbsianity, we give also results of
convergence of renormalized potentials when iterating BAT, which, by the semigroup
property, corresponds to taking the limit as � → ∞. It appears clear that for that purpose
one has to use a perturbative theory based on scale–adapted cluster expansion. Even far
away from the critical point, in order to prove convergence directly, one needs to take
advantage from choosing large �. In [6] the author uses a high temperature expansion
giving rise to a polymer system whose activity is small uniformly in �; he then proves
convergence by making use of the general result [23] according to which, to get con-
vergence in a suitable sense, one needs only to prove uniform boundedness in a suitable
norm. This situation is similar to the one of [29] where the author uses a low temperature
expansion that converges uniformly in �.

The paper is organized as follows: in Sect. 2 we introduce the basic notation and
state our main results on the weak Gibbsianity and convergence of the renormalized
potentials as � → ∞. In Sect. 3 we prove the required probability estimates on the con-
figuration of “bad” magnetizations. Then, in Sect. 4 we construct the full measure set
where the conditional probabilities have the Gibbs form. In Sect. 5, following [1,27,28],
we perform the scale–adapted cluster expansion on the “good” part of the lattice. In
Sect. 6 we apply the theory of the graded expansion developed in [2] to prove the main
results.

2. Notation and Results

In this section we give the basic definitions, introduce the general setup, and state our
main results.
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2.1. The lattice. For x = (x1, · · · , xd) ∈ R
d we let |x| := supk=1,··· ,d |xk|. The spa-

tial structure is modeled by the d–dimensional lattice L := Z
d , in which we let ei ,

i = 1, . . . , d, be the coordinate unit vectors. For each strictly positive integer s, we
introduce the s–rescaled lattice L(s) := (sZ)d which is embedded in L namely, points
in L(s) are also points in L, see Fig. 1. Given an integer s ≥ 1 we next define some
geometrical notions on the s–rescaled lattice L(s). If s = 1 they refer to the original
lattice L and in such a case we drop s from the notation.

We set e(s)i := s ei , i = 1, . . . , d and use �c := L(s) \ � to denote the complement
of � ⊂ L(s). For � a finite subset of L(s) (we use � ⊂⊂ L(s) to indicate that � is
finite), |�| denotes the cardinality of �. We consider L(s) endowed with the distance
ds(x, y) := |x − y|/s. As usual for �,� ⊂ L(s) we set ds(�,�) := inf{ds(x, y), x ∈
�, y ∈ �} and diams(�) := sup{ds(x, y), x, y ∈ �}. Moreover, for each � ⊂⊂ L(s)

we denote by Q(s)(�) ⊂⊂ L(s) the smallest parallelepiped, with axes parallel to the
coordinate directions, containing �. We say that x, y ∈ L(s) are nearest neighbors iff
ds(x, y) = 1; we say that � ⊂ L(s) is s–connected iff for each x, y ∈ � there exists a
path of pairwise nearest neighbor sites of � joining x and y.

For x ∈ L(s) and m a strictly positive real we set Q(s)
m (x) := {y ∈ L(s) : xk ≤ yk ≤

xk + s(m − 1), ∀k = 1, . . . , d}. For X ⊂⊂ L(s) and m > 0 we set B(s)
m (X) := {y ∈

L(s) : ds(X, y) ≤ m}; if x ∈ L(s) we write B
(s)
m (x) for B

(s)
m ({x}). Note that Q(s)

m (x) is
the cube of s–side length [m] with x the site with smallest coordinates, while B

(s)
m (x)

is the ball of s–radius [m] centered at x, hence it is a cube of s–side length 2[m] + 1.
We remark, also, that |Q(s)

m (x)| = [m]d and |B(s)
m (x)| = (2[m] + 1)d . We shall denote

Q
(s)
m (0), resp. B(s)

m (0), simply by Q
(s)
m , resp. B(s)

m .
For r > 0 and � ⊂ L(s) we set ∂(s),r� := {x ∈ �c : ds(x,�) ≤ r}; finally we set

�
(s),r

:= � ∪ ∂(s),r�. If r = 1 we drop it from the notation, i.e. ∂(s)� := ∂(s),1� and

�
(s),1 =: �

(s)
.

Let E (s) := {{x, y}, x, y ∈ L(s) : ds(x, y) = 1
}

be the collection of edges in L(s).
Note that, according to our definitions, the edges can also be diagonal. We say that two
edges e, e′ ∈ E (s) are connected if and only if e∩ e′ �= ∅. A subset (V ,E) ⊂ (L(s), E (s))

is said to be connected iff for each pair x, y ∈ V , with x �= y, there exists in E a path
of connected edges joining them. For � ⊂⊂ L(s) we then set

Ts(�) := inf
{
|E| , (V ,E) ⊂ (L(s), E (s)) is connected and V ⊃ �

}
. (2.1)

We agree that Ts(�) = 0 if |�| = 1 and remark that for each x, y ∈ L(s) we have
Ts({x, y}) = ds(x, y).

Let u be a multiple of s, we define the unpacking and the packing operators which
associate subsets of the u–rescaled lattice to subsets of the s–rescaled lattice and vice
versa. More precisely, the unpacking operator Os

u maps a set � ⊂ L(u) to

Os
u� :=

⋃

x∈�

Q
(s)
u/s(x).

Note that the cubesQ(s)
u/s(x) appearing above are disjoint namely,Q(s)

u/s(x)∩Q
(s)
u/s(y) = ∅

for any x, y ∈ � such that x �= y. The packing operator Ou
s maps a set � ⊂ L(s) to

Ou
s � := {x ∈ L(u) : � ∩ Q

(s)
u/s(x) �= ∅}. We note that the restriction of Ou

s to the range
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Fig. 1. The lattices L, L(2), L3) and L(6) are depicted in the two–dimensional case. Sites in L are
represented by the intersections of the lines, solid circles represent sites belonging to L(2), open circles
represent sites belonging to L(3), open squares represent sites of L(6)

of Os
u is the inverse operator of Os

u namely, Ou
s Os

u� = � for all � ⊂ L(u). Note that,
as mentioned before, we let Ou := O1

u and Ou := Ou
1 .

2.2. The configuration space. We deal with lattice systems whose single spin space
is not translationally invariant and labelled by points in the s–rescaled lattice L(s).
As usual for s = 1 we recover the notation for the original lattice and drop s from
the notation. Given a collection of strictly positive integers S

(s)
x , x ∈ L(s), such that

S(s) := supx∈L(s) S
(s)
x < +∞, the configuration space associated to x ∈ L(s) is a finite

set S(s)
x , with |S(s)

x | = S
(s)
x + 1 which we consider endowed with the discrete topology,

the associated Borel σ–algebra is denoted by F (s)
{x}.

The configuration space in � ⊂ L(s) is defined as S(s)
� := ⊗x∈�S(s)

x and equipped

with the product topology; we will let S(s)

L(s) =: S(s). We denote by F (s) the Borel

σ–algebra on S(s) and for each � ⊂ L(s) we set F (s)
� := ⊗x∈�F (s)

{x} ⊂ F (s).

Given � ⊂ � ⊂ L(s) and σ := {σx ∈ S(s)
x , x ∈ �} ∈ S(s)

� , we denote by σ�

the restriction of σ to � namely, σ� := {σx, x ∈ �}. Let m be a positive integer
and let �1, . . . , �m ⊂ L(s) be pairwise disjoint subsets of L(s); for each σk ∈ S(s)

�k
,

with k = 1, . . . , m, we denote by σ1σ2 · · · σm the configuration in S(s)
�1∪···∪�m

such that

(σ1σ2 · · · σm)�k
= σk for all k ∈ {1, . . . , m}. For x ∈ L(s) we define the shift �x acting

on S(s) by setting (�xσ)y := σy+x , for all y ∈ L(s) and σ ∈ S(s).
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A function f : S(s) → R is called a local function if and only if there exists
� ⊂⊂ L(s) such that f ∈ F (s)

� namely, f is F (s)
� –measurable for some bounded set �.

For f a local function we shall denote by supp(f ), the so–called support of f , the small-
est � ⊂⊂ L(s) such that f ∈ F (s)

� . If f ∈ F (s)
� we shall sometimes misuse the notation

by writing f (σ�) for f (σ). We also introduce C(S(s)) the space of continuous functions
on S(s) which becomes a Banach space under the norm ‖f ‖∞ := supσ∈S(s) |f (σ)|; note
that the local functions are dense in C(S(s)).

2.3. The potential. Consider the integer s ≥ 1, a potential �(s), for a lattice model on
L(s) with configuration space S(s) as above, is a collection of local functions labelled
by finite subsets of L(s) namely, �(s) := {�(s)

X ∈ F (s)
X , X ⊂⊂ L(s)}. We say that �(s)

is finite range iff there exists r > 0 such that �(s)
X = 0 if diams(X) > r; we say it is

translationally invariant iff for each x ∈ L(s), �(s)
X (σ ) = �

(s)
X−x(�xσ). We note that

the potentials, which do not need to satisfy the conditions above, form a linear space in
which, given a ≥ 0, we introduce the norm ‖ · ‖a defined by

‖�(s)‖a := sup
x∈L(s)

∑

X�x

ea diams (X)‖�(s)
X ‖∞. (2.2)

We also note that in the translation invariant case we can omit the supremum above.
Note that the Banach space defined by the norm above is too large to have a satisfactory
theory of high temperature phases. Indeed in [11, 12] Dobrushin and Martirosyan have
shown the following: let h : N → R+ and set

‖�(s)‖DM :=
∑

X�0

h(|X|) ‖�(s)
X ‖∞.

If exp{−γ n}h(n) → 0 in the limit n → ∞ for all γ > 0, there exist complex interac-
tions with arbitrarily small norm ‖ · ‖DM, giving rise to a phase transition in the sense
that the corresponding partition function vanishes for a sequence of cubes �n → L(s),
see also [18].

Given � ⊂⊂ L(s) and a potential �(s) with bounded ‖ · ‖0 norm, the finite volume
Hamiltonian associated to a configuration σ ∈ S(s) in � is given by:

H
(s)
� (σ ) :=

∑

X⊂⊂L(s)

X∩� �=∅

�
(s)
X (σ ). (2.3)

Note that the sum on the r.h.s. of (2.3) is absolutely convergent (uniformly in σ ) by the
boundedness of ‖�(s)‖0. We also remark that for a potential of range r the Hamiltonian
depends only onσ

�
(s),r , namelyH

(s)
� ∈ F (s)

�
(s),r .We also letE(s)

� (σ )be the self–interaction

associated to the volume �, i.e. the Hamiltonian with free boundary conditions namely,

E
(s)
� (σ ) :=

∑

X⊂�

�
(s)
X (σ ). (2.4)

We have that the map E
(s)
� : S(s) → R depends only on the spins inside � namely,

E
(s)
� ∈ F (s)

� .

2.4. The Gibbs measures. Pick s ≥ 1 and consider a potential �(s) of bounded ‖ · ‖0
norm. For each � ⊂⊂ L(s) we define the (finite volume) Gibbs measure in �, with
boundary condition τ ∈ S(s), as the following measure on S(s)

� :
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µ
(s),τ
� (σ ) := 1

Z
(s)
� (τ)

exp
{
H

(s)
� (στ�c)

}

for any σ ∈ S(s)
� , where Z

(s)
� (τ), called partition function, is the normalization constant,

i.e.

Z
(s)
� (τ) :=

∑

σ∈S(s)
�

eH
(s)
� (στ�c ). (2.5)

Note that we defined the Gibbs measure with a sign convention opposite to the usual
one and include the inverse temperature in the definition of the Hamiltonian; in fact it
will be kept fixed in our analysis.

We regard µ
(s),τ
� also as a measure on the whole S(s) by giving zero mass to the

configurations σ which do not agree with τ on �c. The (infinite volume) Gibbs states
associated to the potential �(s) are then the probability measures µ(s) on S(s) which
satisfy the DLR equations

∫
µ(s)(dτ) µ

(s),τ
� (f ) = µ(s)(f ) for any � ⊂⊂ L(s), f ∈ C(S(s)), (2.6)

where µ(s)(f ) denotes the expectation of f w.r.t. µ(s).
Given two local functions f, g : S(s) → R we denote, finally, by µ(s)(f ; g) :=

µ(s)(fg) − µ(s)(f )µ(s)(g) the covariance between f and g.

Condition SM(s)(�0, b, B) (Strong Mixing). Given a positive integer �0 and two
strictly positive reals b, B we say that the potential �(s) satisfies SM(s)(�0, b, B) if
and only if for any volume I ⊂⊂ L(s�0) by setting � := Os

s�0
I = ⋃

i∈I Q
(s)
�0

(i), the
following bound holds. For each pair of local functions f, g such that supp(f ) ⊂ �,
supp(g) ⊂ �, and | supp(f )| ∧ | supp(g)| exp{−bds(supp(f ), supp(g))} ≤ 1 we have

sup
τ∈S(s)

|µ(s),τ
� (f ; g)| ≤ B‖f ‖∞‖g‖∞| supp(f )| ∧ | supp(g)| e−b ds (supp(f ),supp(g)).

(2.7)

It is a standard result that if there exist �0, b, B such that Condition SM(s)(�0, b, B) is
satisfied then there exists a unique infinite volume Gibbs state namely, the DLR equations
(2.6) admit a unique solution.

2.5. Lattice gas potential. A lattice gas is a translational invariant Gibbs field in the case
s = 1, which is then dropped from the notation, and Sx = 1 for each x ∈ L; in such a
case the single site configuration space associated to x ∈ L is Xx := {0, 1}. With the
notation introduced in Subsect. 2.2, for each � ⊂ L, we denote by X� the configura-
tion space on � equipped with the product topology and, as usual, we let X := XL. For
η ∈ X the value ηx ∈ {0, 1} is interpreted as the occupation number in x ∈ L. Moreover,
we denote by F the Borel σ–algebra on X and set F� := {ηx ∈ Xx, x ∈ L} ⊂ F .
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For a translationally invariant lattice gas we denote by U the potential and observe
that U{x}(η) = ληx + a for some constants λ, a ∈ R. We neglect the constant a, which
does not affect the definition of the Gibbs measure, and note that λ is interpreted as
the chemical potential. We also introduce the activity z ∈ R+ by z := eλ which we
use to parameterize lattice gases with different chemical potentials. In such a case we
write U = (z, U>1), where U>1 := {UX ∈ FX, X ⊂⊂ L, |X| > 1} and call U>1 the
interaction.

Coherently with the notation introduced in Subsect. 2.4 the infinite volume Gibbs
measure is denoted by µ. We shall sometimes write µz for the infinite volume Gibbs
measure, µτ

�,z for the finite volume Gibbs measure on � ⊂⊂ L, and Z�,z(τ ) for the
partition function of the lattice gas in order to explicitly indicate the dependence on the
activity z.

2.6. Block averaging transformation (BAT). Let µ be the (unique) infinite volume
Gibbs measure of a finite range translationally invariant lattice gas satisfying Condi-
tion SM(�0, b, B). Let ρ := µ(η0) be the equilibrium density and let us denote the
compressibility by

χ :=
∑

x∈L
µ(η0; ηx). (2.8)

Note that SM(�0, b, B) implies that there exists a real number C ∈ (0,+∞) such that
C−1 ≤ χ ≤ C.

We consider a positive integer � and the renormalized lattice L(�). For I ⊂ L(�)

we define the function N
(�)
I : XI → {0, 1, . . . , �d}I , which counts the total number of

particles in each block Q�(i), as follows

(
N(�)(η)

)
i

:=
∑

x∈Q�(i)

ηx (2.9)

for all i ∈ I and η ∈ XI . As usual we will let N(�)

L(�) =: N(�) and N
(�)
{i} =: N

(�)
i for all

i ∈ L(�).
For any i ∈ L(�) we define, moreover, the set

M(�)
i :=

{−ρ|Q�|√|Q�|χ
,

1 − ρ|Q�|√|Q�|χ
, . . . ,

|Q�|(1 − ρ)√|Q�|χ
}

(2.10)

that we consider equipped with the discrete topology. For I ⊂ L(�) we introduce, fol-
lowing the notation in Subsect. 2.2, the renormalized configuration space M(�)

I :=
⊗i∈IM(�)

i ; we set ML(�) =: M(�) and denote by B(�) its Borel σ–algebra. For I ⊂ L(�)

we also set B(�)
I := σ {mi ∈ M(�)

i , i ∈ I } ⊂ B(�). Moreover we define the measurable

function M
(�)
I : (XO�I ,FO�I ) −→ (M(�)

I ,B(�)
I ) by setting

M
(�)
I (η) := N

(�)
I (η) − ρ|Q�|√|Q�|χ

(2.11)

for η ∈ XO�I . We also let M(�)

L(�) =: M(�) and M
(�)
{i} =: M(�)

i for all i ∈ L(�).
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Finally, we define the renormalized measure ν(�) := µ◦(M(�))−1, which is naturally
induced by M(�) on M(�), and for I ⊂ L(�) and τ ∈ X we let ν(�),τ

I := µτ
O�I

◦(M(�)
I )−1.

We avoid the troublesome issue of describing Gibbs measures on non–compact single
spin space, see [19] for a discussion, and consider ν(�) only for finite �.

2.7. Main results. In this subsection we state the main theorems on the weak Gibbsianity
of the renormalized measure and the corresponding convergence as � → ∞.

Theorem 2.1. Let U be a lattice gas potential satisfying SM(�0, b, B). Then for any
large enough � multiple of �0 there exists a family of functions {ψ(�)

I , φ
(�)
I , I ⊂⊂ L(�)},

with ψ
(�)
I , φ

(�)
I : M(�) �→ R, such that

1. For each I ⊂⊂ L(�) we have ψ
(�)
I , φ

(�)
I ∈ B(�)

I .

2. For each I ⊂⊂ L(�) we have ψ
(�)
I , φ

(�)
I ≡ 0 if I is not �–connected.

3. The functions ψ
(�)
I , φ

(�)
I are translationally invariant in the sense specified in Sub-

sect. 2.3 namely, ψ(�)
I (m) = ψ

(�)
I−i (�im) and φ

(�)
I (m) = φ

(�)
I−i (�im) for any i ∈ L(�),

I ⊂⊂ L(�), and m ∈ M(�).
4. There exist a measurable set M̄(�) ⊂ M(�), such that ν(�)(M̄(�)) = 1, and functions

r
(�)
i : M̄(�) �→ N \ {0}, for all i ∈ L(�), such that for each m ∈ M̄(�) if I � i

and diam�(I ) > r
(�)
i (m) then ψ

(�)
I (m) = 0. In particular for each i ∈ L(�) and

m ∈ M̄(�) there exists a real c(�)i (m) ∈ [0,∞) such that
∑

I�i

|ψ(�)
I (m)| ≤ c

(�)
i (m). (2.12)

5. For each q ∈ [1,∞)

sup
i∈L(�)

ν(�)
(∣∣∣
∑

I�i

ψ
(�)
I

∣∣∣
q)

< ∞. (2.13)

6. There exists α′ > 0 such that

sup
m∈M(�)

sup
i∈L(�)

∑

I�i

eα
′ diam�(I )|φ(�)

I (m)| < ∞. (2.14)

7. The DLR equations hold, namely for each J ⊂⊂ L(�) and for each local function
f ∈ B(�)

J we have

ν(�)(f ) =
∫

M(�)

ν(�)(dm′)
1

ZJ (m′)

×
∑

m∈M(�)
J

f (m) exp
{ ∑

I∩J �=∅
[ψ(�)

I (mm′
J c) + φ

(�)
I (mm′

J c)]
}
, (2.15)

where

ZJ (m
′) :=

∑

m∈M(�)
J

exp
{ ∑

I∩J �=∅
[ψ(�)

I (mm′
J c) + φ

(�)
I (mm′

J c)]
}
.
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In the next theorem we state that in a suitable sense the renormalized potential con-
verges to the one of independent harmonic oscillators.

Theorem 2.2. In the same hypotheses as in Theorem 2.1, the family {ψ(�)
I , φ

(�)
I , I ⊂⊂

L(�)} is such that

1. For each i ∈ L(�) we have ψ
(�)
{i} (m) = −m2

i /2 and for each q ∈ [1,+∞)

lim
�→∞

sup
i∈L(�)

ν(�)
(∣∣∣

∑

I�i: |I |≥2

ψ
(�)
I

∣∣∣
q) = 0. (2.16)

2. There exists α′ > 0 such that

lim
�→∞

sup
m∈M(�)

sup
i∈L(�)

∑

I�i

eα
′ diam�(I )|φ(�)

I (m)| = 0, (2.17)

where the limits � → ∞ are taken along multiples of �0.

In order to compute the renormalized potential we compute the partition function
of the constrained system (1.5). Since we are in the low temperature regime, the con-
strained system will not have good mixing properties for all possible values of the image
variable m ∈ M(�). We thus look at the constrained model as a disordered system and
look for properties which hold for ν(�)–almost all image variables, that is we have to
construct the set M̄(�) properly. More precisely, we enclose the constrained models in
a huge volume and we try to compute their partition function via a uniform convergent
cluster expansion. We then face the typical problem of the Griffiths’ phase in disordered
systems: anomalous values of the image variables, which do occur somewhere in our
volume, might produce arbitrarily large regions of strong interaction.

To overcome the above difficulty we follow a classical strategy in disordered systems.
Let us fix a configuration of the image variables. We first perform a cluster expansion
in the domains where the constrained model verifies a uniform strong mixing condi-
tion implying an effective weak interaction on a proper scale. We are then left with an
effective residual interaction between the domains of strong interaction. Since anom-
alous values of the image variables have small probability, in the set M̄(�) the strong
interacting domains are well separated on the lattice; we can thus use the graded cluster
expansion developed in [2] to treat the effective interaction.

2.8. Synopsis. In Sect. 3 we construct the full measure set M̄(�) algorithmically. The
required probability estimates are proven in a general setting, not necessarily Gibbsian,
of the underlying distribution of the disorder. The analysis is based on the exponential
decay of correlations and the key recursive estimate in Lemma 3.6 is inspired by the
approach to the Anderson localization in [9].

In Sect. 4 we define the constrained models. We also introduce the condition, see (4.8),
on the image variable m to identify the good part of the lattice where the constrained
systems satisfy the uniform strong mixing condition. We finally prove, in Theorem 4.4,
that the general theory developed in Sect. 3 can be applied.

We then fix a valuem ∈ M̄(�) and compute the partition function of the corresponding
constrained model for a sequence of volumes invading the whole lattice. More precisely
in Sect. 5 we use a procedure similar to [1, 27, 28] to integrate over the good part of the
lattice and get the expansion in Theorem 5.1. In Sect. 6 we feed the effective potential



336 L. Bertini, E.N.M. Cirillo, E. Olivieri

of Theorem 5.1 to the general theory developed in [2] to integrate over the bad part of
the lattice.

To complete the proof of Theorem 2.1 we need to express the output of [2], see
Theorem 6.1, as the sum of local functions. This is not a trivial point since, a priori, the
partition function of the constrained models depends on the whole infinite volume image
variable m. Nevertheless, the graded cluster expansion in [2] has been developed with
a volume cutoff, see (6.7) and (6.14), at each step of the iteration, so that the recursive
construction allows us to prove locality of the renormalized potentials, see Theorem 6.2.
The convergence stated in Theorem 2.2 is an easy byproduct of the whole analysis.

3. Bounds on the Badness Probability

To compute the partition function of the constrained models, see Sect. 4 below, we face
the typical problem of the Griffiths’ phase in disordered systems: anomalous values of
the image variables, which do occur somewhere, might produce arbitrarily large regions
of strong correlation [2]. In the present section we obtain some probability estimates on
the multi–scale geometry of these regions, based on the hypotheses that such anomalous
values have small probability.

In this section we denote the lattice Z
d by L. In order to use a setup compatible with the

one in [2], we use the distance D(x, y) := ∑d
i=1 |xi − yi | for all x = (x1, . . . , xd), y =

(y1, . . . , yd) ∈ L; on the other hand we recall that d(x, y) = supi=1,...,d |xi − yi | as
defined in Subsect. 2.1. Accordingly for X ⊂ L we set Diam(X) := sup{D(x, y) :
x, y ∈ X}. Moreover, given X ⊂ L and m ≥ 0 we set Om(X) := {y ∈ L : D(y,X) ≤
m} as the m–neighborhood of X w.r.t the metric D. If x ∈ L we write Om(x) instead
of Om({x}). We also recall that Bm(X), see Subsect. 2.1, is the m–neighborhood of X

w.r.t. the metric d; of course Bm(X) ⊃ Om(X) for all X ⊂ L.
We describe the strength of the disorder at the site x in terms of a binary variable

ωx ∈ {0, 1}. We denote by ω ∈ � := {0, 1}L the random field {ωx, x ∈ L}; we
consider � endowed with its Borel σ–algebra A and we let Q, a probability in �,
be the distribution of ω. We also introduce the family of σ–algebras on � defined by
A� := σ {ωx, x ∈ �}. We measure the diluteness of the system via the parameter

p := sup
x∈L

Q(ωx = 1) (3.1)

which, in our analysis, will be sufficiently small. We also assume that the correlations
under Q are exponentially decaying; more precisely we assume there exist reals b′′ > 0
and B ′′ < ∞ such that for each pair of local functions f, g such that | supp(f )| ∧
| supp(g)| exp{−b′′D(supp(f ), supp(g))} ≤ 1 we have

|Q(f ; g)| ≤ B ′′‖f ‖∞‖g‖∞| supp(f )| ∧ | supp(g)| e−b′′D(supp(f ),supp(g)). (3.2)

We have a first classification of sites in good (whereωx = 0) and bad (whereωx = 1).
We strengthen the notion of steep scales introduced in [2].

Definition 3.1. We say that two strictly increasing sequences � = {�j }j≥0 and γ =
{γj }j≥0 are moderately steep scales iff they satisfy the following conditions:

1. �0 = 0, γ0 ≥ 0, �1 ≥ 2, and �j < γj/2 for any j ≥ 1.

2. For j ≥ 0 set ϑj :=
j∑

i=0

(�i + γi) and λ := infj≥0(�j+1/ϑj ); then λ ≥ 10.
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3. We have
∞∑

j=1

�j

γj
≤ 1

2
, where we understand �0/γ0 = 0 even in the case γ0.

4. There exist reals a > 0 and ε ∈ (0, 1) such that 2 · 3dϑd
k+1 ≤ exp{a(1 + ε)k} for all

k ≥ 0.

5. For a and ε as above we have that
∞∑

k=1

ϑs
k exp{−a(1 + ε)k/q} < ∞ for all s ≥ 0

and q > 1.

We remark that with respect to the definition of steep scales given in [2] we have
added Conditions 4 and 5, and strengthened Item 2 to λ ≥ 10. An explicit example of
moderately steep scales is given in (4.19) below.

Definition 3.2. We say that G := {Gj }j≥0, where each Gj is a collection of finite subsets
of L is a graded disintegration of L iff

1. for each g ∈ ⋃
j≥0 Gj there exists a unique j ≥ 0, which is called the grade of g,

such that g ∈ Gj ;
2. the collection

⋃
j≥0 Gj of finite subsets of L is a partition of the lattice L namely, it

is a collection of not empty pairwise disjoint finite subsets of L such that
⋃

j≥0

⋃

g∈Gj

g = L. (3.3)

Given G0 ⊂ L and �, γ steep scales, we say that a graded disintegration G is a gentle
disintegration of L with respect to G0, �, γ iff the following recursive conditions hold:

3. G0 = {{x}, x ∈ G0
}
;

4. if g ∈ Gj then Diam(g) ≤ �j for any j ≥ 1;
5. set Gj := ⋃

g∈Gj
g ⊂ L, B0 := L \ G0 and Bj := Bj−1 \ Gj , then for any g ∈ Gj

we have D
(
g,Bj−1 \ g

)
> γj for any j ≥ 1;

6. ∀x ∈ L we have kx := sup
{
j ≥ 1 : ∃g ∈ Gj such that d(x,Q(g)) ≤ ϑj

}
< ∞,

where we recall Q(g) has been defined in Subsect. 2.1.

Sites in G0 (resp. B0) are called good (resp. bad); similarly we call j–gentle (resp. j–
bad) the sites in Gj (resp. Bj ). Elements of Gj , with j ≥ 1, are called j–gentle atoms.
Finally, we set G≥j := ⋃

i≥j Gi .

The results of the present section are summarized in the following theorem.

Theorem 3.3. Let the sequences �, γ be moderately steep scales in the sense of Defi-
nition 3.1. Assume also that (3.2) holds, p ≤ exp{−a/(1 − ε)} and the sequences �, γ

are such that

2 · 9dB ′′ϑ2d
k+1 exp{−b′′�k+1/20} ≤ exp

{
− a

1 − ε
(1 + ε)k+1

}
(3.4)

for any k ≥ 0. Set finally G0(ω) := {x ∈ L : ωx = 0}. Then there exists a set �̄ ∈ A
with Q(�̄) = 1 such that

1. for eachω ∈ �̄ there exists a gentle disintegration G = G(ω) in the sense of Definition
3.2;



338 L. Bertini, E.N.M. Cirillo, E. Olivieri

2. for each x ∈ L and X ⊂⊂ L we have that {ω : Gk(ω) � x} ∈ AOϑk
(x) and also

{ω : Gk(ω) � X} ∈ AOϑk
(X).

Let us first describe an algorithm to construct the families Gk for k ≥ 1; from this it
will follow Item 2 in Theorem 3.3. Given a configuration ω ∈ � and �, γ moderately
steep scales, we define the following inductive procedure in a finite volume � ⊂⊂ L

which constructs the k–gentle sites in �:
1. set k = 1;
2. set i = 1 and V = ∅;
3. if (Bk−1 ∩ �) \ V = ∅ then goto 7;
4. pick a point x ∈ (Bk−1 ∩ �) \ V, set A = O�k

(x) ∩ Bk−1 and V =
V ∪ A;

5. if Diam(A) ≤ �k and D (A,Bk−1 \ A) > γk then gi
k = A and i = i +

1;
6. goto 3;
7. set Gk := {gm

k , m = 1, . . . , i − 1}, with the convention Gk = ∅ if

i = 1, Gk := ⋃i−1
m=1 gm

k , and Bk := Bk−1 \ Gk;
8. set k = k + 1, if �k ≤ Diam(�) goto 2 else exit.

Let us briefly describe what the above algorithm does. At step k we have inductively
constructed Bk−1, the set of (k − 1)–bad sites; we stress that sites in L \ � may belong
to Bk−1. Among the sites in Bk−1 ∩� we are now looking for the k–gentle ones. The set
V is used to keep track of the sites tested for k–gentleness. At Step 4 we pick a new site
x ∈ Bk−1 ∩ � and test it, at Step 5, for k–gentleness w.r.t. Bk−1, i.e. including also bad
sites in L\�. Note that the families Gk for any k ≥ 1 do not depend on the way in which
x is chosen at Step 4 of the algorithm. Suppose, indeed, to choose x ∈ (Bk−1 ∩ �) \ V

at Step 4 and to find that A = O�k
(x)∩ Bk−1 is a k–gentle atom. Consider x′ ∈ A such

that x′ �= x and set A′ := O�k
(x′) ∩ Bk−1: since A satisfies the test for k–gentleness

at Step 5 of the algorithm, we have A ⊂ A′. By changing the role of x and x′ we get
A = A′.

After a finite number of operations, the algorithm stops and outputs the family Gk(�)

(note we wrote explicitly the dependence on�) with the following property. Ifg ∈ Gk(�)

then Diam(g) ≤ �k and D (g,Bk−1(�) \ g) > γk . We call a set g ∈ Gk(�) an atom of
k–gentle sites; note however that g is not necessarily connected.

We finally take an increasing sequence of sets �i ⊂⊂ L, invading L and we sequen-
tially perform the above algorithm. This means the algorithm for �i is performed inde-
pendently of the outputs previously obtained, i.e., for �j j < i. It is easy to show that if
g ∈ Gk(�i) then g ∈ Gk(�i+1); therefore Gk(�i) is increasing in i ≥ 1, so that we can
define Gk := limi→∞ Gk(�i) = ⋃

i Gk(�i) and Gk := limi→∞ Gk(�i) = ⋃
g∈Gk

g.

Hence, Bk(�i) = Bk−1(�i) \ Gk(�i) = L \ ∪k−1
j=0Gj (�i) is decreasing in i ≥ 1,

so that Bk := limi→∞ Bk(�i) = ⋂
i Bk(�i). We also remark that, by construction,

{Bk, k ≥ 0} is a decreasing sequence. We say x ∈ L is k–gentle (resp. k–bad) iff
x ∈ Gk (resp. x ∈ Bk).

Note that it follows from the construction that it is possible to decide whether a site
x at step k is k–gentle by looking only at the ω’s inside a ball centered at x of radius ϑk

(as defined in Item 2 of Definition 3.1).

Lemma 3.4. Let Gk and Gk , k = 0, 1, . . . , as constructed above. Then Item 2 in Theorem
3.3 holds, i.e. for each x ∈ L,

{ω : x ∈ Gk(ω)} ∈ AOϑk
(x) (3.5)
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and for each X ⊂ L

{ω : X ∈ Gk(ω)} ∈ AOϑk
(X). (3.6)

Proof. We first prove (3.5). We proceed by induction. For k = 0 (3.5) holds trivially.
Let O := O�k

(x). From the algorithmic construction above we have

{x ∈ Gk} = {x ∈ Bk−1} ∩ {Diam (O ∩ Bk−1) ≤ �k}
∩ {D (Bk−1 ∩ O,Bk−1 \ O) > γk} . (3.7)

Since ϑk is increasing, by the inductive hypotheses

{x ∈ Bk−1} =
k−1⋂

h=0

{x /∈ Gh} ∈
k−1∨

h=0

AOϑh
(x) = AOϑk−1 (x)

. (3.8)

On the other hand

{Diam (O ∩ Bk−1) ≤ �k} =
⋂

y,z∈O
D(y,z)>�k

({y /∈ Bk−1} ∪ {z /∈ Bk−1}) ∈
∨

y∈O

AOϑk−1 (y)
,

(3.9)

where we used (3.8). Finally

{D (Bk−1 ∩ O,Bk−1 \ O) > γk}={�(y, z)∈(O ∩ Bk−1)×(Bk−1 \ O) : D(y, z)≤γk}
=

⋂

y∈O,z∈L\O:
D(y,z)≤γk

({y /∈ Bk−1} ∪ {z /∈ Bk−1}) ,

hence

{D (Bk−1 ∩ O,Bk−1 \ O) > γk} ∈
∨

y∈L:
D(x,y)≤�k+γk

AOϑk−1 (y)
, (3.10)

where we used again (3.8). Recalling ϑk = ϑk−1 + �k + γk , Eq. (3.5) follows from
(3.7)–(3.10).

Similar arguments can be used to prove (3.6). If Diam(X) > �k then X /∈ Gk . We
consider, now, the case Diam(X) ≤ �k; we have:

{X ∈ Gk} = {x ∈ Bk−1, ∀x ∈ X} ∩ {D (X,Bk−1 \ X) > γk}
=
⋂

x∈X

{x ∈ Bk−1} ∩ {D (X,Bk−1 \ X) > γk} . (3.11)

Now, from (3.8) we have that
⋂

x∈X

{x ∈ Bk−1} ∈ AOϑk−1 (X). (3.12)

Moreover,

{D (X,Bk−1 \ X) > γk} = {�(x, y) ∈ X × (Bk−1 \ X) : D(x, y) ≤ γk}
=

⋂

y∈L\X: D(y,X)≤γk

{y /∈ Bk−1} ∈ AOϑk−1+γk
(X), (3.13)

and from (3.11)–(3.13) we finally get (3.6). ��
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Theorem 3.5. Let the hypotheses of Theorem 3.3 be satisfied; recall a and ε have been
defined in Item 4 of Definition 3.1. Then

sup
x∈L

Q (ω : x ∈ Bk) ≤ exp
{

− a

1 − ε
(1 + ε)k

}
. (3.14)

Postponing the proof of the above bound, let us show how it implies, via a straight-
forward application of Borel–Cantelli lemma, Theorem 3.3.

Proof of Theorem 3.3. Proof of Item 1. For each ω ∈ � let G ≡ G(ω) = {Gj (ω)}j≥0
be constructed by the algorithm described below Theorem 3.3. We have to show that G
satisfies Items 1–6 in Definition 3.2 Q–a.s.: Items 1, 3, 4 and 5 hold by construction.
We prove first that there exists a set �̄ ⊂ � of full Q–measure such that Item 2 (of
Definition 3.2) holds, namely such that

⋃
j≥0 Gj (ω) is a partition of the lattice L. Let

B∞ be the random subset of the lattice given by B∞ := limn→∞ Bn = ⋂∞
n=0 Bn. From

Theorem 3.5 and the Borel–Cantelli lemma we get

0 = Q

( ∞⋂

n=0

∞⋃

k=n

{x ∈ Bk}
)

= Q

( ∞⋂

n=0

{x ∈ Bn}
)

= Q ({x ∈ B∞}) , (3.15)

where we have used that Bn, n ∈ N, is a decreasing family of subsets of the lattice.
Whence, by taking a countable union, we get

0 = Q

(
⋃

x∈L

{x ∈ B∞}
)

= Q (B∞ �= ∅) = 1 − Q



L =
∞⋃

j=0

Gj



 .

We prove, finally, that also Item 6 of Definition 3.2 is satisfied Q–a.s.: it is enough to
note that for x ∈ L we have

∞∑

k=1

Q (ω : ∃g ∈ Gk(ω) : d(x,Q(g)) ≤ ϑk)

≤
∞∑

k=1

Q (ω : ∃y ∈ Bk−1(ω) : d(x, y) ≤ ϑk + �k)

≤
∞∑

k=1

[2(ϑk + �k) + 1]d sup
y∈L

Q (ω : y ∈ Bk−1(ω))

≤
∞∑

k=1

[2(ϑk + �k) + 1]d exp
{

− a

1 − ε
(1 + ε)k−1

}

≤
∞∑

k=1

[2(ϑk + �k) + 1]d exp
{

− a(1 + ε)k
}
< ∞, (3.16)

where we used the bound (3.14) and Item 5 in Definition 3.1. The proof is completed by
applying again Borel–Cantelli.

Proof of Item 2 of the theorem. It has already been proven in Lemma 3.4 for the graded
disintegration constructed via the algorithm described below Theorem 3.3. ��
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The key step in proving Theorem 3.5 is the following recursive estimate on the prob-
ability of the degree of badness.

Lemma 3.6. Let the hypotheses ofTheorem 3.3 be satisfied. Setpk :=supx∈LQ (x ∈ Bk),
for k = 0, 1, . . . ; set also Ak(x) := Oγk+�k

(x) \ O(�k−1)/2(x) and |Ak| = |Ak(x)|.
Then for each k = 0, 1, . . . we have

pk+1 ≤ |Ak+1|
(
p2
k + B ′′|Oϑk

| exp{−b′′�k+1/20}
)
. (3.17)

Proof. Recalling the definition of the k–bad set Bk we have

{x ∈ Bk+1} = {x ∈ Bk} ∩ {x /∈ Gk+1} . (3.18)

On the other hand, by the construction of the (k + 1)–gentle sites,

{x ∈ Bk} ∩ {x /∈ Gk+1} ⊂ {x ∈ Bk} ∩ {∃y ∈ Ak+1(x) : y ∈ Bk} (3.19)

indeed, given Bk , if there were no k–bad site in the annulus Ak+1(x) then x would have
been (k + 1)–gentle. From (3.18) and (3.19),

Q (x ∈ Bk+1) ≤ Q

( ⋃

y∈Ak+1(x)

{x ∈ Bk} ∩ {y ∈ Bk}
)

≤
∑

y∈Ak+1(x)

Q
( {x ∈ Bk} ∩ {y ∈ Bk}

)

=
∑

y∈Ak+1(x)

[
Q ({x ∈ Bk})Q ({y ∈ Bk}) + Q

(
1I{x∈Bk}; 1I{y∈Bk}

) ]
.

(3.20)

We note, now, that for x ∈ L and y ∈ Ak+1(x) we have

D(Oϑk
(x),Oϑk

(y)) ≥
[�k+1 − 1

2

]
− 2

[
ϑk

]+ 1 ≥ �k+1

2
− 2ϑk − 1

2

≥ λ − 8

4λ
�k+1 ≥ 1

20
�k+1 (3.21)

recall we assumed λ ≥ 10 in item 2 of Definition 3.1. By Lemma 3.4, (3.2), and (3.20),
we finally get the bound (3.17). ��
Proof of Theorem 3.5. The thesis follows by induction from p0 := p ≤ exp{−a/(1 −
ε)}, Lemma 3.6, item 4 in Definition 3.1, Eq. (3.4), |Ak+1| ≤ 3dϑd

k+1, and |Oϑk
| ≤

3dϑd
k+1. ��

4. The Constrained Models

In dealing with the renormalization group transformation it is necessary to pack spins
associated to different sites of the lattice so that a new variable, often called block spin,
is obtained.
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4.1. The block spin models. Recall the general setup introduced in Subsects. 2.2–2.4 for
a spin model on lattice L(s), with s ≥ 1 integer, with potential �(s), and Gibbs measure
µ(s). For u a positive multiple of s we consider the lattice L(u) and associate to each site
i ∈ L(u) the single site block spin configuration space

S(s),u
i :=

⊗

x∈Q
(s)
u/s (i)

S(s)
x = S(s)

Q
(s)
u/s (i)

. (4.1)

We can then consider the block spin configuration space S(s),u
I := ⊗i∈IS(s),u

i , for any

I ⊂ L(u), equipped with the product topology. As usual we let S(s),u

L(u) =: S(s),u and

denote its Borel σ–algebra by F (s),u. Moreover, for each I ⊂ L(u) we set F (s),u
I :=

σ {ζi ∈ S(s),u
i , i ∈ I } ⊂ S(s),u.

As for the lattices we introduce operators which allow to pack spins and unpack
block spins. With an abuse of notation we shall use the same symbol as in Subsect. 2.1.
We define the packing operator Ou

s : S(s) → S(s),u associating to each spin configura-
tion σ ∈ S(s) the unique block spin configuration Ou

s σ ∈ S(s),u such that (Ou
s σ )i :=

{σx, x ∈ Q
(s)
u/s(i)} for all i ∈ L(u). The unpacking operator Os

u : S(s),u → S(s) associ-

ates to each block spin configuration ζ ∈ S(s),u the unique spin configuration Os
uζ ∈ S(s)

such that ζi = {(Os
uζ )x, x ∈ Q

(s)
u/s(i)} for all i ∈ L(u). Note that in the case of infinite

volume configurations the packing and the unpacking operators are the inverse of each
other.

We remark also that the two operators allow the packing of the spin σ–algebra and
the unpacking of the block spin one namely, for each I ⊂ L(u) and � ⊂ L(s) we have

Os
u

(F (s),u
I

) = F (s)

Os
uI

and Ou
s

(F (s)
�

) ⊂ F (s),u

Ou
s �

, (4.2)

where in the last relation the equality between the two σ–algebras stands if and only if
Os

uOu
s � = �.

To a block spin configuration we can naturally associate the potential �(s),u defined
as follows; for each I ⊂⊂ L(u) the function �

(s),u
I : S(s),u → R is defined as

�
(s),u
I :=

∑

X⊂L(s):
Ou

s X=I

[�(s)
X ◦ Os

u]. (4.3)

We remark that �(s),u ∈ F (s),u
I . Given I ⊂⊂ L(u), we consider the block spin Hamil-

tonian H
(s),u
I : S(s),u → R associating to each block spin configuration ζ ∈ S(s),u the

Hamiltonian

H
(s),u
I (ζ ) :=

∑

J∩I �=∅
�

(s),u
J (ζ ) and E

(s),u
I (ζ ) :=

∑

J⊂I

�
(s),u
J (ζ ). (4.4)

It is easy to show that, given I ⊂⊂ L(u) and the block spin configuration ζ ∈ S(s),u,
the Hamiltonian H

(s),u
I is the Hamiltonian of the unique spin configuration Os

uζ ∈ S(s)

obtained by unpacking ζ ; indeed
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H
(s),u
I (ζ ) =

∑

J∩I �=∅
�

(s),u
J (ζ ) =

∑

J∩I �=∅

∑

X⊂L(s):
Ou

s X=J

�
(s)
X (Os

uζ )

=
∑

X⊂L(s):
X∩Os

uI �=∅

�
(s)
X (Os

uζ ) = H
(s)

Os
uI
(Os

uζ ). (4.5)

We can finally define a Gibbs measure on the block spin configuration space S(s),u,
with its σ–algebra F (s),u, by considering the measure µ(s),u := µ(s) ◦ Os

u which is
Gibbsian w.r.t. the potential (4.3).

We note that it is possible to make block spins out of block spins, namely, we can
consider S(s),u as the starting configuration space, fix a multiple v of u, and construct
the block spin configuration space S(s),u,v . Exploiting the fact that v is a multiple of s

it is possible to construct the block spin space S(s),v; note that the spaces S(s),u,v and
S(s),v are different because they are produced by grouping the original spins, living on
scale s, in two different ways.

For the sake of clearness we list here the particular cases in which we will make use
of the block spin setup introduced above. First of all, we fix the the renormalization scale
� and the rougher scale ℘ ≡ ℘(�) := d�. On one hand we consider as original lattice
model the lattice gas µ on L with configuration space X and algebra of the events F , see
Subsect. 2.5, and construct the block spin space X (1),� ≡ X �, its σ–algebra F�, and the
Gibbs measure µ� = µ ◦ O�, with O� : X � → X the unpacking operator. Then, on
the rougher scale ℘, we construct the space X (1),�,℘ ≡ X �,℘ , its σ–algebra F�,℘ , and
the Gibbs measure µ�,℘ = µ� ◦ O�

℘ with O�
℘ : X �,℘ → X � the unpacking operator.

On the other hand, we consider as original lattice model the renormalized model ν(�)

on L(�) with configuration space M(�) and algebra of events B(�), see Subsect. 2.6,
and we construct the block spin space M(�),℘ , its σ–algebra B(�),℘ and the measure
ν(�),℘ = ν(�) ◦ O�

℘ , with O�
℘ : M(�),℘ → M(�) the unpacking operator. The elements

of M(�) will be denoted by m, and by n those of M(�),℘ .

4.2. The constrained models. Let � be the size of the BAT transformation, see Sub-
sect. 2.6, and pick a configuration of renormalized variables and m ∈ M(�). We define
the single site constrained configuration space

X (�)
m,i := {

ζ ∈ X �
i : M

(�)
i (ζ ) = mi

} ⊂ X �
i (4.6)

which will be equipped with the discrete topology. For I ⊂ L(�) we consider the con-
strained configuration space X (�)

m,I := ⊗
i∈I X (�)

m,i ⊂ X �
I equipped with the product

topology; we remark that
⋃

m∈M(�) X (�)
m,I = X (�)

I . As usual we let X (�)

m,L(�) =: X (�)
m

and denote by F (�)
m the Borel σ–algebra of X (�)

m ; for each I ⊂⊂ L(�) we set F (�)
m,I :=

σ {ζi ∈ X (�)
m,i , i ∈ I } ⊂ F (�)

m . Finally, we consider the block spin potential U(1),� ≡ U�

constructed as in (4.3) starting from the lattice gas potential U(1) ≡ U = (z, U>1).
We consider, now, τ ∈ X � and emphasize that τ does not depend on the fixed m, in

the sense that it is chosen arbitrarily in a set not depending on m. Let I ⊂⊂ L(�), we
define the probability measure for the constrained model on I with boundary condition
τ as follows: for each ζ ∈ X (�)

m,I ,
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Table 1. Notation for the object, constrained and image model; in the table m ∈ M(�) is a given renor-
malized configuration, σ ∈ X and τ ∈ X (�) are fixed boundary conditions

object model constrained model image model
lattice � ⊂ L = Z

d I ⊂ L(�) = (�Z)d I ⊂ L(�) = (�Z)d

configuration space X� = {0, 1}� X (�)
m,I = ⊗

i∈I X (�)
m,i M(�) = ⊗

i∈I M(�)
i

σ–algebra F� F (�)
m,I B(�)

I

measure µσ
� µ

(�),τ
m,I ν

(�),τ
I

µ
(�),τ
m,I (ζ ) := 1

Z
(�)
m,I (τ )

eH
�
I (ζ τIc ),

where the Hamiltonian H�
I is defined as in (4.4) and the partition function Z

(�)
m,I (τ ) is

given by

Z
(�)
m,I (τ ) :=

∑

ζ∈X (�)
m,I

eH
�
I (ζ τIc ). (4.7)

Note that the function H�
I : X � → R can be evaluated in ζ τI c , indeed ζ ∈ X (�)

m,I ⊂ X (�)
I

and τ ∈ X � imply ζ τI c ∈ X �.
We remark that the function Z

(�)
m,I (·) ∈ F�

I c can be looked at as the partition function
of a not translationally invariant finite volume system which is the original lattice gas
constrained to have fixed values ρ|Q�| + mi

√|Q�|χ of the total number of particles in
each block Q�(i) for all i ∈ I . Its elementary variables are the original spin configura-
tions in each block Q�(i) compatible with the assigned value mi namely, the set X (�)

m,I

defined in (4.6). Finally we note that for each τ ∈ X � we have m �→ Z
(�)
m,I (τ ) ∈ B(�)

I .

The finite volume renormalized measure ν
(�),τ
I , introduced in Subsect. 2.6, which

is a probability measure on M(�)
I , can be written in the Gibbsian form w.r.t. to the

renormalized Hamiltonian given by logZ
(�)
m,I (τ ). Our aim will then be to compute the

partition function Z
(�)
m,I (τ ) for given m ∈ M(�). More precisely we are interested in

finding an expression for logZ
(�)
m,I (τ ) that allows to extract the renormalized potential

with a procedure having sense in the thermodynamics limit.

4.3. On goodness and badness. As mentioned at the end of Subsect. 4.1 technical rea-
sons, connected to the computation developed in Sect. 5 below, force the introduction
of the rougher scale ℘ = d�. We then pack the renormalized variables mi lying inside
cubes of L(�) of side length d to form a renormalized block spin nt , with t ∈ L(℘). More
precisely we consider the block spin space M(�),℘ , its σ–algebra B(�),℘ and the measure
ν(�),℘ = ν(�) ◦ O�

℘ , with O�
℘ : M(�),℘ → M(�) the unpacking operator.

We define, now, the good part of the lattice L(℘). We fix δ ∈ (0, 1/6) and n ∈ M(�),℘ ;
recall χ has been defined in (2.8), we set

L(℘)
δ (n) ≡ L(℘)

δ := {t ∈ L(℘) : |(O�
℘n)i | ≤ �d(1/6−δ)χ−1/2 for all i ∈ Q

(�)
℘/�(t)}.

(4.8)
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We say that a site t ∈ L(℘) is good w.r.t n ∈ M(�),℘ if t ∈ L(℘)
δ (n); if t is not good

we say it is bad. Loosely speaking a cube of side d� of the original lattice is good if
the empirical density in all its dd sub–cubes of side � differs from the infinite volume
mean ρ less than �−d(1/3+δ); this choice ensures the validity of the central limit theorem
inside the good blocks, see [1, Theorem 4.5].

4.4. On the goodness of good sites. As we have already discussed in Subsect. 2.8 our
strategy of proof consists in performing a cluster expansion, similar to the one used
in [1], in the good region of the lattice and to use the sparseness of the bad sites to carry
out the sum over the bad part of the lattice. In this subsection we deduce the property
of the good blocks that will enable us to cluster expand the partition function of the
constrained models in this region.

We recall that � is the scale of the renormalization transformation. Let i ∈ L(℘) and
k ∈ {1, . . . , d}; we denote by P i,k the family of all not empty subsets I ⊂ L(℘) such
that for each j ∈ I we have jk = ik and jh ∈ {ih − ℘, ih, ih + ℘} for all h = 1, . . . , d
and h �= k. We set

I± := ∂(℘)I ∩ {j ∈ L(℘) : jk = ik ± ℘}
and, for m ∈ M(�) and σ ∈ X �, σ± := σO�

℘I± and σ0 := σO�
℘(I+∪I−)c . Recall δ > 0

has been introduced in (4.8); given J ⊂ L(�) we set D(�)
δ (J ) := {m ∈ M(�) : |mj | ≤

�d(1/6−δ)χ−1/2, j ∈ J }.
Theorem 4.1. Let the lattice gas potential U satisfy Condition SM(�0, b, B). We have
that there exists a real C = C(δ, �0, b, B, ‖U‖0, r, d) < ∞ such that for each � multiple
of �0 and i ∈ L(℘) we have

sup
k=1,...,d

sup
I∈P i,k

sup
m∈D(�)

δ (O�
℘I)

sup
σ,ζ,τ∈X �

∣∣∣∣∣∣

Z
(�)

m,O�
℘I

(σ+σ−τ0) Z
(�)

m,O�
℘I

(ζ+ζ−τ0)

Z
(�)

m,O�
℘I

(σ+ζ−τ0) Z
(�)

m,O�
℘I

(ζ+σ−τ0)
−1

∣∣∣∣∣∣
≤ C

�
.

(4.9)

To prove the above theorem we shall use Lemma 4.2 below in which it is proven that
the strong mixing condition holds uniformly in the activity. To state precisely such a
property we introduce the notion of lattice gas with not homogeneous activity: consider
the configuration space X := {0, 1}L of the lattice gas, the Borel σ–algebra F , see
Subsect. 2.5, and the family of local functions U>1 = {UX ∈ FX, X ⊂⊂ L, |X| > 1}.
Let z := {zx ∈ [0,∞), x ∈ L}, the lattice gas potential with not homogeneous activity
is the family of functions Uz := {UX ∈ FX, X ⊂⊂ L} with

U
z

X(η) :=
{
ηx log zx if there exists x ∈ L such that X = {x}
UX(η) if |X| > 1

for all η ∈ X ; we shall use the notation Uz := (z, U>1). Given � ⊂⊂ L(�) and τ ∈ X ,
the finite volume Gibbs measure with boundary condition τ associated with the lattice gas
potential with not homogeneous activity Uz is denoted by µτ

�,z and the corresponding
partition function by Zτ

�,z. Namely, we have

Zτ
�,z :=

∑

η∈X�

exp
{ ∑

X∩� �=∅:
|X|>1

UX(ητ�c) +
∑

x∈�

ηx log zx

}
. (4.10)
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It is easy to see that by [13, 14], see Remark 2 in [1, p. 849], the following lemma,
stating that the strong mixing condition (2.7) is satisfied uniformly in the activities, holds.

Lemma 4.2. Let the lattice gas potential U = (z, U>1) satisfy Condition SM(�0, b, B).
Then there exist ε > 0, �′

0 multiple of �0, and two positive reals b′ = b′(ε, b, B, �0)

and B ′ = B ′(ε, b, B, �0) < ∞ such that for z = {zx ∈ [0,∞) : x ∈ L} such that
|zx − z| ≤ ε, for all x ∈ L, the lattice gas potential with not homogeneous activity
Uz = (z, U>1) satisfies SM(�′

0, b
′, B ′).

Proof of Theorem 4.1. Let µz be the unique infinite volume Gibbs measure of the lattice
gas with potential U = (z, U>1) and set � : (0,+∞) � z −→ �(z) := µz(η0) ∈ (0, 1).
Let ε > 0 be as in Lemma 4.2, by the continuity of � we can choose ε′ > 0 such
that �−1

(
�(z) − 2ε′, �(z) + 2ε′) ⊂ [z − ε, z + ε]. The thesis follows by Lemma 4.2

and [1, Prop. 5.1]. ��
4.5. On the sparseness of bad sites. In this subsection we state precisely in which sense
the bad sites in L(℘) are sparse. We define the map π : M(�),℘ → {0, 1}L(℘)

by setting
for each n ∈ M(�),℘ and t ∈ L(℘),

(
π(n)

)
t

:=
{

0 if t ∈ L(℘)
δ (n)

1 otherwise
. (4.11)

As a first step we show that the probability that a site is bad is exponentially small in �.

Theorem 4.3. Let the lattice gas potentialU = (z, U>1) satisfy Condition SM(�0, b, B).
Then there exists a real C = C(ε, �0, b, B) > 0 such that for any positive integer � we
have that

sup
t∈L(℘)

ν(�),℘((π(n))t = 1) ≤ exp{−C�(1/3−2δ)d}. (4.12)

Proof. We have

sup
t∈L(℘)

ν(�),℘((π(n))t = 1) = sup
t∈L(℘)

ν(�)
(∃i ∈ Q

(�)
℘/�(t) : |mi | > �d(1/6−δ)χ−1/2)

≤ dd sup
i∈L(�)

µ
(|M(�)

i | > �d(1/6−δ)χ−1/2).

We pick i ∈ L(�). To bound the right hand side of the above inequality, we recall (2.11),
consider L > � integer, set �L(i) := {x ∈ L : d(x,Q�(i)) ≤ L}, and use the exponen-
tial Chebyshev inequality, with h ≥ 0, as follows

µ
(
M

(�)
i > �d(1/6−δ)χ−1/2)= µ

( ∑

x∈Q�(i)

(ηx − ρ) > �(2/3−δ)d
)

≤ e−h�(2/3−δ)d

µ
(

exp
{
h

∑

x∈Q�(i)

(ηx − ρ)
})

= e−h�(2/3−δ)d

∫
µ(dτ) µτ

�L(i)

(
exp

{
h

∑

x∈Q�(i)

(ηx − ρ)
})

= e−h�(2/3−δ)d

∫
µ(dτ) exp

{
logZτ

�L(i),z(i,h)
− logZτ

�L(i),z(i,0) − hρ�d
}
,

(4.13)

where we used the DLR equations (2.6) and, for τ ∈ X and� ⊂⊂ L, we have considered
the partition function
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Zτ
�,z(i,h) =

∑

η∈X�

exp
{
H�(ητ�c) + h

∑

x∈�∩Q�(i)

ηx

}
(4.14)

of a lattice gas with not homogeneous activity z(i, h) such that zx(i, h) = zeh for all
x ∈ Q�(i) and zx(i, h) = z otherwise; recall z is the activity of the original lattice gas.
Note that Zτ

�,z(i,0) coincides with the partition function Zτ
� of the original lattice gas.

From the strong mixing condition SM(�0, b, B) it follows that there exist two positive
reals C1(�0, b, B) < ∞ and C2(�0, b, B) > 0 such that for any L multiple of �0 and
τ ∈ X we have

∣∣∣∣

(d logZτ
�L(i),z(i,h)

dh

)

h=0
− ρ�d

∣∣∣∣ =
∣∣∣∣µ

τ
�L(i)

( ∑

x∈Q�(i)

ηx

)
− µ

( ∑

x∈Q�(i)

ηx

)∣∣∣∣

≤ C1 �d e−C2(L−�). (4.15)

By Lemma 4.2 there exist ε > 0, �′
0 multiple of �0, and the two reals b′ = b′(ε, b, B, �0)

and B ′ = B ′(ε, b, B, �0) such that the perturbed lattice gas potential satisfies SM(�′
0, b

′,
B ′) for all 0 ≤ h ≤ ε. Hence, if L is a multiple of �′

0 we have that there exists a real
0 < C3 = C3(ε, �0, b, B) < ∞ such that for any h ∈ [0, ε] and τ ∈ X the following
bound holds

∣∣∣∣
d2 logZτ

�L(i),z(i,h)

dh2

∣∣∣∣ =
∣∣∣∣

∑

x,y∈Q�(i)

µτ
�L(i),z(i,h)

(ηx; ηy)

∣∣∣∣ ≤ 2C3 �d, (4.16)

where we recall µτ
�,z, for � ⊂⊂ L and z ∈ [0,∞)L, is the finite volume Gibbs measure

of the lattice gas with not homogeneous activity z and boundary condition τ ∈ X . By
expanding the exponent on the right hand side of (4.13) and using (4.15) and (4.16) we
get

µ
(
M

(�)
i > �d(1/6−δ)χ−1/2) ≤ exp{−h�(2/3−δ)d + C1 �d e−C2(L−�) + h2C3 �d}.

(4.17)

Taking the limit L → ∞ we finally get

µ
(
M

(�)
i > �d(1/6−δ)χ−1/2) ≤ exp{−h(�(2/3−δ)d − hC3 �d)}. (4.18)

The bound (4.12) follows by choosing h = �−(1/3+δ)d/(2C3); indeed the steps in (4.13)
can be repeated to bound µ

(
M

(�)
i < −�d(1/6−δ)χ−1/2

)
. ��

In Theorem 4.4 below we shall state that the bad sites of L(℘) are sparse in the fol-
lowing sense. There exists a full measure subset of M(�),℘ , such that for each n in such a
set there exists a gentle disintegration, see Definition 3.2, of the lattice L(℘) with respect
to its good part L(℘)

δ and two suitable moderately steep scales �, γ . The two sequences
are chosen as in [2, Remark 2.3] namely, given β ≥ 9 we set �0 = γ0 := 0,

�k := e(β+1)(3/2)k and γk := 1

8
eβ(3/2)k+1

for k ≥ 1. (4.19)

Those sequences are steep scales namely, they satisfy Items 1–3 in Definition 3.1. More-
over, see the remark below Theorem 2.5 in [2], we choose β large enough so that the
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supplementary conditions on the steep scales in the hypotheses of [2, Theorem 2.5] are
satisfied with α = 1. It is easy to prove that for

ε ∈ (1/2, 1) and a ≥ 9dβ/2 (4.20)

the steep scales �, γ are moderate namely, they also fulfill Items 4–5 in Definition 3.1.
The conditions above on β and a are met for � integer large enough if we set

a ≡ aδ(�) := 9

2
d
[
β ∨ �(1/3−2δ)d/2], (4.21)

where δ ∈ (0, 1/6) is the real number which has been picked up before (4.8) to define
the good part of the lattice L(℘).

In order to prove Theorem 2.2, we had to choose the parameter a diverging with
the renormalization scale �. In fact we shall need that the probability that a site of L(℘)

belongs to a k–gentle atom vanishes fast enough as � → ∞. On the other hand the
existence of the gentle disintegration of L(℘) is proven on the basis of Theorem 3.3
whose hypotheses are satisfied if the probability p for a site to be bad is smaller than
exp{−a/(1−ε)}. In our application this probability is estimated with the stretched expo-
nential in (4.12); to ensure that for � large enough p is smaller than exp{−a/(1− ε)} the
function aδ(�) must diverge sufficiently slow. The choice (4.21) meets both the above
requirements.

Theorem 4.4. Let the lattice gas potential U satisfy Condition SM(�0, b, B). Consider
the two moderately steep scales �, γ defined in (4.19).

Then for each � large enough multiple of �0 there exists a B(�),℘–measurable subset
M̄(�),℘ ⊂ M(�),℘ with ν(�),℘(M̄(�),℘) = 1 such that

1. For each n ∈ M̄(�),℘ there exists a gentle disintegration G(n), see Definition 3.2, of
L(℘) with respect to G0(n) := L(℘)

δ (n), �, and γ .

2. For each t ∈ L(℘) and X ⊂⊂ L(℘) we have that {n : Gk(n) � t} ∈ B(�),℘

B
(℘)
ϑk

(t)
and also

{n : Gk(n) � X} ∈ B(�),℘

B
(℘)
ϑk

(X)
.

Proof. We use the setup of Sect. 3 with L = ℘−1L(℘). Recall the map π : M(�),℘ →
{0, 1}L(℘)

has been defined in (4.11). Note that for each x, y ∈ L we have

D(x, y) =
d∑

i=1

|xi − yi | ≤ d sup
i∈{1,...,d}

|xi − yi | = (d/℘)d℘(℘x,℘y).

From Condition SM(�0, b, B) it follows that the measure Q := ν(�),℘ ◦ π−1 on the
set � := {0, 1}L(℘)

, endowed with its Borel σ–algebra A, satisfies the bound (3.2) with
constants b′′ = ℘b/d and B ′′ = ℘dB. By taking � large enough the scales �, γ in (4.19)
satisfy (3.4). Moreover by Theorem 4.3,

p := sup
t∈L(℘)

Q ({ω : ωt = 1}) = sup
t∈L(℘)

ν(�),℘ ({n : (π(n))t = 1}) ≤ e−C�(1/3−2δ)d
.

We can therefore apply Theorem 3.3, we set M̄(�),℘ := π−1(�̄). The thesis follows by
noticing that for each X ⊂ L(℘) we have B

(℘)
s ⊃ ℘Os(℘

−1X) for all s > 0. ��
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5. Cluster Expansion in the Good Part of the Lattice

In this section we start to compute the renormalized potentials; our main technique, as
in [1], will be the scale adapted cluster expansion.

Let �be the renormalization scale, recall℘ = d�; form ∈ M(�) the setL(℘)
δ (O℘

� m) ≡
L(℘)

δ ⊂ L(℘) has been defined in (4.8). Pick � ⊂⊂ L(℘), a configuration of the ren-
ormalized variables m ∈ M(�), and a boundary condition τ ∈ X �; set J := O�

℘�,

�δ := � ∩ L(℘)
δ and Jδ := O�

℘�δ . We write

Z
(�)
m,J (τ ) =

∑

η∈X (�)
m,J

exp{H�
J (ητJ c)} =

∑

σ∈X (�)
m,J\Jδ

∑

η∈X (�)
m,Jδ

exp{H�
J (σητJ c)}.

In this section we fix σ ∈ X (�)
m,J\Jδ and compute the partition function associated to the

good part Jδ of the set J namely, we compute

Z
(�)
m,Jδ

(στJ c) =
∑

η∈X (�)
m,Jδ

exp{H�
Jδ
(ηστJ c)}. (5.1)

We rewrite this problem on the scale ℘, that is we apply the procedure described
in Subsect. 4.1 to the constrained models introduced in Subsect. 4.2 on the scale � to
group the block spin variables on the scale ℘. We fix a configuration n ∈ M(�),℘ , the
corresponding renormalized configuration is m ≡ m(n) := O�

℘n. We recall the notion

of constrained model defined on the configuration space X (�)
m and, via the procedure

discussed in Subsect. 4.1, we construct the configuration space X (�),℘
m and its σ–algebra

F (�),℘
m ; for � ⊂⊂ L(℘) we set F (�),℘

m,� := {ζi ∈ X (�),℘

m,i , i ∈ �} ⊂ F (�),℘
m .

Finally we consider the potential U(1),�,℘ ≡ U�,℘ , obtained by applying the proce-
dure in Subsect. 4.1 to the original lattice gas potential introduced in Subsect. 2.5, and,
given � ⊂⊂ L(℘), we consider the Hamiltonian H

�,℘
� and the self–interaction E

�,℘
� ; we

obviously have that for each ζ ∈ X �,℘ ,

H
�,℘
� (ζ ) = H�

O�
℘�

(O�
℘ζ ) = HO�O�

℘�(O�O�
℘ζ ).

For � ⊂⊂ L(℘) we can then write the finite volume Gibbs measure with boundary
condition ξ ∈ X �,℘ as

µ
(�),℘,ξ
m,� (ζ ) := 1

Z
(�),℘
m,� (ξ)

eH
�,℘
� (ζξ�c ), ζ ∈ X (�),℘

m,� .

The partition function above is given by

Z
(�),℘
m,� (ξ) :=

∑

ζ∈X (�),℘
m,�

eH
�,℘
� (ζξ�c ). (5.2)

Note that the boundary condition ξ ∈ X (�),℘ is chosen independently of the renormalized
configuration m. We have that Z(�),℘

m,� (·) ∈ F�,℘
�c and m �→ Z

(�),℘
m,� (ξ) ∈ B(�),℘

� .

It is easy to show that Z(�)
m,Jδ

(στJ c) = Z
(�),℘
m,�δ

(O℘

� (στJ c)). In the following theorem

we shall denote by ξ := O℘

�

(
στJ c

)
the block spin configuration outside �δ = �∩L(℘)

δ .
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Theorem 5.1. Let the lattice gas potential U satisfy Condition SM(�0, b, B). Then for
each � a large enough multiple of �0, n ∈ M(�),℘ , and � ⊂⊂ L(℘) there exist a family
of local functions

{
V

(�),℘

X,� (·, n) : X �,℘ → R, X ⊂⊂ L(℘)
}
, a real K(℘)

� , and an integer
κ such that

1. for any ξ ∈ X �,℘ we have the absolutely convergent expansion

logZ
(�),℘

O�
℘n,�δ

(ξ) = K
(℘)
� − 1

2

∑

i∈O�
℘�

(O�
℘n)

2
i +

∑

X⊂⊂L(℘):
X∩� �=∅

V
(�),℘

X,� (ξ, n), (5.3)

whereV (�),℘

X,� (·, n) is constant ifX∩�δ = ∅; moreover,V (�),℘

X,� (·, n) = 0 ifX∩�δ = ∅
and diam℘(X) > κ .

For any X ⊂⊂ L(℘)

2. we have that V (�),℘

X,� (·, n) ∈ F�,℘

X∩�c
δ
;

3. if X is not ℘–connected then V
(�),℘

X,� (·, n) = 0;

4. if X ∩ �δ �= ∅ we have that X ∩ (�δ
(℘),κ)c �= ∅ implies V

(�),℘

X,� (·, n) = 0.

Moreover

5. there exist reals α1 > 0 and A1 < ∞ depending on �0, b, B, ‖U‖, r , d, and δ such
that we have

sup
x∈L(℘)

∑

X⊂⊂L(℘):
X�x

eα�T℘(X) sup
�⊂⊂L(℘)

‖V (�),℘

X,� (·, n)‖∞ ≤ A�, (5.4)

where we have set α� := α1 log(e�) and A� := A1 �(κ+1)dα1+d ;
6. we have that

lim
�→∞

sup
�⊂⊂L(℘)

sup
X⊂�

sup
n∈M(�),℘ :

L(℘)
δ

(n)⊃X

‖V (�),℘

X,� (·, n)‖∞ = 0, (5.5)

where the limit is taken along a sequence of multiples of �0;
7. for any �,�′ ⊂⊂ L(℘) and X ⊂⊂ L(℘) if X ∩ � = X ∩ �′ then V

(�),℘

X,� (·, n) =
V

(�),℘

X,�′ (·, n);
8. let X,� ⊂⊂ L(℘) and n, n′ ∈ M(�),℘ such that nX = n′

X, then

V
(�),℘

X,� (·, n) = V
(�),℘

X,� (·, n′). (5.6)

We have a situation very similar to the one in [1] where we considered the case of
a torus; the sole difference is that, now, �δ is an arbitrary finite subset of L(℘), hence
its boundary can be geometrically complicated. To simplify the exposition, like in [1],
we will treat explicitly only the two–dimensional case. The general d–dimensional case
can be treated analogously, following the methods of [28]. We mention that a similar
expansion has been used in [4] to study coupled maps.
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As in [1] we will transform the constrained system, whose partition function is
Z

(�),℘
m,�δ

(ξ), into a small activity polymer system. More precisely, we shall prove the
following formula

Z
(�),℘
m,�δ

(ξ) = Z̄
(�),℘
m,�δ

(ξ)!
(�),℘
m,�δ

(ξ), (5.7)

where Z̄
(�),℘
m,�δ

(ξ) is a product of partition functions on suitable finite volumes; the depen-
dence on m of the single factors is local. Moreover, the reference system around which
we perform the perturbative expansion is described by the partition function Z̄

(�),℘
m,�δ

(ξ).

On the other hand !
(�),℘
m,�δ

(ξ) is the partition function of a gas of polymers, see (5.43)
below.

The expression (5.7) is well suited to compute the renormalized potentials; in order to
get good estimates on them we need that the polymer system described by !

(�),℘
m,�δ

(ξ) is
in the small activity region thanks to the uniform bound in Theorem 4.1. In other words,
the bound (4.9) implies that the finite size condition of [28] is satisfied on �δ . More
precisely, recalling the notation introduced in Subsect. 4.4, there exists a real C < ∞
depending on �0, b, B, ‖U‖0, r , d , and δ such that for � multiple of �0, m ∈ M(�), and
i ∈ L(℘) we have

sup
k=1,...,d

sup
I∈P i,k

sup
σ,ζ,τ∈X �,℘

∣∣∣∣∣∣∣

Z
(�),℘

m,I∩L(℘)
δ

(σ+σ−τ0) Z
(�),℘

m,I∩L(℘)
δ

(ζ+ζ−τ0)

Z
(�),℘

m,I∩L(℘)
δ

(σ+ζ−τ0) Z
(�),℘

m,I∩L(℘)
δ

(ζ+σ−τ0)
− 1

∣∣∣∣∣∣∣
≤ C

�
.

(5.8)

We start, now, the computation yielding the expansion (5.7). We pick � ⊂⊂ L(℘) and
n ∈ M(�),℘ ; to simplify the notation we set m = O�

℘n and � := �δ = � ∩ L(℘)
δ (n).

Recall e
(℘)
1 = (℘, 0) and e

(℘)
2 = (0, ℘); we partition L(℘) into the four sub–lattices

A := L(2℘), B := L(2℘) + e
(℘)
2 , C := L(2℘) + e

(℘)
1 + e

(℘)
2 , and D := L(2℘) + e

(℘)
1 .

We label the points in those sub–lattices by k ∈ L(2℘) as follows: Ak := k ∈ A, Bk :=
k+e

(℘)
2 ∈ B, Ck := k+e

(℘)
1 +e

(℘)
2 = Bk +e

(℘)
1 ∈ C, Dk := k+e

(℘)
1 = Ck −e

(℘)
2 ∈ D.

It is useful, here and in the sequel, to think of e(℘)
1 as horizontal and as e

(℘)
2 as vertical.

Recalling definition (4.4) for ξ ∈ X �,℘ , x ∈ L(℘) we define the function E
�,℘

x;�(·|ξ) :

X �,℘ → R as

E
�,℘

x;�(η|ξ) :=






E
�,℘

{x} (η) if x ∈ �

0 if x �∈ � and ηx = ξx

−∞ if x �∈ � and ηx �= ξx

, (5.9)

where we recall that by E
�,℘

{x} we mean E
(1),�,℘
{x} , see the discussion below (4.5). We shall

understand, below, exp{−∞} = 0. We have that E�,℘

x;�(·|ξ) ∈ F�,℘

{x} ; we notice here that

in the following we will sometimes misuse the notation and write E
�,℘

x;�(ηx |ξ) instead

of E�,℘

x;�(η|ξ). We define the interaction W̃
�,℘

X1,X2
: X �,℘ → R between two disjoint sets

X1, X2 ⊂⊂ L(℘) by setting

W̃
�,℘

X1,X2
:= E

�,℘

X1∪X2
− E

�,℘

X1
− E

�,℘

X2
. (5.10)
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Notice that W̃ �,℘

X1,X2
∈ F�,℘

X1∪X2
. For x ∈ L(℘) we define the function W

�,℘

x;� : X �,℘ → R

by setting

W
�,℘

x;� :=






0 if x �∈ �

W̃
�,℘

{x},A∪B∪C if x ∈ � ∩ D
W̃

�,℘

{x},A∪B∪(D∩�c)
if x ∈ � ∩ C

W̃
�,℘

{x},A∪[(C∪D)∩�c] if x ∈ � ∩ B
W̃

�,℘

{x},(B∪C∪D)∩�c if x ∈ � ∩ A

. (5.11)

By using definitions (5.9), (5.11), and choosing � large enough such that ℘ = d� > r

(recall r is the range of the original interaction, so that the block spin interaction has
range one), we have that for η, ξ ∈ X �,℘ , such that η�c = ξ�c ,

H
�,℘
� (η) =

∑

k∈L(2℘)

[
E

�,℘

Ak
(η|ξ) + W

�,℘

Ak;�(η) + E
�,℘

Bk
(η|ξ) + W

�,℘

Bk;�(η)

+ E
�,℘

Ck
(η|ξ) + W

�,℘

Ck;�(η) + E
�,℘

Dk
(η|ξ) + W

�,℘

Dk;�(η)
]
.

(5.12)

For V ⊂ L(℘) we introduce the set

Y(�),℘

�,m,V :=
⊗

x∈�∩V

X (�),℘

m,{x} ⊗
⊗

x∈�c∩V

X �,℘

{x} (5.13)

as usual if V = L(℘) we drop it from the notation. Hence, we have that for ξ ∈ X �,℘

the partition function in � can be written in the following way:

Z
(�),℘
m,� (ξ) =

∑

η∈X (�),℘
m,�

exp
{
H

�,℘
� (ηξ�c)

}

=
∑

α∈Y(�),℘

�,m,A

( ∏

k∈L(2℘)

exp
{
E

�,℘

Ak;�(αAk
|ξ) + W

�,℘

Ak;�(αξB∪C∪D)
})

×
∑

β∈Y(�),℘

�,m,B

( ∏

k∈L(2℘)

exp
{
E

�,℘

Bk;�(βBk
|ξ) + W

�,℘

Bk;�(αβξC∪D)
})

×
∑

γ∈Y(�),℘

�,m,C

( ∏

k∈L(2℘)

exp
{
E

�,℘

Ck;�(γCk
|ξ) + W

�,℘

Ck;�(αβγ ξD)
})

×
∑

δ∈Y(�),℘

�,m,D

( ∏

k∈L(2℘)

exp
{
E

�,℘

Dk;�(δDk
|ξ) + W

�,℘

Dk;�(αβγ δ)
})

. (5.14)

Notice that although the sum defining the partition function is extended to the volume
�, it is convenient, for practical reasons, to consider the sums extended to the whole
lattice L(℘). This has been realized in the last step of (5.14) via the definition (5.9) of
the function E

(�),℘

x;� .
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In order to get (5.7) we perform a sequence of decimations; we fix ξ and sum over
δ, γ , β, and, finally, α following this prescribed order. At each decimation step, we
perform three operations, called unfolding, splitting and gluing, which will show that
the system of variables corresponding to the sub–lattice involved in the decimation is
weakly coupled. This weak coupling is a consequence of the factorization properties of
the partition functions on suitable finite volumes which follow from (5.8).

We pick a reference configuration η̄ ∈ X �,℘ and let ξ̄ := η̄�ξ�c . By computing the
last sum for δ ∈ Y(�),℘

�,m,D in (5.14) and recalling ℘ > r , we get

∑

δ∈Y(�),℘

�,m,D

∏

k∈L(2℘)

exp
{
E

�,℘

Dk;�(δDk
|ξ) + W

�,℘

Dk;�(αβγ δ)
} =

∏

k∈L(2℘)

Z
(�),℘

m,{Dk}∩�(αβγ ξ̄D),

(5.15)

where from now on we understand Z
(�),℘

m,∅ = 1. We also note that Z(�),℘

m,{Dk}∩� depends

only on the block spin configuration in the boundary of {Dk} ∩� namely, Z(�),℘

m,{Dk}∩� ∈
F (�),℘

∂(℘)[{Dk}∩�]
, in particular it does not depend on ξ̄D. Finally we note that by definition

(5.9), when (5.15) is plugged into (5.14), the function Z
(�),℘

m,{Dk}∩�(·) will be evaluated in

the configuration (αβγ )�ξ̄�c∪D.
Given Dk ∈ D we denote by (βγ )u, resp. (βγ )d, the restriction of the configura-

tion βγ to the half–space above, resp. below, Dk . We now unfold the partition function
Z

(�),℘

m,{Dk}∩� in the e
(℘)
2 direction namely, we write

Z
(�),℘

m,{Dk}∩�(αβγ ξ̄D) = Z
(�),℘

m,{Dk}∩�(α(βγ )u(βγ )d ξ̄D)

=
Z

(�),℘

m,{Dk}∩�(α(βγ )u(ξ̄B∪C)d ξ̄D) Z
(�),℘

m,{Dk}∩�(α(βγ )d(ξ̄B∪C)uξ̄D)

Z
(�),℘

m,{Dk}∩�(αξ̄B∪C∪D)

×[1 + �Dk
(αβγ, ξ̄ )

]
, (5.16)

where, recall ξ̄ = η̄�ξ�c , we have defined the function �Dk
: X �,℘

A∪B∪C × X �,℘ → R

as follows

�Dk
(αβγ, ξ) :=

Z
(�),℘

m,{Dk}∩�(α(βγ )u(βγ )d ξ̄D) Z
(�),℘

m,{Dk}∩�(αξ̄B∪C∪D)

Z
(�),℘

m,{Dk}∩�(α(βγ )u(ξ̄B∪C)d ξ̄D) Z
(�),℘

m,{Dk}∩�(α(βγ )d(ξ̄B∪C)uξ̄D)
−1,

(5.17)

which can be considered as an effective interaction potential among the α,β,γ –variables
due to the decimation on δ. To simplify the notation we do not make explicit the para-
metric dependence of �Dk

on ℘, �, and m. From the measurability properties of the

partition function Z
(�),℘

m,{Dk}∩� we get

�Dk
(·, ξ) ∈ F�,℘

∂(℘){Dk}∩(A∪B∪C)
= F�,℘

∂(℘){Dk} and �Dk
(αβγ, ·) ∈ F�,℘

∂(℘){Dk}∩�c

(5.18)

for all α ∈ X �,℘

A , β ∈ X �,℘

B , γ ∈ X �,℘

C , and ξ ∈ X �,℘ , where we recall the definition
of boundary given in Subsect. 2.1. The bound (5.8) implies that �Dk

, as well as similar
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effective interactions that will be defined later on, is uniformly small. We note, finally,
that �Dk

= 0 if {Dk} ∩ � = ∅.

We next split the product of the numerator in (5.16) in the e
(℘)
2 direction namely, we

write∏

k∈L(2℘)

Z
(�),℘

m,{Dk}∩�(α(βγ )u(ξ̄B∪C)d ξ̄D) Z
(�),℘

m,{Dk}∩�(α(βγ )d(ξ̄B∪C)uξ̄D)

=
∏

k∈L(2℘)

Z
(�),℘

m,{Dk}∩�(α(βγ )u(ξ̄B∪C)d ξ̄D) Z
(�),℘

m,{Dk+e
(2℘)
2 }∩�

(α(βγ )d(ξ̄B∪C)uξ̄D).

(5.19)

By (5.15), (5.16) and (5.19) we have that
∑

γ∈Y(�),℘

�,m,C

∏

k∈L(2℘)

e
E

�,℘

Ck ;�(γCk
|ξ)+W

�,℘

Ck ;�(αβγ ξD)
∑

δ∈Y(�),℘

�,m,D

∏

k∈L(2℘)

e
E

�,℘

Dk ;�(δDk
|ξ)+W

�,℘

Dk ;�(αβγ δ)

=
∏

k∈L(℘)

Z
(�),℘

m,{Dk}∩�(αξ̄B∪C∪D)−1

×
∑

γ∈Y(�),℘

�,m,C

∏

k∈L(2℘)

[
e
E

�,℘

Ck ;�(γCk
|ξ)+W

�,℘

Ck ;�(αβγ ξD)
(1 + �Dk

(αβγ, ξ̄ ))

×Z
(�),℘

m,{Dk}∩�(α(βγ )u(ξ̄B∪C)d ξ̄D)Z
(�),℘

m,{Dk+e
(2℘)
2 }∩�

(α(βγ )d(ξ̄B∪C)uξ̄D)
]

=
[ ∏

k∈L(℘)

Z
(�),℘

m,C̃k∩�
((αβ)∂(℘){Ck}∩(A∪B)ξ̄[∂(℘){Ck}∩(A∪B)]c)

Z
(�),℘

m,{Dk}∩�(αξ̄B∪C∪D)

]

×
∑

γ∈Y(�),℘

�,m,C

νC(γ |αβ, ξ̄ )
∏

k∈L(℘)

(1 + �Dk
(αβγ, ξ̄ )), (5.20)

where we have defined C̃k := {Dk + e
(2℘)
2 , Ck,Dk} ⊂ L(℘), see Fig. 2 below, and

introduced the product measure

νC(γ |αβ, ξ̄ ) :=
∏

k∈L(2℘)

νCk
(γCk

|αβ, ξ̄ ) (5.21)

with

νCk
(γCk

|αβ, ξ̄D) := exp
{
E

�,℘

Ck;�(γCk
|ξ) + W

�,℘

Ck;�(αβγ ξD)
}

×
Z

(�),℘

m,{Dk}∩�(α(βγ )u(ξ̄B∪C)d ξ̄D) Z
(�),℘

m,{Dk+e
(2℘)
2 }∩�

(α(βγ )d(ξ̄B∪C)uξ̄D)

Z
(�),℘

m,C̃k∩�
((αβ)∂(℘){Ck}∩(A∪B)ξ̄[∂(℘){Ck}∩(A∪B)]c)

.

(5.22)

To simplify the notation we do not make explicit the parametric dependence of νCk
on

℘, �, and m. The definition above is well posed because the right-hand side depends
on the configuration γ only through its restriction to Ck . Recalling ℘ > r we have
that Z(�),℘

m,C̃k∩�
∈ F�,℘

∂(℘)[C̃k∩�]
, moreover by using definitions (5.22), (5.9), (5.11), and the

properties of measurability of the partition function Z
(�),℘

m,{Dk}∩� we get
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νCk
(γCk

|·, ξ) ∈ F�,℘

∂(℘){Ck}∩(A∪B)
and νCk

(γCk
|αβ, ·) ∈ F�,℘

{Ck}(℘),2∩�c
(5.23)

for all α ∈ X �,℘

A , β ∈ X �,℘

B , γ ∈ X �,℘

C , and ξ ∈ X �,℘
m . Moreover, we remark that νCk

is

a probability measure on Y(�),℘

�,m,{Ck} since the gluing identity

Z
(�),℘

m,C̃k∩�
((αβ)∂(℘){Ck}∩(A∪B)ξ̄[∂(℘){Ck}∩(A∪B)]c)

=
∑

γCk
∈Y(�),℘

�,m,Ck

exp
{
E

�,℘

Ck;�(γCk
|ξ) + W

�,℘

Ck;�(αβγ ξD)
}

× Z
(�),℘

m,{Dk}∩�(α(βγ )u(ξ̄B∪C)d ξ̄D) Z
(�),℘

m,{Dk+e
(2℘)
2 }∩�

(α(βγ )d(ξ̄B∪C)uξ̄D)

(5.24)

holds. We finally remark that νCk
(γCk

|αβ, ξ̄D) = 1I{γCk
=ξ̄Ck

} whenever Ck �∈ �.
By following the procedure of [1], with the modifications illustrated above, we

straightforwardly get (5.7) with

Z̄
(�),℘
m,� (ξ) :=

∏

k∈L(2℘)

Z
(�),℘

m,Ãk∩�
(ξ̄ ) Z

(�),℘

m,{Dk}∩�(ξ̄ )

Z
(�),℘

m,Fk∩�(ξ̄ ) Z
(�),℘

m,C̃k∩�
(ξ̄ )

, (5.25)

where Fk := {Ck − e
(2℘)
1 , Bk, Ck} and Ãk := {Ak} ∪ ∂(2℘){Ak}, see Fig. 2, and

!
(�),℘
m,� (ξ) :=

∑

α∈Y(�),℘

�,m,A

∏

k∈L(2℘)

νAk
(αAk

|ξ̄ ) (1 + �Dk
(α, ξ̄ )

)(
1 + �Ak

(α, ξ̄ )
)

×(1 + �Bk
(α, ξ̄ )

)

×
∑

β∈Y(�),℘

�,m,B

∏

k∈L(2℘)

νBk
(βBk

|α, ξ̄ ) (1 + �Ck
(αβ, ξ̄ )

)

×
∑

γ∈Y(�),℘

�,m,C

∏

k∈L(2℘)

νCk
(γCk

|αβ, ξ̄ ) (1 + �Dk
(αβγ, ξ̄ )

)
, (5.26)

where the �’s and �’s are error terms similar to the one explicitly defined in (5.17),
and each νx is a probability measure on Y(�),℘

�,m,{x}, for x ∈ A ∪ B ∪ C, similar to the one
in (5.22). All these functions can be defined as in [1], we do not enter here into these
details, we just recall their measurability properties. For each α ∈ X �,℘

A , β ∈ X �,℘

B ,

γ ∈ X �,℘

C , and ξ ∈ X �,℘ we have

�Ck
(·, ξ) ∈ F�,℘

∂(℘){Ck}∩(A∪B)
, �Ck

(αβ, ·) ∈ F�,℘

{Ck}(℘),2∩�c
, �Bk

(·, ξ) ∈ F�,℘

∂(℘){Bk}∩A,

�Bk
(α, ·) ∈ F�,℘

{Bk}(℘),2∩�c
, �Dk

(·, ξ) ∈ F�,℘

∂(℘){Dk}∩A, �Dk
(α, ·) ∈ F�,℘

{Dk}(℘)∩�c
,

�Ak
(·, ξ) ∈ F�,℘

Ak
, �Ak

(α, ·) ∈ F�,℘

{Ak}(℘),2∩�c
,

(5.27)
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and

νBk
(βBk

|·, ξ) ∈ F�,℘

∂(℘){Bk}∩A, νBk
(βBk

|α, ·) ∈ F�,℘

{Bk}(℘),2∩�c
and νAk

(αAk
|·)

∈ F�,℘

{Ak}(℘),2∩�c
. (5.28)

We also set

νB(β|ξ) :=
∏

B∈B
νB(βB |α, ξ) and νA(α|ξ) :=

∏

A∈A
νA(αA|ξ) (5.29)

for all α ∈ X �,℘

A , β ∈ X �,℘

B , and ξ ∈ X �,℘ .

We next rewrite the functions Z̄
(�),℘
m,� and !

(�),℘
m,� having in mind that our goal is the

definition of the family {V (�),℘

X,� , X ⊂⊂ L(℘)} whose existence has been stated in the

theorem. We first define the collection of subsets of the lattice L(℘)

G :=
⋃

k∈L(2℘)

{{Dk}, C̃k, Fk, Ãk} (5.30)

and for all k ∈ L(2℘) we set

g({Dk}) = +1, g(Ãk) = +1, g(Fk) = −1, and g(C̃k) = −1. (5.31)

From (5.25) we then have

log Z̄
(�),℘
m,� (ξ) =

∑

G∈G
g(G) logZ

(�),℘

m,G∩�(ξ̄ ). (5.32)

Recalling that we always understand Z
(�),℘

m,∅ = 1 and that � is a finite subset of the lattice

L(℘), we have that the sum in (5.32) has indeed a finite number of terms. We prove, now,
that

∑

i∈O�
℘Y

1

2
m2

i =
∑

G∈G
g(G)

∑

i∈O�
℘(G∩Y )

1

2
m2

i (5.33)

for all Y ⊂ L(℘). Indeed, we first remark that

∑

G∈G
g(G)

∑

i∈O�
℘(G∩Y )

1

2
m2

i =
∑

i∈O�
℘Y

1

2
m2

i

∑

G∈G: O�
℘G�i

g(G). (5.34)

The identity (5.33) follows from (5.34) once we prove that
∑

G∈G: O�
℘G�i g(G) = +1 for

each i ∈ L(�). Pick i ∈ L(�) and suppose there exists k′ ∈ L(2℘) such that i ∈ O�
℘{Dk′ }.

The only G’s of G such that O�
℘G � i are Ãk′ , Ã

k′+e
(2℘)
1

, C̃k′ , C̃
k′−e

(2℘)
2

, and {Dk′ }, see

Fig. 2. Then
∑

G∈G: O�
℘G�i

g(G) = g(Ãk′) + g(Ã
k′+e

(2℘)
1

) + g(C̃k′) + g(C̃
k′−e

(2℘)
2

) + g({Dk′ }) = +1,
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�

�

�

�

�

�

�

�

�

Ak

Bk Ck

Dk

B
k−e

(2℘)
2

C
k−e

(2℘)
2

C
k−e

(2℘)
1 −e

(2℘)
2

D
k−e

(2℘)
1

C
k−e

(2℘)
1

�

�

�
D

k+e
(2℘)
2

Ck

Dk

� � �CkBk

C
k−e

(2℘)
1 �Dk

Fig. 2. From the left to the right the sets Ãk, C̃k, Fk, {Dk} ⊂ L(℘) are depicted for some k ∈ L(2℘).
Solid circles denote the sites belonging to those subsets; intersections of lines represent sites in L(℘)

where in the last equality we have used (5.31). The other three cases, where i ∈ O�
℘{Ak′ },

i ∈ O�
℘{Bk′ }, or i ∈ O�

℘{Ck′ } for a suitable k′ ∈ L(2℘), can be treated similarly.
We recall that µτ

X, for X ⊂⊂ L, is the finite volume (grancanonical) Gibbs measure
of the original lattice gas, see Subsect. 2.5, χ is the infinite volume compressibility
defined in (2.8), and that for i ∈ L(�) the function M

(�)
i is defined in (2.11). Then for

G ∈ G we define the |O�
℘(G ∩ �)| × |O�

℘(G ∩ �)| covariance matrix

(
V

(�),η̄
G∩�

)

i,j
:= 2πχ�dµ

O�O�
℘ η̄

O℘(G∩�)
(M

(�)
i ,M

(�)
j ) (5.35)

for i, j ∈ O�
℘(G ∩ �), with η̄ the reference in X (�),℘ chosen before (5.15). We under-

stand V
(�),η̄

∅ is equal to the 1 × 1 matrix with its sole element equal to 1. We let, as in
Subsect. 2.5, ZX(τ), with X ⊂⊂ L and τ ∈ X , be the (grancanonical) partition function
of the original lattice gas model, on X with boundary condition τ . Then we define the
real

K
(℘)
� :=

∑

G∈G
g(G) log

[
ZO℘(G∩�)(O�O�

℘η̄)/

√
det V

(�),η̄
G∩�

]
. (5.36)

By using (5.32), (5.33) for Y = �, and (5.36) we rewrite log Z̄
(�),℘
m,� (ξ) as follows

log Z̄
(�),℘
m,� (ξ) = K

(℘)
� −

∑

i∈O�
℘�

1

2
m2

i

+
∑

G∈G
g(G)

[
log

Z
(�),℘

m,G∩�(ξ̄ )

√
det V

(�),η̄
G∩�

ZO℘(G∩�)(O�O�
℘η̄)

+
∑

i∈O�
℘(G∩�)

1

2
m2

i

]
.

(5.37)

Consider, now, the function !
(�),℘
m,� defined in (5.26); we show that it can be rewrit-

ten as the partition function of a gas of polymers. We first associate to each error term
�Dk

,�Ck
, . . . , �Dk

appearing in (5.26) a subset of the lattice that will be called bond.
More precisely, for the � error terms we set

e(�Dk
) := ∂(℘){Dk} ∪ (∂(℘),2{Dk} ∩ A), e(�Ck

) := ∂(℘){Ck} ∩ (A ∪ B),

e(�Bk
) := ∂(℘){Bk} ∩ A. (5.38)
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�Dk

�

�

�

�

�

�

�

�

�

�

�

�

�Ck

�

�

�

�

�

�

�Bk

�

�

�Dk� � ��Ak

Fig. 3. From the left to the right the bonds e(�Dk
), e(�Ck

), e(�Bk
), e(�Dk

), and e(�Ak
) are depicted

for some k ∈ L(2℘). Solid circles denote the sites belonging to the bonds; open circles denote the site
labelling a bond; intersections of lines represent sites in L(℘)

For the � error terms we set

e(�Dk
) := ∂(℘){Dk} ∩ A and e(�Ak

) := {Ak}, (5.39)

see Fig. 3. Moreover, in this section we denote by

E :=
⋃

k∈L(2℘)

{e(�Dk
), e(�Ck

), e(�Bk
), e(�Dk

), e(�Ak
)} (5.40)

the collection of all the bonds. For each e ∈ E we denote by �e : X �,℘

A∪B∪C ×X �,℘ → R

the error term with which the bond e is associated and we call it weight of the bond; for
instance if e = e(�Dk

) then �e = �Dk
. We notice that by expanding the products in

(5.26) we get also addends with a single error term which must be averaged against the
measures ν’s; the bond have been defined so that the infinite volume average in (5.26)
can be replaced by the average restricted to the bond itself. More precisely, consider the
bond e ∈ E and the corresponding error term �e, by using (5.18), (5.27), (5.23), and
(5.28) we have that for each ξ ∈ X �,℘ ,

∑

α∈Y(�),℘

�,m,A

∑

β∈Y(�),℘

�,m,B

∑

γ∈Y(�),℘

�,m,C

νA(α|ξ)νB(β|α, ξ)νC(γ |αβ, ξ)�e(αβγ, ξ)

=
∑

α∈Y(�),℘

�,m,e∩A

∑

β∈Y(�),℘

�,m,e∩B

∑

γ∈Y(�),℘

�,m,e∩C

∏

A∈e∩A
νA(αA|ξ)

∏

B∈e∩B
νB(βB |α, ξ)

×
∏

C∈e∩C
νC(γC |αβ, ξ)�e(αβγ, ξ). (5.41)

Consider, now, a collection {e1, . . . , ek} of pairwise different elements of E , we say
that such a collection is a polymer if and only if for each i, i′ ∈ {1, . . . , k} there exists
i1, . . . , is ∈ {1, . . . , k} such that ei = ei1 , ei1 ∩ ei2 �= ∅, · · · , eis−1 ∩ eis �= ∅, eis = ei′ .
We denote by R the collection of all polymers and for each R ∈ R we set

R̃ :=
⋃

e∈R

e ⊂ L(℘). (5.42)
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By expanding the products in (5.26) and by standard polymerization, for ξ ∈ X �,℘ we
have that

!
(�),℘
m,� (ξ) = 1 +

∑

k≥1

∑

R1,...,Rk∈R:
R̃i∩R̃j =∅,i �=j

k∏

j=1

ζ
(�),℘

m,Rj ,�
(ξ), (5.43)

where the activity ζ
(�),℘

m,R,� associated with a polymer R ∈ R is given by

ζ
(�),℘

m,R,�(ξ) :=
∑

α∈Y(�),℘

�,m,A

∑

β∈Y(�),℘

�,m,B

∑

γ∈Y(�),℘

�,m,C

νA(α|ξ)νB(β|α, ξ)νC(γ |αβ, ξ)
∏

e∈R

�e(αβγ, ξ̄ )

=
∑

α∈Y(�),℘

�,m,R̃∩A

∑

β∈Y(�),℘

�,m,R̃∩B

∑

γ∈Y(�),℘

�,m,R̃∩C

∏

A∈R̃∩A
νA(αA|ξ)

×
∏

B∈R̃∩B
νB(βB |α, ξ)

∏

C∈R̃∩C
νC(γC |αβ, ξ)

∏

e∈R

�e(αβγ, ξ), (5.44)

where the last equality holds by the same arguments used to prove (5.41). We remark
that the sum in (5.43) is restricted to a finite number of “non–intersecting” polymers,
indeed the error term �e associated to a bond sufficiently far from � is equal to zero.
This can be easily checked in the case of �Dk

: by using definition (5.17) and recalling

Z
(�),℘

m,∅ = 1, we have that {Dk} ∩ � = ∅ implies �Dk
= 0. By looking at the definitions

of the error terms �e, those given in [1] and suitably modified as we did in (5.17), it is
easy to check that for each e ∈ E ,

e(℘) ⊂ �c �⇒ �e = 0. (5.45)

Finally, we note that the activity ζ
(�),℘

m,R,�(ξ) of a polymer R ∈ R is a local function of ξ ,
indeed by using (5.44), (5.28), and (5.27) we have that

ζ
(�),℘

m,R,� ∈ F�,℘

(R̃∪∂(℘),2R̃)∩�c . (5.46)

Let us consider a collection of polymers {R1, . . . , Rk}; we say that it is a cluster of
polymers if and only if for each i, i′ ∈ {1, . . . , k} there exists i1, . . . , is ∈ {1, . . . , k}
such that Ri = Ri1 , R̃i1 ∩ R̃i2 �= ∅, · · · , R̃is−1 ∩ R̃is �= ∅, Ris = Ri′ . We denote by R
the collection of all clusters of polymers and for each R ∈ R we set

R̃ :=
⋃

R∈R

R̃ ⊂ L(℘). (5.47)

We finally introduce some combinatorial factors as follows: let F(R1, . . . , Rk) be the
collection of connected subgraphs with vertex set {1, . . . , k} of the graph with vertices
{1, . . . , k} and edges {i, j} corresponding to pairs Ri, Rj such that R̃i ∩ R̃j �= ∅, then

ϕT (R1, . . . , Rk) := 1

k!

∑

f∈F(R1,...,Rk)

(−1)# edges in f ; (5.48)
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we set the sum equal to zero if F is empty and one if k = 1. Then, by a standard cluster
expansion, see for instance [22,24], under suitable small activity conditions that we shall
specify later on, the polymer gas partition function (5.43) can be written as follows

log!
(�),℘
m,� (ξ) =

∑

R∈R̃

ϕT (R)ζ
(�),℘

m,R,�(ξ), (5.49)

where for each R ∈ R̃ we have set

ζ
(�),℘

m,R,� :=
∏

R∈R

ζ
(�),℘

m,R,� ∈ F�,℘

(R̃∪∂(℘),2R̃)∩�c . (5.50)

As remarked above, see (5.45), the activity of polymers containing at least a bond e

such that e(℘) ⊂ �c is equal to zero, so that only polymers with support close to � have
non–zero activity. Nevertheless, the sum on the right–hand side of (5.49) is infinite due
to the fact that in a cluster of polymers a given polymer can be repeated arbitrarily many
times. We next prove that for � a large enough multiple of �0 the series is absolutely
convergent. We shall use the technique developed in [8] to get a uniform estimate of the
sum of the activity of all the polymers whose support contains a given site x ∈ L(℘);
such an estimate will be then used as the input of the abstract theory developed in [24]
to estimate the sum (5.49) which is extended to the clusters of polymers whose support
intersects �.

Let e ∈ E , consider the corresponding error term �e. By looking at the definition of
�Dk

given in (5.17) and at the similar expressions in [1] for the other error terms we
have that (5.8) implies

sup
α∈X �,℘

A

sup
β∈X �,℘

B

sup
γ∈X �,℘

C

sup
ξ∈X �,℘

|�e(αβγ, ξ)| ≤ C

�
(5.51)

for � a multiple of �0. Consider, now, a polymer and its activity ζ
(�),℘

m,R,� defined in (5.44);
from (5.51) we have the bound

‖ζ (�),℘

m,R,�‖∞ ≤
∏

e∈R

C

�
≤ ε2|R̃|, (5.52)

where we have set ε = ε(�) := (C/�)1/(2κ ′), with κ ′ = κ ′(d) the maximum cardinality
of the bonds (equal to 12 in dimension two, see Fig. 3), and we are considering � so
large that ε(�) < 1. We remark that for the current purpose it would have been sufficient
to define ε(�) = (C/�)1/κ ′

; the extra factor 2 will be used in the proof of Item 5.
For each polymer R ∈ R we set, now, ζ̄R = ζ̄R(�) := [ε(�)]|R̃| and we prove that

for � large enough

sup
x∈L(℘)

∑

R∈R: R̃�x

ζ̄R(�) e
|R̃| ≤ 1. (5.53)

Indeed, from (5.38)–(5.40) we have that there exist a real κ ′′ = κ ′′(d) such that |{e ∈
E : e � x}| ≤ κ ′′ for all x ∈ L(℘). Moreover by choosing � large enough we have that
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exp{κ ′′} ≤ [eε(2 − eε)]−1. We can now perform the estimate in [8, Appendix B], by
replacing there ζ(R) with ζ̄R , σ with eε, and ϕe with 1, to obtain

sup
x∈L(℘)

∑

R∈R: R̃�x

ζ̄R e|R̃| ≤ eεκ ′′
[
1 + eκ

′′ − 1

1 + (eε)2eκ
′′ − 2eεeκ ′′

]
. (5.54)

The bound (5.53) now follows trivially for � large enough.
We are now ready to apply the abstract theory developed in [24]. Given a polymer

S ∈ R, by using (5.53), we have that
∑

R∈R:
R̃∩S̃ �=∅

ζ̄R e|R̃| ≤
∑

x∈S̃

∑

R∈R:
R̃�x

ζ̄R e|R̃| ≤ |S̃| �⇒
∑

R∈R:
R̃∩S̃ �=∅

ϕT (R)
∏

R∈R

ζ̄R ≤ |S̃|, (5.55)

where the last bound is a direct consequence of the theorem in [24] whenever we choose
there a(R) = |R̃|. The absolute convergence of (5.49) for � large enough follows easily
from (5.55) once we recall that the activity of a cluster of polymer R such that R̃∩� = ∅
is equal to zero and we note that for � large enough,

‖ζ (�),℘

m,R,�‖∞ ≤ (ζ̄R)
2 ≤ ζ̄R, (5.56)

where the first inequality is just a rewriting of (5.52).

Proof of Theorem 5.1. Item 1. First of all we recall m = O�
℘n and define the family

V
(�),℘

X,� in the following way: for any ξ ∈ X �,℘
m and X ⊂⊂ L(℘) we set

V
(�),℘

X,� (ξ, n) :=
∑

G∈G:

G
(℘)=X

g(G)
[

log
Z

(�),℘

m,G∩�(ξ̄ )

√
det V

(�),η̄
G∩�

ZO℘(G∩�)(O�O�
℘η̄)

+
∑

i∈O�
℘(G∩�)

1

2
m2

i

]

+
∑

R∈R̃:

R̃∪∂(℘),2R̃=X

ϕT (R)ζ
(�),℘

m,R,�(ξ). (5.57)

We prove, now, that for any X ⊂⊂ L(℘),

X ⊂ �c �⇒ V
(�),℘

X,� = 0. (5.58)

Indeed, let X ⊂ �c. Since

G
(℘) = X ⊂ �c �⇒ G ⊂ �c �⇒ G ∩ � = ∅ = G ∩ �

we have that the first sum in (5.57) is zero. Moreover, since R̃∪∂(℘),2R̃ = X ⊂ �c ⊂ �c,
definitions (5.44), (5.50), and (5.45) imply that the second sum in (5.57) is zero as well.
The expansion (5.3) finally follows from (5.7), (5.37), (5.49), and (5.57).

Suppose, now, that X ∩ � = ∅, by the same arguments used above we can easily
prove that

V
(�),℘

X,� (ξ, n) =
∑

G∈G:

G
(℘)=X

g(G)
[

log

√
det V

(�),η̄
G∩�

ZO℘(G∩�)(O�O�
℘η̄)

+
∑

i∈O�
℘(G∩�)

1

2
m2

i

]
.
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Hence, V (�),℘

X,� (·, n) is constant. Finally, we note that if we also have diam℘(X) > 5,

then V
(�),℘

X,� (·, n) = 0 since there exists no G ∈ G such that G
(℘) = X. The proof of the

item is completed by choosing κ large enough; in dimension two κ ≥ 5 does the job.
Item 2. The statement follows from (5.57), the measurability property (5.50), and the
following remarks: since ℘ > r , where r is the range of the original lattice gas inter-

action, Z(�),℘

m,Y (·) ∈ F�,℘

∂(℘)Y
for all Y ⊂ L(℘); ∂(℘)[G ∩ �] ⊂ X whenever G

(℘) = X;

ξ̄� = η̄�.
Item 3. The statement is true by construction.
Item 4. The statement trivially follows from (5.57), (5.45), (5.40), and (5.30) by choosing
κ large enough. In dimension two it is enough when κ ≥ 8.
Item 5. We first recall that U is the potential of the original lattice gas model, r its
range (see Subsect. 2.5), �0, b, and B the strong mixing constants (see Condition
SM(s)(�0, b, B) in Subsect. 2.4). Pick x ∈ L(℘), and let α1 > 0 be chosen later; by
using (5.57), the triangular inequality, and the fact that |g(G)| = 1 for all G ∈ G, we
have

∑

X�x

eα�T℘(X) sup
�⊂⊂L(℘)

‖V (�),℘

X,� (·, n)‖∞

≤
∑

X�x

eα�T℘(X) sup
�⊂⊂L(℘)

sup
ξ∈X �,℘

∑

G∈G:

G
(℘)=X

∣∣∣ log
Z

(�),℘

m,G∩�(ξ̄ )

√
det V

(�),η̄
G∩�

ZO℘(G∩�)(O�O�
℘η̄)

+
∑

i∈O�
℘(G∩�)

1

2
m2

i

∣∣∣

+
∑

X�x

eα�T℘(X) sup
�⊂⊂L(℘)

∥∥∥∥
∑

R∈R̃: R̃∪∂(℘),2R̃=X

ϕT (R)ζ
(�),℘

m,R,�(·)
∥∥∥∥∞

, (5.59)

where T℘(X) has been defined in (2.1), α� is as in the hypothesis of the theorem, and

� = � ∩ L(℘)
δ .

We now bound the first sum in the right–hand side of (5.59). By (5.30) we have that
the terms corresponding to X ⊂ L(℘) such that diam℘(X) > κ , where κ is as in the
proof of Item 1, are equal to zero. Consider, now, X ⊂⊂ L(℘) such that diam(X) ≤ κ;
we have that

eα�T℘(X) = (e�)α1T℘(X) ≤ (e�)(κ+1)dα1 .

Moreover, since for each G ∈ G one has diam℘(G) ≤ κ − 2, there exists a real C′
depending on �0, b, B, ‖U‖0, r , and the dimension of the space d such that

sup
�⊂⊂L(℘)

sup
ξ∈X (�),℘

∑

G∈G:

G
(℘)=X

∣∣∣ log
Z

(�),℘

m,G∩�(ξ̄ )

√
det V

(�),η̄
G∩�

ZO℘(G∩�)(O�O�
℘η̄)

+
∑

i∈O�
℘(G∩�)

1

2
m2

i

∣∣∣ ≤ C′�d .

Indeed, the bound is easy for the logarithm of the partition functions, follows from (2.10)
for the m2

i /2 contribution, and follows from the strong mixing condition SM(�0, b, B)

and the result in [1, Sect. 4] for the det V
(�),η̄
G∩� terms. We can therefore conclude that the

first sum in the right–hand side of (5.59) is bounded by
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|{X ⊂⊂ L(℘) : X � 0, diam℘(X) ≤ κ}| × (e�)(κ+1)dα1 × C′�d =: C′′�(κ+1)dα1+d ,

(5.60)

where 0 denotes the origin of the lattice L(℘).
We bound, now, the second sum in the right–hand side of (5.59). Recall ζ̄ has been

defined above (5.53) and choose � so large that ε(�) < 1. Let X ⊂⊂ L(℘), we claim
that for each cluster of polymers R such that R̃ ∪ ∂(℘),2R̃ = X we have that

∏

R∈R
ζ̄R =

∏

R∈R
ε|R̃| ≤ ε|R̃| ≤ ε|X|/5d ≤ εT℘(X)/5d = e(T℘(X)/5d ) log ε, (5.61)

where we have used T℘(X) = |X| − 1. We choose α1 < 1/(2 · 5dκ ′), recall κ ′ has been
defined below (5.52). By taking � large enough we have

eα�T℘(X)
∏

R∈R

ζ̄R ≤ 1 (5.62)

for any X ⊂⊂ L(℘) and R such that R̃ ∪ ∂(℘),2R̃ = X. Therefore, recalling (5.52), the
second term on the r.h.s. of (5.59) can be bounded by

∑

X�x

eα�T℘(X)
∑

R∈R̃:

R̃∪∂(℘),2R̃=X

|ϕT (R)|
∏

R∈R

(ζ̄R)
2

≤
∑

X�x

∑

R∈R̃:

R̃∪∂(℘),2R̃=X

|ϕT (R)|
∏

R∈R

ζ̄R ≤
∑

e∈E:
e(℘),2�x

∑

R∈R̃:
R̃∩e �=∅

|ϕT (R)|
∏

R∈R

ζ̄R

≤
∑

e∈E:
e(℘),2�x

|e| =: κ ′′′(d), (5.63)

where we used (5.55). The bound (5.4) follows from (5.59), (5.60), and (5.63) by setting
A1 := C′′ + κ ′′′.
Item 6. Pick � ⊂⊂ L(℘), X ⊂ �, n ∈ M(�),℘ such that L(℘)

δ (n) ⊃ X, and set

m = m(n) = O�
℘n; then � := � ∩ L(℘)

δ ⊃ X. Since ℘ > r , where r is the range

of the original lattice gas interaction, Z
(�),℘

m,Y (·) ∈ F�,℘

∂(℘)Y
for all Y ⊂ L(℘); then for

each G ∈ G such that G
(℘) = X we have Z

(�),℘

m,G ∈ F�,℘

X . Recall, now, that η̄ is the

reference configuration picked up in X �,℘ before (5.15) and that for each ξ ∈ X �,℘ we
set ξ̄ := η̄�ξ�c . Hence, for G ∈ G,

G
(℘) = X ⊂ � �⇒ ξ̄X = η̄X �⇒ Z

(�),℘

m,G (ξ̄ ) = Z
(�),℘

m,G (η̄). (5.64)

By using (5.57), (5.64), and the triangular inequality we have that

‖V (�),℘

X,� (·, n)‖∞ ≤
∑

G∈G:

G
(℘)=X

∣∣∣ log
Z

(�),℘

m,G (η̄)

√
det V

(�),η̄
G

ZO℘G(O�O�
℘η̄)

+
∑

i∈O�
℘G

1

2
m2

i

∣∣∣

+
∥∥∥∥

∑

R∈R̃: R̃∪∂(℘),2R̃=X

ϕT (R)ζ
(�),℘

m,R,�(·)
∥∥∥∥∞

.

(5.65)
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The estimate (5.63) provides immediately an upper bound to the second term on the
right–hand side of (5.65) vanishing as � → ∞. We consider, now, the first term on the
right–hand side of (5.65): we first notice that (5.2), (4.5), and (2.11) imply

Z
(�),℘

m,G (η̄) =
∑

ζ∈X (�),℘
m,G

eH
�,℘
G (ζ η̄Gc ) =

∑

σ∈XO℘G:

M
(�)
i

(σQ�(i)
)=mi , i∈O�

℘G

eHG(σ(O�O�
℘ η̄)Gc ).

Hence, we have

Z
(�),℘

m,G (η̄)

ZO℘G(O�O�
℘η̄)

= µ
O�O�

℘ η̄

O℘G,z

({M(�)
i = mi, i ∈ O�

℘G}), (5.66)

where we recall the notation for the Gibbs measure associated with the original lattice
gas potential U , see Subsect. 2.5, with activity z. Recalling that by hypothesis U satisfies
the strong mixing condition SM(�0, b, B), from Lemma 4.2 we have that there exists �′

0,
a multiple of �0, b′, and B ′ positive reals, such that U satisfies SM(�′

0, b
′, B ′) uniformly

w.r.t. the activity in a neighbor of z small enough. We can then apply the local central
limit theorem [1, Theorem 4.5] and (5.66) to write

∣∣∣ log
Z

(�),℘

m,G (η̄)

√
det V

(�),η̄
G

ZO℘G(O�O�
℘η̄)

+
∑

i∈O�
℘G

1

2
m2

i

∣∣∣

=
∣∣∣ log

[
µ

O�O�
℘ η̄

O℘G,z

({M(�)
i = mi, i ∈ O�

℘G})
√

det V
(�),η̄
G

]
+
∑

i∈O�
℘G

1

2
m2

i

∣∣∣

≤
∣∣∣
1

2

∑

i,j∈O�
℘G

mi

(
δij − 2πχ�d(V

(�),η̄
G )−1

ij

)
mj

∣∣∣+ | log(1 + R
O�O�

℘ η̄

O℘G
(m))|,

(5.67)

where there exist two positive reals δ′ and C1 depending on G, ‖U‖0, and δ, such that

sup
σ∈X

sup
m∈M(�): L(℘)

δ (O℘
� m)⊃G

|Rσ
O℘G(m)| ≤ C1

�δ
′ d .

Moreover, by using the strong mixing condition it is not difficult to show, see results
in [1, Subsect. 5.2], that there exists a positive real C2 depending on ‖U‖0, such that

∣∣∣δij − 2πχ�d(V
(�),η̄
G )−1

ij

∣∣∣ ≤ C2

�
.

By using (5.65), (5.67), (5.63), and the two above estimates we get

sup
�⊂⊂L(℘)

sup
X⊂�

sup
n∈M(�),℘ :

L(℘)
δ

(n)⊃X

‖V (�),℘

X,� (·, n)‖∞

≤ sup
X⊂⊂L(℘)

sup
n∈M(�),℘ :

L(℘)
δ

(n)⊃X

∑

G∈G:

G
(℘)=X

(C2

2�
|G|2 sup

i∈O�
℘G

m2
i + C1

�δ
′d

)
+ κ ′′′ e−α�

≤ 2κd
(C2

2�
|G|2�1/3−2δ + C1

�δ
′d

)
+ κ ′′′ e−α� .
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By taking the limit � → ∞ we complete the proof of (5.5).
Item 7. Suppose X ∩ � = X ∩ �′, then we have X ∩ � = X ∩ �′, where �′ :=
�′ ∩ L(℘)

δ (n). The thesis follows from (5.57) and the explicit expression (5.44) of the
activity. The key point is that the sums in (5.57) are extended to subsets of the lattice
inside X and to a cluster of polymers R such that R̃ ⊂ X, and the intersection of � and
�′ with X is the same.
Item 8. It follows directly from (5.57) and (5.44). ��

6. Construction of the Renormalized Potential and Convergence

In this section we construct the renormalized potential and prove the main Theorems 2.1
and 2.2.

6.1. Cluster expansion in the bad part of the lattice. In this subsection we apply the
framework in [2] to develop a multi–scale cluster expansion for the constrained model
in the bad part of the lattice on the basis of the uniformly convergent cluster expansion
in the good part of the lattice proven in Theorem 5.1. Recall that in Sect. 4.1 we have
introduced ℘ = d�, with � the renormalization scale and d the dimension of the lattice,
on which we have defined the notion of goodness.

We are now ready to evoke [2, Thm. 2.5]. Let M̄(�),℘ ⊂ M(�),℘ be the set of full
ν(�),℘–measure in Theorem 4.4. For each x ∈ L(℘) and n ∈ M̄(�),℘ we let kx(n) < ∞
be the integer such that Item 6 in Definition 3.2 holds true and set

� :=
[ 1

1 − q

(
1 + 1

α�

logA�

)]
∨ 0 and r

(℘)
x (n) := [

�kx(n) + 2ϑkx(n)

] ∨ �,

(6.1)

where q := 2−53−2 and α� and A� are as in Theorem 5.1.

Theorem 6.1. Let the lattice gas potential U satisfy Condition SM(�0, b, B). Let �, γ
be the two moderate steep scales in (4.19), and M̄(�),℘ ⊂ M(�),℘ be the set of full
ν(�),℘–measure in Theorem 4.4. Then for each � a large enough multiple of �0, each
n ∈ M̄(�),℘ , and each � ⊂⊂ L(℘) there exist two families of functions {�(�),℘

X,� (·, n) :

X �,℘ → R, X ⊂⊂ L(℘)} and {�(�),℘

X,� (·, n) : X �,℘ → R, X ⊂⊂ L(℘)} such that

1. For each ξ ∈ X �,℘ we have the expansion

logZ
(�),℘

O�
℘n,�

(ξ) = K
(℘)
� − 1

2

∑

i∈O�
℘�

(O�
℘n)

2
i

+
∑

X∩��=∅

[
�

(�),℘

X,� (ξ, n) + �
(�),℘

X,� (ξ, n)
]
, (6.2)

where K
(℘)
� is as in Theorem 5.1.

2. For each X ⊂⊂ L(℘) we have �
(�),℘

X,� (·, n),�(�),℘

X,� (·, n) ∈ F�,℘

X∩�c .
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Moreover, for each n ∈ M̄(�),℘

3. For each �,�′ ⊂⊂ L(℘), and each X ⊂⊂ L(℘) we have

X ∩ �=X ∩ �′ �⇒ �
(�),℘

X,� (·, n) = �
(�),℘

X,�′ (·, n) and �
(�),℘

X,� (·, n) = �
(�),℘

X,�′ (·, n).

4. Let x ∈ L(℘), for any X ⊂⊂ L(℘) if X � x and diam℘(X) > r
(℘)
x (n), then for each

� ⊂⊂ L(℘) we have �
(�),℘

X,� (·, n) = 0. In particular, for each x ∈ L(℘) there exists

a positive real c(℘)
x (n) < ∞ such that

∑

X�x

sup
�⊂⊂L(℘)

‖�(�),℘

X,� (·, n)‖∞ ≤ c
(℘)
x (n). (6.3)

5. We have

sup
x∈L(℘)

∑

X�x

eqα� diam℘(X)/d sup
�⊂⊂L(℘)

‖�(�),℘

X,� (·, n)‖∞

≤ e−α�/d + e−qα�γ1/d
(1 + e−qα�/(2d2)

1 − e−qα�/(2d2)

)d
. (6.4)

Proof of Theorem 6.1. By Theorem 4.4 for eachn ∈ M̄(�),℘ there exists a gentle disinte-
gration G(n) of L(℘) with respect to G0(n) := L(℘)

δ (n),�, and γ . Moreover, Theorem 5.1
and (4.19) ensure that for � large enough [2, Condition 2.1] is fulfilled with A and α given
respectively by A� and α�/d . Note that the factor 1/d is due to the fact that here we are
using, as distance on the lattice L(℘), the supremum of the coordinates, while in [2] we
used their sum. Moreover, we note that Items 1–4 in the hypotheses of [2, Theorem 2.5]
are satisfied by the scales �, γ in (4.19).

Items 1–5 are, then, a simple restatement of results in [2, Theorem 2.5] once we
define the real

c
(℘)
x (n) :=A� + kx(n)(�kx(n) + 1 + 2ϑkx(n))

2d

×[℘d(log 2 + ‖U‖0) + kx(n)(1 ∨ A�)(8
d + 1)

]
(6.5)

for all n ∈ M̄(�),℘ and x ∈ L(℘). ��

6.2. Locality of the renormalized potential. To prove the Gibbsianity of the renormal-
ized measure we need to introduce functions of the renormalized variable n which will
play the role of potentials. In the subsection we state and prove a locality property of the
finite volume potentials.

Theorem 6.2. Assume the hypotheses of Theorem 6.1 are satisfied. Let also X,� ⊂⊂
L(℘), n, n′ ∈ M̄(�),℘ such that nX = n′

X. Then

�
(�),℘

X,� (·, n) = �
(�),℘

X,� (·, n′) and �
(�),℘

X,� (·, n) = �
(�),℘

X,� (·, n′). (6.6)

The proof of Theorem 6.2 needs to some extent the details of the recursive construc-
tion of �(�),℘

X,� and �
(�),℘

X,� provided in [2] to which we refer for more details; we outline
here the main idea beneath the computation.

We pick n ∈ M̄(�),℘ and recall the notion of gentle disintegration given in Defini-
tion 3.2; for j ≥ 1 we say G,G′ ⊂ G≥j (n) are j–connected iff G ∩ G′ ∩ Gj (n) �= ∅.
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A system G1, . . . ,Gk with Gh ⊂ G≥j (n) is said to be j–connected iff for each h, h′ ∈
{1, . . . , k} there exists h1, . . . , hk′ ∈ {1, . . . , k} such that Gh = Gh1 , Ghk′ = Gh′ and
Ghi

is j–connected to Ghi+1 for all i = 1, . . . , k′ − 1.
A j–polymer is a collection {(G1, s1), · · · , (Gk, sk)}, with Gh ⊂ G≥j (n) and sh ≥ 0

integers for h = 1, . . . , k, such that the system G1, . . . ,Gk is j–connected. We denote
by Rj (n) the collection of all the j–polymers. Given a j–polymer R = {(G1, s1), . . . ,
(Gk, sk)} and i ≥ j we set R � i := ⋃k

h=1 Gh ∩Gi (n) ⊂ Gi (n) and R �≥i := ⋃
i′≥i R � i′

⊂ G≥i (n). We also introduce the support of the polymer

suppR :=
k⋃

h=1

Ysh(Gh) ⊂ L(℘) with Ys(Gh)

:=
{
x ∈ L : d℘(x,Q(℘)(Ĝh)) ≤ ϑj + s

}
(6.7)

for all non–negative integer s and h = 1, . . . , k, where we have Ĝ := ⋃
g∈G g for all

G ⊂ G≥1(n) and we recall Q(℘)(�) is, for all � ⊂⊂ L(℘), the smallest parallelepiped
with faces parallel to the coordinate directions and containing �. Moreover for each
s ≥ 0, h = 1, . . . , k, we set ys(Gh) := Ys(Gh) \ Ys−1(Gh), where we understand
Y−1(Gh) = ∅. We note that the set Ys(Gh) will realize, see (6.14), the volume cutoff
mentioned at the end of Subsect. 2.8.

Given two j–polymers R, S ∈ Rj (n) we say they are j–compatible iff R � j ∩S � j =
∅. Conversely we say that R, S are j–incompatible iff they are not j–compatible. We say
that a collection R = {R1, . . . , Rk}, where Rh ∈ Rj (n), h = 1, . . . , k, of j–polymers
forms a cluster of j–polymers iff it is not decomposable into two non empty subsets
R = R1 ∪ R2 such that every pair R1 ∈ R1, R2 ∈ R2 is j–compatible. We denote by
Rj (n) the collection of all the clusters of j–polymers. For i ≥ j , R ∈ Rj (n) we set
R � i := ⋃

R∈R R � i , R � ≥i := ⋃
i′≥i R � i′ ; we set suppR := ⋃

R∈R suppR. We note

that suppR is a ℘–connected subset of L(℘).
For any � ⊂⊂ L(℘), G ⊂⊂ G≥1(n), and s ≥ 0 we define the two collections of

subsets of the lattice

ϒ� :={Y ⊂⊂ L(℘) : Y ∩ � �= ∅ and Y ∩ (�(℘),κ)c = ∅},
ϒ�(G, s)(n) :={Y ∈ ϒ�∩G0(n) : ξ(Y )(n) = G, Y ⊂ Ys(G), Y ∩ ys(G) �= ∅},

(6.8)

where for each Y ⊂ L(℘) we have set

ξ(Y )(n) := {g ∈ G≥1(n) : g ∩ Y �= ∅} ⊂ G≥1(n), (6.9)

and κ has been introduced in Theorem 5.1. Recalling Theorem 5.1, for i ≥ 1, g ∈ Gi (n),
G ⊂⊂ G≥i (n) such that G ∩ Gi (n) �= ∅, and s ≥ 0, we define the 0–order effective
potential

�
(i,0)
g,� (·, n) :=

∑

Y∈ϒ�(g,0)(n)

V
(�),℘

Y,� (·, n),

�
(i,0)
G,s,�(·, n) :=1I{(|G|,s)�=(1,0)}

∑

Y∈ϒ�(G,s)(n)

V
(�),℘

Y,� (·, n). (6.10)
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We next define by recursion on j the j–order effective potentials: as recursive hypoth-
eses we assume that there exist the families

{�(i,k)
g,� (·, n) : X �,℘ → R, � ⊂⊂ L} and {�(i,k)

G,s,�(·, n) : X �,℘ → R, � ⊂⊂ L}

for any k = 0, . . . , j − 1, any i ≥ k + 1, any g ∈ Gi (n), any G ⊂⊂ G≥i (n), such
that G ∩ Gi (n) �= ∅, and any s ≥ 0. We integrate on the scale j and define the j–order
effective potentials �

(i,j)
g,� and �

(i,j)
G,s,� for i ≥ j + 1, any g ∈ Gi (n), any G ⊂⊂ G≥i (n),

such that G ∩ Gi (n) �= ∅, and s ≥ 0.
Given g ∈ Gj (n), G ⊂⊂ G≥j (n) such that G∩Gj (n) �= ∅, and s ≥ 0 we sum all the

lower order contributions, obtained by performing the k–order cluster expansion with
k = 1, · · · , j − 1, to the effective potentials associated with such a vertex, namely, we
define

�
(j)
g,�(·, n) :=

j−1∑

k=0

�
(j,k)
g,� (·, n) and �

(j)
G,s,�(·, n) :=

j−1∑

k=0

�
(j,k)
G,s,�(·, n). (6.11)

For each vertex g ∈ Gj (n) and block spin configuration ξ ∈ X �,℘ we define the
partition function

Z
(j)
g,�(ξ, n) :=

∑

ζ∈X (�),℘

O�
℘n,g

exp
{ ∑

Y⊂⊂L(℘):Y∩� �=∅
Y∩�⊂g∩�

U
�,℘

Y (ζ ξgc) + �
(j)
g,�(ζ ξgc , n)

}
, (6.12)

where U
�,℘

Y are the original lattice gas potentials rewritten, see the discussion before
Theorem 5.1, for the block spin variable in X (1),�,℘ ≡ X �,℘ , and the probability measure
ν
(j)
g,�,n,ξ on X (�),℘

O�
℘n,g

by setting

ν
(j)
g,�,n,ξ (ζ ) := δξ (ζg∩�c)

Z
(j)
g,�(ξ, n)

exp
{ ∑

Y⊂⊂L(℘):Y∩� �=∅
Y∩�⊂g∩�

U
�,℘

Y (ζ ξgc) + �
(j)
g,�(ζ ξgc , n)

}
(6.13)

for any ζ ∈ X (�),℘

O�
℘n,g

.

We consider, now, a bond G ⊂⊂ G≥j+1(n), such that G ∩ Gj (n) �= ∅, and s ≥ 0;
our aim is the definition of the j–order effective potential associated to such a bond and
due to the integration over the j–gentle sites. We set

Rj (G, s)(n)

:=
{
R ∈ Rj (n) : R �≥j+1 = G, suppR ⊂ Ys(G), suppR ∩ ys(G) �= ∅

}
.

(6.14)

We define, now, the activity of a cluster of polymers R ∈ Rj (G, s)(n), whose set of
vertices of gentleness order greater or equal to j + 1 is given exactly by G, by setting

ζR,�(·, n) :=
∏

R∈R

ζR,�(·, n), (6.15)
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where for ξ ∈ X �,℘ we have set

ζR,�(ξ, n) :=
∑

ζ∈X (�),℘

O�
℘n,R̂�j

∏

g∈R�j
ν
(j)
g,�,n,ξ (ζg)

k∏

h=1

[
exp

{
�

(j)
Gh,sh,�

(ζ ξ(R̂�j )c)
}− 1

]

(6.16)

for all R = {(G1, s1), . . . (Gk, sk)} ∈ R.
We are now ready to define the j–order effective potentials. Let i ≥ j +1, g ∈ Gi (n),

G ⊂⊂ G≥i (n) such that G ∩ Gi (n) �= ∅ and s ≥ 0; then we set

�
(i,j)
g,� (·, n) :=

∑

R∈Rj (g,0)(n)

ϕT

(
R
)
ζR,�(·.n),

�
(i,j)
G,s,�(·, n) :=1I{(|G|,s)�=(1,0)}

∑

R∈Rj (G,s)(n)

ϕT

(
R
)
ζR,�(·, n). (6.17)

In [2, Sect. 4] it is proven that the j–order effective potentials depend only on those
block spins associated to sites of order greater than j lying inside the vertices which
label the function; more precisely

�
(i,j)
g,� (·, n) ∈ F�,℘

(Y0(g)∩�c)∪g and �
(i,j)
G,s,�(·, n) ∈ F�,℘

(Ys(G)∩�c)∪Ĝ
, (6.18)

where we recall Ĝ := ⋃
g∈G g.

We can finally define the functions �(�),℘

X,� and �
(�),℘

X,� whose existence has been stated

in Theorem 6.1. More precisely for each X,� ⊂⊂ L(℘) and n ∈ M̄(�),℘ we define

�
(�),℘

X,� (·, n) = 1I{diam℘(X)≤�,X∩��=∅,ξ(X)(n)=∅}V
(�),℘

X,� (·, n)
+
∑

j≥1

∑

g∈Gj (X)(n)

logZ
(j)
g,�(·, n),

�
(�),℘

X,� (·, n) = 1I{diam℘(X)>�,X∩��=∅,ξ(X)(n)=∅}V
(�),℘

X,� (·, n)

+
∑

j≥1

∑

R∈Rj (X)(n)

ϕT

(
R
)
ζR,�(·, n), (6.19)

where we have introduced the two sets

Gj (X) (n) := {
g ∈ Gj (n) : Y0(g) = X

}
,

Rj (X) (n) :=
{
R ∈ Rj (n) : R �≥j+1 = ∅, suppR = X

}
. (6.20)

We remark that the sums over j in (6.19) are extended to a finite number of terms,
indeed for j such that ϑj > diam℘(X) the sets Gj (X)(n) and Rj (X)(n) are empty for

all n ∈ M̄(�),℘ . For each X ⊂⊂ L(℘) and j ≥ 1 we finally set

G̃j (X)(n) := {
g ∈ Gj (n) : Y0(g) ⊂ X

}
(6.21)

and G̃≥j (X)(n) := ⋃
i≥j G̃i (X)(n).
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Lemma 6.3. Let X,� ⊂⊂ L(℘), n, n′ ∈ M̄(�),℘ such that nX = n′
X, then

1. for each j ≥ 1 we have G̃j (X)(n) = G̃j (X)(n′) and G̃≥j (X)(n) = G̃≥j (X)(n′);
2. for each j ≥ 1 we have Gj (X)(n) = Gj (X)(n′) and Rj (X) (n) = Rj (X) (n′);
3. we have ϒ�(G, s)(n) = ϒ�(G, s)(n′) for any G ⊂ G̃≥1(X)(n) = G̃≥1(X)(n′) and

s ≥ 0 such that Ys(G) ⊂ X;
4. for each j ≥ 1 we have that Rj (G, s)(n) = Rj (G, s)(n′) for any G ⊂ G̃≥j+1(X)(n)

= G̃≥j+1(X)(n′) and s ≥ 0 such that Ys(G) ⊂ X;

5. for each j ≥ 0, i ≥ j + 1, g ∈ G̃i (X) (n) = G̃i (X) (n′), we have �
(i,j)
g,� (·, n) =

�
(i,j)
g,� (·, n′);

6. for each j ≥ 0, i ≥ j + 1, G ⊂ G̃≥i (X) (n) = G̃≥i (X) (n′) and s ≥ 0 such that

G ∩ G̃i (X) (n) = G ∩ G̃i (X) (n′) �= ∅ and Ys(G) ⊂ X, we have �
(i,j)
G,s,�(·, n) =

�
(i,j)
G,s,�(·, n′);

7. for each j ≥ 1, g ∈ Gj (X)(n) = Gj (X)(n′), we have Z
(j)
g,�(·, n) = Z

(j)
g,�(·, n′);

8. for each j ≥ 1, R ∈ Rj (X)(n) = Rj (X)(n′), we have ζR,�(·, n) = ζR,�(·, n′).

Proof of Lemma 6.3. We first prove Items 1–4 separately, then 5 and 6 by induction.
Items 7 and 8 will be a byproduct of the proof of 5 and 6.
Item 1. Let g ∈ G̃j (X)(n); since X ⊃ Y0(g) ⊃ B

(℘)
ϑj

(g), Item 2 in Theorem 4.4 and

nX = n′
X imply g ∈ Gj (n

′). Now, g ∈ G̃j (X)(n′) follows from g ∈ Gj (n
′) and the

geometrical property Y0(g) ⊂ X. Hence G̃j (X)(n) ⊂ G̃j (X)(n′) and, by interchanging
the role of n and n′, we get the equality. The second equality follows immediately from
the first one.
Item 2. The proof of the first equality is similar to the proof of Item 1. Proof of the
second equality. Let R ∈ Rj (X)(n) and G = {g1, . . . , gk} := R � j be the collection
of all the vertices the cluster of polymers R is built of. By definition gh ∈ Gj (n) for
any h = 1, . . . , k. The definition of support of a polymer and suppR = X imply that
Y0(gh) ⊂ X for any h = 1, . . . , k. Hence, nX = n′

X and Item 2 in Theorem 4.4 imply
gh ∈ Gj (n

′) for any h = 1, . . . , k, which yields R ∈ Rj (X)(n′). Hence Rj (X)(n) ⊂
Rj (X)(n′) and, by interchanging the role of n and n′, we get the equality.
Item 3. Recall (6.8), let Y ∈ ϒ�(G, s)(n). Then we have

Y ⊂ Ys(G) and Y ∩ ys(G) �= ∅.
Moreover, X ⊃ Ys(G) ⊃ Y , nX = n′

X, and Y ∈ ϒ
�∩L(℘)

δ (n)
imply Y ∈ ϒ

�∩L(℘)
δ (n′).

Finally, ξ(Y )(n) = G and nY = n′
Y imply ξ(Y )(n′) = G. All the properties ensuring

Y ∈ ϒ(G, s)(n′) have been verified, hence we have ϒ(G, s)(n) ⊂ ϒ(G, s)(n′) and, by
interchanging the role of n and n′, we get the equality.
Item 4. Let R ∈ Rj (G, s)(n), F = {f1, . . . , fk} := R � ≥j be the collection of all the
vertices the cluster of polymers R is built of (note G ⊂ F ) and I = {i1, . . . , ik} the
collection of integral numbers such that fh ∈ Gih (n) for any h = 1, . . . , k, namely,
ih is the grade of fh. Remark that for each h = 1, . . . , k either ih = j or fh ∈ G.
We next prove that fh ∈ G̃ih (X)(n), for h = 1, . . . , k, by showing that Y0(fh) ⊂ X.
Indeed, in the case fh ∈ G, we have that G ⊂ G̃≥j+1(X)(n) implies Y0(fh) ⊂ X;
on the other hand, if ih = j , then, recall the definition (6.7) of support of a polymer,
X ⊃ Ys(G) ⊃ suppR ⊃ Y0(fh). Now, from Item 1 we get fh ∈ G̃ih (X) (n′) for any
h = 1, . . . , k, which implies R ∈ Rj (n

′). We remark, finally, that R ∈ Rj (G, s)(n)�⇒
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R � ≥j+1 = G, suppR ⊂ Ys(G) and suppR ∩ ys(G) �= ∅. Hence, R ∈ Rj (G, s)(n′).
We then have Rj (G, s)(n) ⊂ Rj (G, s)(n′) and, by interchanging the role of n and n′,
we get the equality.
Items 5–6. We proceed by induction on j . Let j = 0. For each i ≥ 1 and g ∈ G̃i (X)(n) =
G̃i (X)(n′), by using (6.10), Item 3, Y ∈ ϒ�(g, 0)(n) = ϒ�(g, 0)(n′), and Item 8 in
Theorem 5.1, we have that �(i,0)

g,� (·, n) = �
(i,0)
g,� (·, n′). The statement in Item 6 for j = 0

is proven similarly.
Now, we fix the integer j and suppose that the statements in Items 5 and 6 are verified

for all k = 0, . . . , j − 1, i ≥ k + 1. From the inductive hypotheses and (6.11) we have
that the equality

�
(j)
g,�(·, n) = �

(j)
g,�(·, n′) (6.22)

holds for all g ∈ G̃j (X)(n) = G̃j (X)(n′). Hence, recalling (6.12) and (6.13), we have

Z
(j)
g,�(·, n) = Z

(j)
g,�(·, n′) and ν

(j)
g,�,n,ξ = ν

(j)

g,�,n′,ξ (6.23)

for any g ∈ G̃j (X)(n) = G̃j (X)(n′) and ξ ∈ X �,℘ .
Analogously, from the inductive hypotheses and (6.11) we have

�
(j)
G,s,�(·, n) = �

(j)
G,s,�(·, n′) (6.24)

for any G ⊂ G̃≥j (X)(n) = G̃≥j (X)(n′) and s ≥ 0 such that G ∩ G̃j (X)(n) = G ∩
G̃j (X)(n′) �= ∅ and Ys(G) ⊂ X.

Consider, now, i ≥ j + 1 and G ⊂ G̃≥i (X) (n) = G̃≥i (X) (n′), such that G ∩
G̃i (X) (n) = G ∩ G̃i (X) (n′) �= ∅, and s ≥ 0 such that Ys(G) ⊂ X. Since G ⊂
G̃≥i (X) (n) = G̃≥i (X) (n′), then g ∈ G̃≥i (X)(n) = G̃≥i (X)(n′) for all g ∈ G. Let
R ∈ Rj (G, s)(n) = Rj (G, s)(n′), for all g ∈ R � j we have that Y0(g) ⊂ suppR ⊂ X,

i.e., g ∈ G̃j (X)(n) = G̃j (X)(n′). Consider, now, R = {(G1, s1), . . . , (Gh, sh)} ∈ R;
from definition (6.14) we have that Gl∩G̃j (X)(n) = Gl∩G̃j (X)(n′) �= ∅ and Ysl (Gl) ⊂
suppR ⊂ Ys(G) ⊂ X for all l = 1, . . . , h. Moreover, recalling that for all l = 1, . . . , h
each g ∈ Gl is either an element of R � j or an element of G, we have that Y0(g) ⊂ X

and, hence, Gl ⊂ G̃≥j (X)(n) = G̃≥j (X)(n′). Then by using (6.23), (6.24), (6.15), and
(6.16) we have that

ζR,�(·, n) = ζR,�(·, n′) (6.25)

The inductive proof is completed easily by using (6.17), (6.14), Item 4 above and
(6.25). ��
Proof of Theorem 6.2. We focus on the first of the two identities (6.6); the proof of the
second can be achieved analogously. We recall (6.19) and notice that nX = n′

X implies

1I{diam℘(X)≤�,X∩��=∅,ξ(X)(n)=∅} = 1I{diam℘(X)≤�,X∩��=∅,ξ(X)(n′)=∅}.

Then from Item 8 in Theorem 5.1 we get

1I{diam℘(X)≤�,X∩��=∅,ξ(X)(n)=∅}V
(�),℘

X,� (·, n)
= 1I{diam℘(X)≤�,X∩��=∅,ξ(X)(n′)=∅}V

(�),℘

X,� (·, n′).
(6.26)

The first of the identities (6.6) finally follows from definition (6.19), the equality (6.26),
and Items 2 and 7 of Lemma 6.3. ��
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6.3. Proof of Gibbsianity and convergence. We notice that for X ⊂⊂ L(℘) and n ∈
M̄(�),℘ Item 2 of Theorem 6.1 implies that �

(�),℘

X,X (·, n) and �
(�),℘

X,X (·, n) are constant
functions namely, they do not depend on the first argument. In the sequel we shall write
�

(�),℘

X,X (n) and �
(�),℘

X,X (n) respectively for �(�),℘

X,X (·, n) and �
(�),℘

X,X (·, n).
We suppose, now, that the hypotheses of Theorem 6.1 are satisfied, we pick ñ ∈

π−1(0) once and for all, recall the map π has been defined in (4.11), and for each
X ⊂⊂ L(℘) we define the functions ψ

(�),℘

X : M(�),℘ → R and φ
(�),℘

X : M(�),℘ → R

as follows:

ψ
(�),℘

X (n) := �
(�),℘

X,X (nXñXc) and φ
(�),℘

X (n) := �
(�),℘

X,X (nXñXc). (6.27)

We note that, by definition, the functions ψ
(�),℘

X and φ
(�),℘

X are local, that is ψ
(�),℘

X ,

φ
(�),℘

X ∈ B(�),℘

X , where we recall the σ–algebra B(�),℘ has been introduced at the begin-
ning of Subsect. 4.3.

Let X,� ⊂⊂ L(℘) be such that � ⊃ X and n ∈ M̄(�),℘ . The functions �
(�),℘

X,� (·, n)
and �

(�),℘

X,� (·, n) are constant, namely, �(�),℘

X,� (·, n),�(�),℘

X,� (·, n) ∈ F�,℘

∅ , and moreover
from Theorem 6.2 and item 3 in Theorem 6.1 we get

�
(�),℘

X,� (·, n) = ψ
(�),℘

X (n) and �
(�),℘

X,� (·, n) = φ
(�),℘

X (n). (6.28)

Proof of Theorem 2.1. To get the renormalized potentials of Theorem 2.1 we next pull
the �(�),℘ and �(�),℘ back to the scale �. We define the family {ψ(�)

I , φ
(�)
I : M(�) →

R, I ⊂⊂ L(�)} as follows: for each m ∈ M(�) we set

ψ
(�)
I (m) :=






−m2
i /2 if I = {i} with i ∈ L(�)

ψ
(�),℘

X (O℘

� m) if |I | ≥ 2 and ∃X ⊂ L(℘) : O�
℘X = I

0 otherwise

; (6.29)

note that by construction, see (6.19) and (6.27), if |X| ≤ 1 then ψ
(�),℘

X = 0, and

φ
(�)
I (m) :=

{
φ
(�),℘

X (O℘

� m) if ∃X ⊂ L(℘) : O�
℘X = I

0 otherwise
. (6.30)

Equivalently, for all I ⊂⊂ L(�) such that |I | > 2, we can write

ψ
(�)
I =

∑

X⊂L(℘):
O�

℘X=I

ψ
(�),℘

X ◦ O℘

� and φ
(�)
I =

∑

X⊂L(℘):
O�

℘X=I

φ
(�),℘

X ◦ O℘

� ; (6.31)

we note, indeed, that for each I ⊂⊂ L(�) there exists at most one X ⊂ L(℘) such that
O�

℘X = I .

Item 1. Since for each X ⊂⊂ L(℘) we have ψ
(�),℘

X , φ
(�),℘

X ∈ B(�),℘

X , the thesis follows
from definition (6.31) and (4.2).
Item 2. We note that if we let X ⊂ L(℘) and I := O�

℘X ⊂ L(�), we have that I is
�–connected if and only if X is ℘–connected. Then the thesis follows immediately from
definitions (6.31), (6.19), (6.20), and Item 3 in Theorem 5.1.
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Item 3. Since the original lattice gas potential and the algorithmic construction of the
gentle atoms in Sect. 3 are translationally invariant, the statement follows.
Item 4. Let M̄(�),℘ ⊂ M(�),℘ as in Theorem 4.4. We set M̄(�) := O�

℘M̄(�),℘ , with O�
℘

the unpacking operator. Recalling the definition of ν(�),℘ given at the end of Subsect. 4.1,
we have

1 = ν(�),℘(M̄(�),℘) = ν(�)(O�
℘M̄(�),℘) = ν(�)(M̄(�)). (6.32)

We recall (6.29), (6.27), and that ñ has been picked up above; for m ∈ M̄(�) and
I ⊂⊂ L(�) such that |I | ≥ 2, we have that if there exists X ⊂⊂ L(�),℘ such that
O�

℘X = I we have

ψ
(�)
I (m) = ψ

(�),℘

X (O℘

� m) = �
(�),℘

X,X ((O℘

� m)XñXc) = �
(�),℘

X,X (O℘

� m), (6.33)

where the last equality follows from Theorem 6.2.
Recall (6.1), pick m ∈ M̄(�) and i ∈ L(�), set r

(�)
i (m) := 2dr(℘)

x(i)(O℘

� m), where

x(i) ∈ L(℘) is such that {x(i)} = O℘

� {i}. Consider I ⊂⊂ L(�) such that I � i and

diam�(I ) > r
(�)
i (m); from definition (6.1) and diam�(I ) > r

(�)
i (m) ≥ d we have that

|I | ≥ 2. If any X ⊂⊂ L(�),℘ such that O�
℘X = I does not exist we have ψ

(�)
I (m) = 0.

On the other hand if X ⊂⊂ L(�),℘ exists such that O�
℘X = I , from (6.33) we have that

ψ
(�)
I (m) = 0. Indeed Item 4 of Theorem 6.1 implies that �(�),℘

X,X (O℘

� m) = 0 once we

note that O℘

� m ∈ M̄(�),℘ , X � x(i), and

diam℘(X) ≥ 1

2d
diam�(I ) >

1

2d
r
(�)
i (m) = r

(℘)

x(i)(O℘

� m).

Consider, now, m ∈ M̄(�), i ∈ L(�), and x(i) as above. By using (6.29), (6.33), and
Item 3 in Theorem 6.1, we then have that
∑

I�i

∣∣ψ(�)
I (m)

∣∣ = 1

2
m2

i +
∑

I⊂⊂L(�):
|I |≥2, I�i

∣∣ψ(�)
I (m)

∣∣ = 1

2
m2

i +
∑

X⊂⊂L(℘):
X�x(i)

∣∣�(�),℘

X,X (O℘

� m)
∣∣.

The statement (2.12) follows from Item 4 in Theorem 6.1 by setting

c
(�)
i (m) := 1

2
m2

i + c
(℘)

x(i)(O℘

� m)

for all m ∈ M̄(�).
Item 5. By recalling definition (6.29) and by using the Minkowski inequality we have
that

sup
i∈L(�)

[
ν(�)

(∣∣∣
∑

I�i

ψ
(�)
I

∣∣∣
q)]1/q = sup

i∈L(�)

{[
ν(�)

(∣∣∣− 1

2
m2

i

∣∣∣
q)]1/q

+
[
ν(�)

(∣∣∣
∑

I�i:
|I |≥2

ψ
(�)
I

∣∣∣
q)]1/q}

≤ 1

2χ
�d + sup

i∈L(�)

[
ν(�)

(∣∣∣
∑

I�i:
|I |≥2

ψ
(�)
I

∣∣∣
q)]1/q

(6.34)

with χ the infinite volume compressibility defined in (2.8).
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To bound the second term of the right-hand side of the above inequality we use (6.29),
(6.32), (6.33), (6.19), and the Minkowski inequality. We have

sup
i∈L(�)

[
ν(�)

(∣∣∣
∑

I�i:
|I |≥2

ψ
(�)
I

∣∣∣
q)]1/q ≤ sup

x∈L(℘)

[
ν(�)

(∣∣∣
∑

X�x

[�(�),℘

X,X ◦ O℘

� ]
∣∣∣
q)]1/q

≤ sup
x∈L(℘)

{[ ∫

M̄(�)

ν(�)(dm)
(∑

X�x

1I{diam℘(X)≤�,ξ(X)(O℘
� m)=∅}‖V (�),℘

X,X (·,O℘

� m)‖∞
)q]1/q

+
[ ∫

M̄(�)

ν(�)(dm)
(∑

X�x

∑

j≥1

∑

g∈Gj (X)(O℘
� m)

‖ logZ
(j)
g,X(·,O℘

� m)‖∞
)q]1/q}

.

(6.35)

By using (5.4) and the Minkowski inequality we have

sup
i∈L(�)

ν(�)
(∣∣∣
∑

I�i:
|I |≥2

ψ
(�)
I

∣∣∣
q)1/q ≤ A�

+ sup
x∈L(℘)

∑

j≥1

[ ∫

M̄(�)

ν(�)(dm)
(∑

X�x

∑

g∈Gj (X)(O℘
� m)

‖ logZ
(j)
g,X(·,O℘

� m)‖∞
)q]1/q

.

(6.36)

To bound the second term on the right–hand side of (6.36) we recall (6.20) and note
that the sum over g ∈ Gj (X)(O℘

� m) is zero if there exists no g ∈ Gj (O℘

� m) such that
Y0(g) � x. Hence this term is estimated from above by

sup
x∈L(℘)

∑

j≥1

[ ∫

M̄(�)

ν(�)(dm)1I{∃g∈Gj (O℘
� m):Y0(g)�x}

×
(∑

X�x

∑

g∈Gj (X)(O℘
� m)

‖ logZ
(j)
g,X(·,O℘

� m)‖∞
)q]1/q

. (6.37)

Let j ≥ 1, definition (6.7) and the bound on the diameter of a j–gentle atom, see
Item 4 in Definition 3.2, imply that for all m ∈ M̄(�) and g ∈ Gj (O℘

� m) we have that
diam℘ Y0(g) ≤ �j +2ϑj . The sum over X in (6.37) is then extended only to parallelepi-
pedal subsets of the lattice L(℘) whose diameter is smaller than �j + 2ϑj ; this implies
that this sum has at most (�j + 2ϑj )

2d terms. Moreover given X, there exists at most
one g ∈ Gj (O℘

� m) such that Y0(g) = X. These remarks and the inequality in Item 3 of
Theorem 3.2 of [2] imply the expression in (6.37) is bounded from above by

c1�
d sup

x∈L(℘)

∑

j≥1

ϑ4d
j

[
ν(�)({∃g ∈ Gj (O℘

� m) : Y0(g) � x})]1/q (6.38)

with c1 a suitable real depending on the norm ‖U‖0 of the interaction. By the same
estimate as in (3.16), we have

c1�
d sup

x∈L(℘)

∑

j≥1

ϑ4d
j

[
ν(�)({∃g ∈ Gj (O℘

� m) : Y0(g) � x})]1/q

≤ c2�
d
∑

j≥1

ϑ
4d+d/q
j e−aδ(�)(1+ε)j /q , (6.39)
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where ε and aδ(�) are as in (4.20) and (4.21), and c2 is a positive real depending on
‖U‖0. The thesis now follows from (6.34)–(6.39) and Item 5 in Definition 3.1.
Item 6. We recall that ℘ = d�, α1 > 0 has been chosen below (5.61), α� have been
introduced in Item 5 of Theorem 5.1, and q has been defined below (6.1). We set α′ :=
qα1/(2d2) and recall definitions (6.31) and (6.27). We have

sup
m∈M(�)

sup
i∈L(�)

∑

I�i

eα
′ diam�(I )|φ(�)

I (m)|

≤ sup
m∈M(�)

sup
i∈L(�)

∑

I�i

eqα� diam�(I )/(2d2)|φ(�)
I (m)|

≤ sup
m∈M(�)

sup
i∈L(�)

∑

I�i

eqα� diam�(I )/(2d2)
∑

X⊂L(℘):
O�

℘X=I

|�(�),℘

X,X ((O℘

� m)XñXc)|

≤ sup
m∈M(�)

sup
i∈L(�)

∑

X⊂⊂L(℘):
O�

℘X�i

eqα� diam℘(X)/d |�(�),℘

X,X ((O℘

� m)XñXc)|

≤ e−α�/d + e−qα�γ1/d
(1 + e−qα�/(2d2)

1 − e−qα�/(2d2)

)d
, (6.40)

where we have used (6.4) and diam�(O�
℘X)/d ≤ 2 diam℘(X) for any X ⊂ L(℘).

Item 7. We follow an argument analogous to that in [1, Sect. 5.3]. Let m′ ∈ M(�) and
J ⊂⊂ L(�); we define the following probability kernel on L(�)

J :

qJ (m
′,m) :=

exp
{ ∑

I∩J �=∅

[
ψ

(�)
I (mm′

J c) + φ
(�)
I (mm′

J c)
]}

∑

m∈M(�)
J

exp
{ ∑

I∩J �=∅

[
ψ

(�)
I (mm′

J c) + φ
(�)
I (mm′

J c)
]}

,
(6.41)

where the functions ψ
(�)
I and φ

(�)
I have been defined in (6.29) and (6.30). Note that,

given m ∈ M(�)
J , we have qJ (·,m) ∈ B(�)

J c .

Pick J ⊂⊂ L(�), f ∈ B(�)
J , recall M(�) has been defined in (2.11), by definition of

the renormalized measure ν(�) and by standard measure theory we have µ(f (M(�))) =
ν(�)(f ) and

∫

M(�)

ν(�)(dm′)
∑

m∈M(�)
J

qJ (m
′, m) f (m) =

∫

X
µ(dη)

∑

m∈M(�)
J

qJ (M
(�)(η),m) f (m).

(6.42)

Equations (2.15) will thus follow from

µ(f (M(�))) =
∫

X
µ(dη)

∑

m∈M(�)
J

qJ (M
(�)(η),m) f (m). (6.43)
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ForX ⊂ L(�), let us introduce the family of σ–algebras E (�)
X := σ {M(�)

i (·) , i ∈ X} ⊂
FO�X on the configuration space X . Now, pick � ⊂⊂ L(℘) so that V := O�

℘� ⊃ J .
For η ∈ X , we set

GV (M
(�)
V \J (η), ηO�V

c) := µ
(
f (M(�))

∣∣E (�)
V \J ⊗ FO�V

c
)
(η). (6.44)

We shall prove that, µ–a.s.,

lim
V↑L(�)

GV (M
(�)
V \J (η), ηO�V

c) =
∑

m∈M(�)
J

qJ (M
(�)(η),m) f (m). (6.45)

Therefore, by dominated convergence, we have

µ(f (M(�))) = µ(µ(f (M(�)|E (�)
V \J ⊗ FO�V

c))

V↑L(�)

−→
∫

X
µ(dη)

∑

m∈M(�)
J

qJ (M
(�)(η),m) f (m) (6.46)

so that (6.43) holds.
We finally prove (6.45) in the set of full measure (M(�))−1(M̄(�)). By the Gibbs prop-

erty of the original measure µ, for η ∈ X , such that M(�)(η) ∈ M̄(�), and m′ ∈ MJ c ,
such that m′

J c = (
M(�)(η)

)
J c , we have that

GV (m′
V \J , ηO�V

c) = µ
η

O�V

(
f (M(�))

∣∣M(�)
V \J = m′

V \J
)

=

∑

σ∈XO�V

f (M(�)(σ )) e
HO�V

(σηO�V
c ) 1I{M(�)

V \J (σ )=m′
V \J }

∑

σ∈XO�V

e
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f (m)
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e
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(σηO�V
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J

∑

σ∈XO�V

e
HO�V

(σηO�V
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V \J }
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∑

m∈M(�)
J

f (m)Z
(�)

mm′,V (O�η)

∑

m∈M(�)
J

Z
(�)

mm′,V (O�η)
, (6.47)

see (4.7). Recall V = O�
℘� and set ξ = O℘

� O�η, we have Z
(�)

mm′,V (O�η) = Z
(�),℘

mm′,�(ξ)

for all m ∈ M(�)
J . By using the expansion (6.2), this is allowed because mm′ ∈ M̄(�);
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we thus get

GV (m′
V \J , ηO�V

c)

=

∑

m∈M(�)
J

f (m) e
K

(℘)
� − 1

2

∑
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∑
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[
�
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X,� (ξ,O℘

� (mm′))+�
(�),℘
X,� (ξ,O℘

� (mm′))
]

∑

m∈M(�)
J

e
K

(℘)
� − 1

2

∑
i∈V (mm′)2

i +
∑

X∩� �=∅
[
�

(�),℘
X,� (ξ,O℘

� (mm′))+�
(�),℘
X,� (ξ,O℘

� (mm′))
]

=

∑

m∈M(�)
J

f (m) e
− 1

2

∑
i∈J mi

2+∑
X∩O℘

�
J �=∅

[
�

(�),℘
X,� (ξ,O℘

� (mm′))+�
(�),℘
X,� (ξ,O℘

� (mm′))
]

∑

m∈M(�)
J

e
− 1

2

∑
i∈J mi

2+∑
X∩O℘

�
J �=∅

[
�

(�),℘
X,� (ξ,O℘

� (mm′))+�
(�),℘
X,� (ξ,O℘

� (mm′))
] ,

(6.48)

where in the second step we have used Theorem 6.2 to simplify the terms of the potential
not intersecting O℘

� J . By items 4 and 5 in Theorem 6.1 and by (6.28) we get

lim
V→L(�)

GV (m′
V \J , ηO�V

c)

=

∑

m∈M(�)
J

f (m) e
− 1

2

∑
i∈J mi

2+∑
X∩O℘

�
J �=∅

[
ψ

(�),℘
X (O℘

� (mm′))+φ
(�),℘
X (O℘

� (mm′))
]

∑

m∈M(�)
J

e
− 1

2

∑
i∈J mi

2+∑
X∩O℘

�
J �=∅

[
ψ

(�),℘
X (O℘

� (mm′))+φ
(�),℘
X (O℘

� (mm′))
] .

(6.49)

By using definitions (6.29) and (6.30) the above expansion reduces to the renormalization
scale �. We thus get (6.45). ��
Proof of Theorem 2.2. Item 1. Consider (6.35) and recall (6.9); the first term on the
right–hand side of (6.35) tends to zero in the limit � → ∞ by virtue of Item 6 of Theo-
rem 5.1. The second term is estimated from above by the convergent series in (6.39); it
is not difficult to prove that its sum tends to zero in the limit � → ∞ as a consequence
of (4.19)–(4.21).
Item 2. The statement is a straightforward consequence of (6.40) and of the expression
of α�. ��
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