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Abstract. We study a simple model for interface fluctuations which can be
seen as a simplified version of the stochastic phase field equations in one space
dimension. In a suitable scaling limit, the front evolves according to a linear
stochastic ODE with a long memory drift. We then study the long time be-
haviour of the limiting process proving an invariance principle; the latter can
also be obtained directly from the original process. We note the model can
be interpreted as a Brownian motion weakly coupled to a random environment
whose evolution depends on the location of the Brownian motion. The limiting
process is non-Markovian and exhibits aging effects.
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1. Introduction

Consider a fluid in a vessel, thermally isolated from the exterior, in a state
where two phases coexist, for instance water and ice at the melting temperature.
The equilibrium shape of the interface separating ice and water is given by the
Wulff shape, however, if we “look more closely”, we will see that the above
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description is valid “only in the average”. Local fluctuations of temperature
cause small portions of ice to melt and/or water to solidify. The latent heat
produced by these local phase changes remains however in the system, which is
thermally isolated, and influence the successive fluctuations: the analysis of the
effect is the main goal of this paper.

Unfortunately, serious technical difficulties force us to drastic simplifications,
starting from the most important one of a “planar symmetry” under which
the system becomes one dimensional. Then, macroscopically, the interface is
simply represented by a point, X (¢), with water and ice at its right and left. By
fluctuations we will see small droplets of water forming in the ice and ice grains
in the water and when such changes occur at the interface, they will cause a
small displacement of X (¢). Our next assumption is that the effect of the local
phase changes in the bulk is negligible and only those at the boundaries are
relevant, so that our model will only admit the latter and not the former. A
justification of the assumption can be found in [2], where it is proved that the
feedback action of the latent heat will destroy the small droplets of the other
phase on very short times, while its action on the interface dynamics is effective
only on a much longer time scale. Actually the model we consider here can be
viewed as a simplified version of the stochastic phase-field equation considered
in [2], where the phase changes in the bulk are suppressed and only the interface
dynamics is left.

We model the infinitesimal displacements of the interface as the sum of two
contributions. The former is due to the Brownian nature of fluctuations, the
latter as an interaction with the temperature field. The displacements of the
interface produce a latent heat which, due to the assumption that the system is
isolated, remains in the system and modifies the temperature in such a way to
inhibit further displacements in the same direction. More precisely, the model
is defined as follows. Let us denote by (-,-) the inner product in Ly(R,dz) and
let w(t) be a standard Brownian motion. The processes X(-) € C(Ry) (the
interface position) and h(t) = h(t,z), h(t) € C(Ry;C(R)) (the external field)
evolve according to

dX(t) = Muw(t)+v{px,h(t)) dt,

. (1.1)
dh(t) = A dt = px(ndX (2),

where A is the Laplacian in R, ¢ is a smooth positive function, px(z) :=
p(z — X), the parameter A > 0 is related to the thermal fluctuations, and v > 0
is related to the latent heat. We shall consider the Cauchy problem for (1.1)
with X (0) =0, h(0) = 0.

Note that if dw(t) > 0 then, by the first equation in (1.1), dX () > 0 and
by the second equation in (1.1), dh(t) < 0, so the drift (px (), h(t)) has indeed
the effect of restoring X (t) towards its original value (recall that v > 0). Due
to the presence of the Laplacian in the evolution for h(t) such a restoring effect
is however delayed in time and we shall get, in a suitable scaling limit, that the
evolution of X (¢) is non Markovian. Moreover we note that (1.1) can be also
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seen as a model for a random walk coupled to the random environment h(t, z).
The environment is however dynamically getting all its “randomness” from the
random walk.

We shall discuss scaling limits of (1.1) as A | 0 under the (much) simpli-
fying assumption A = v which means “weak” coupling with the external field.
Referring to [2] (where an analogous assumption is made for the phase-field
equations) for further comments on this point, we simply discuss our results.
We prove that X (A~2t) converges in law to a process £(t) which solves

dé(t) = H(t)dt + db(t),
- L dé(s) (1.2)
H@) = _b/ or(t —s)

where b(t) is a Brownian motion. Note that (1.2) can be formally obtained
from (1.1) by setting ¢x) = do and H(t) = h(t,0); it can be also seen as
a linear Stefan problem. If we interpret, as before, db(t) as a given external
fluctuation, then —d&(s)/+/2n(t — s) is the contribution to the displacement
of the interface at time ¢, due to the latent heat released at time s, which is
depressed, due to one-dimensional diffusion, by the factor 1/+/27(t — s).

We shall discuss the long time asymptotics of £(t) and show that, despite the
simplicity of the model, it exhibits a rather rich and interesting structure with
characteristic features as “slow growth” and “aging”. In particular we obtain an
invariance principle for £(¢~!t) and prove that a different scaling limit of (1.1)
converges to the same limiting process.

We also introduce a model for the case of a one-dimensional droplet (a
segment of ice in a one-dimensional ocean), the bump. We then have two
processes X1 (t) and X»(t) which describe, respectively, the variations from the
initial positions of the first and of the second interface. We count as positive
variations along the “outwards normal” and write an effective model for the
evolution of X;(t), ¢ = 1,2, which is analogous to (1.1). Namely, by letting
wi (t), wa(t) two independent Brownian motions, we have (remember we set

A=9)

dX2(t) = Adw2(t) — Mex,m,h(t)) dt, (1.3)
1
dnt) = §Ah(t) dt — @x, (1)dX1(t) + px,()dX2(t),

with initial condition X;(0) = 0, X2(0) = A~'a, @ > 0, and h(0) = 0. This
choice means that in the macroscopic interval (0, a) there is a phase and outside
the other one.
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The scaling limit of (X1(A72t), X2(A~2t)) can be carried out as in the case
of a single interface; the limiting process (& (t), & (t)) solves

( B [ das M
dé (t) = dbi(t) [ \/m / dta(s 27 (t — s) ]dt’
< ) [ des(s) -
B 2(t s) 2\8
| der(t) = dbalt [ / a6 (s m " m]‘”’

with b; and by independent Brownians.

Macroscopic deformations of the droplet are measured by the variable {(t) =
&1(t)+&2(t) which gives the variation of the size of the droplet. The displacement
of the center of the droplet is instead given by n(t) = [£2(t) — &1(2)]/2; recall
we count as &;(t) positive in opposite directions. At very short times both are,
approximately, independent Brownian motions. Then drifts enter into action
and we shall prove that in the long times the deformation ((t) behaves as in
the case of the single interface, having size of order /logt, while n(t) becomes
a Brownian motion independent of £(t).

2. Notation and results

We denote by || - [|p, p € [1,+00], the norm in L,(R) := L,(R,dz) and by
(-,-) the inner product in Ls(R). Let b(t) be a standard Brownian motion on
the filtered probability space (Q, F, F, P); we denote by E the expectation w.r.t.
P. We assume the function ¢ in (1.1) to be a probability density in S(R), the
Schwarz space of test functions on R. We set

X(t) == X(\ %),

‘PEA) = 90;2)(,5) =" (/\ z — X (1)),
ha(t,z) == A" Ph(A 28, A7),

To keep notation simple we rewrite (1.1) in terms of the scaled variables X, hy
getting

((dXa(t) = db(t) + (¥}, (D)) dt,
1
dha(t) = SAm() dt — ¢V dXA (D),

X/\(O) = 07

\
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We consider the system (2.1) defined by its mild version

X\(t) = b(t)+ / ds (o™, ha(s)),
, 0 t (2.2)

ha(t) = —/db(S)Pt—sﬂpgk) —/ds <90g)‘);h>\(3))Pt—3809),
0 0

where p; := exp(tA/2) is the heat semigroup, whose kernel is given by p(z) =
exp(—x2/(2t))/V/2xt, and, for any f € L,(R), p;f denotes the convolution p;* f.

There exists a unique F-adapted process (X, hy) € C(R4; R x La(R)),
which solves (2.2), see the Appendix for a sketch of the proof. The process
X, (t) is an Fi-adapted, square integrable semimartingale; a straightforward
computation shows

t
mat) = = [ dXa(s) el (2.3)
0

We can rewrite the limiting equation (1.2) as

£(t) = b(t) - / ds pr—s(0)E(s). (2.4)

Since Brownian motion is a.s. continuous, we will restrict to continuous b(t)
in (2.4); then existence and uniqueness of a solution to (2.4) follow by standard
theory on singular Volterra equations with Abel kernel, [6, §1.12]. Our first
result is the scaling limit of (2.1) to (2.4).

Theorem 2.1. Let X (resp. &) be the solution of (2.2) (resp. (2.4)). Then
for each N € [1,00) there exists 7 = 7(N) > 0 such that
lim E sup |Xa(t) —&@)|N =0. (2.5)
MO <7 |log Al
Note (2.5) implies that, as A | 0, X\ = £ where = denotes weak conver-
gence on C'(R.) endowed with the topology of uniform convergence in compacts.
In addition (2.5) reduces the behaviour of X(t), solution of (2.2) up to times
t =~ |log A| to the long time asymptotics of (2.4).
It turns out that (2.4) is explicitly solvable. We introduce the associate
Green function F'(t) as the solution of

t
Ft)=1- / ds py_s(0)F(s). (2.6)
0
Indeed, once we determine F', the unique solution of (2.4) is given by
t t
£(t) = b(t) + / F'(t — 8)b(s)ds = / F(t — 5)db(s). 2.7)

0 0
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The second identity holds a.s. by integration by parts for stochastic integrals.
The long time behaviour of (2.4) is determined by the following asymptotics of
its Green function.

Theorem 2.2. The Green function F' is given by

F(t) = et/? erfc(\/g), (2.8)

where, for any z > 0,

fe(2) 27d eV
erfc(z) := Y —.
T

Furthermore

Jim VF(t) = \/g (2.9)

This result is known since Abel (1825), but for completeness and in view of
next applications, we review some of its possible proofs in Section 4 below.

The explicit knowledge of the Green function as provided by Theorem 2.2,
determines, via (2.7), the long time behaviour of the front £(¢). As already
mentioned in the Introduction the feedback force on &£(t) represented by the
integral term in (2.4) has a very important effect. The forcing random noise b(t)
typically grows proportionally to /%, but the front’s magnitude only as v/Iog?.
The fluctuations of |b(t)| above v/t are responsible for such a growth, £(¢) would
remain bounded if |b(t)] < c¢v/t. It is just because of the unboundedness of
b(t)/+/t that &(t) diverges as t — oo. If we kill the noise after a very long
time %, the front £(¢ + s) moves back towards the origin, restoring equilibrium,
but the time s it takes has the same order as t. The system has therefore a
very long memory which goes back to its whole previous history. This is a
very simple example of aging, a property shared by many materials where non
elastic, plastic effects are important and the pattern followed for restoring a
deformation depends sensitively on the way it has been created.

Corollary 2.1. We have that £(t) is a mean zero Gaussian process, with

m L E &) = % (2.10)

li
t—oo logt
Moreover, setting n(t, s) := E(£(t) | Fs) for 0 < s < t,

2 s
. “1y —12 _ ~ _S
EllII(l] E ne7"t,e”"s)® = . log (1 t)' (2.11)
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We next formulate the asymptotic behaviour of £(t) as an invariance princi-
ple. The aforementioned aging property of £ will imply a scaling property of the
limiting covariance, which turns out to be a function of s/t, see (2.13) below.
Recalling (2.7), the asymptotics (2.9) suggests £(e _lt) converges inlaw, ase | 0,
to a process whose formal expression is given by z(t) = \/2/m fo dws (t—s)~1/2,
where w is a standard Brownian motion. Observe x(t) is — formally — in-
variant under the scaling ¢t —> £~'t. Unfortunately, since (t — s)~'/2 is not in
Ly([0,1],ds), z(t) is not well defined as a process in C(R™). Since it is Gaussian,
there are several ways to define it on an appropriate distribution space. For our
purposes it will be more convenient to define z(¢t) as the image of the Wiener
process under a suitable linear map.

For each T > 0 let E := {4 € C'([0,T]) : ¥(T) = 0} which is a separable
Banach space under the norm [¢|g = sup,¢jo 77|’ (t)|, and denote by E* its
dual space. Let Co([0,7]) := {w € C([0,T]) : w(0) =0} and A : Co([0,T]) =
E* be the continuous linear map defined by

/dt¢ /ds w(s), Vi € E. (2.12)

t—s

Let P be the Wiener measure on Cy([0,7]) and set Q := P o A~', which
is a probability measure on (E*, B(E*)) Then @ is a Gaussian measure with

covariance v 7
/ Q(dz) 2()(p) = / dt / ds p(t) w(t, 5) o(s), (2.13)
E* 0 0

tAs

where

9 _g/du 1 _ 2, VEVs+ViAs
_7T0 ViE—u)(s—u) T g\/tVs—\/t/\s'

Theorem 2.3. Fix T > 0 and let £ be the solution of (2.4). We consider
E(t) == &(e71t), t € [0,T), as a random element of E* by setting &.(¢) :=
ST dtp(t)E.(t), ¢ € B. Then & => Q as e | 0 in the topology of E*.

Proof. By the scaling property of Brownian motion, P is the distribution of
be(t) = \/zb(e™'t), t € [0,T], where b is the Brownian motion in (2.4). We also
introduce z. := Ab. whose law is Q for any € > 0. We shall prove the stronger
statement
lim E [|&, — 2|3 = 0. (2.14)
el0

Let F.(t) :== e '/2F(¢'t), F as in (2.8). From (2.7) and (2.12), by a straight-
forward computation,

t

&) —z(¥) = /dtw /ds L(t—s)

0
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By using (2.9) it is easy to show
2

hm dt/ds
\/ t—s

from which (2.14) follows. O

‘—0

From Theorems 2.1 and 2.3, we can get directly the scaling limit of X to Q.

Corollary 2.2. Lety()) be a monotone positive function such that limy_,o ()
= +o0 and limy_,q |log \|"*y()\) = 0. For each T > 0 set X (t) := X\ (y(\)t),
t € [0,T], where X is the solution of (2.2). Then, as a random element in E*,
Xy = Qas A L0.

We next discuss the case with two interfaces. Let (X7, X2) be the solution
of (1.3), setting & A(t) == —X1(A"2t), &o,x(t) := Xa(A't) — A 'a we can prove
a result analogous to Theorem 2.1, i.e. that (£1,x, §2,1) converges to the solution
of

(2.15)

We omit the formal statement but discuss the long time behaviour of the limiting
equation.

The Green function for the system (2.15) is the 2 x 2 matrix F(¢) which
satisfies

t
H=T- /ds G(t— 5)F(s), (2.16)
where I is the 2 x 2 identity matrix and

_ [ p(0) pi(a)
G(t) := ( py oo ) (2.17)

Theorem 2.4. The elements F; ;(t), i,j € {0,a}, of the matrix F(t) are invari-
ant under the exchange of 0 and a, namely

FO,O = Fa,aa FO,a = Fa,O- (218)
They are also decreasing functions of t and

0<Fo<1l, 0<-F,<l. (2.19)
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Finally the asymptotics for

F(t) = Foo(t) + Fou(t),  F~(t):= S : (2.20)
are
1
. + — _
t_lg_noo\/ZF (t) = 5 (2.21)
lim F(t) = L 1 (2.22)
#5160 T 21+ a '

The solution of (2.15) can be represented, in terms of the Green function

F(t), as t
(66) = [re-a(). -

From Theorem 2.4 we deduce an invariance principle for the process (&1, &2).

Corollary 2.3. Let

n(t) = % [6(®) —&®)], () = &) + &) (2.24)

Then n and ¢ are independent. Moreover 1. (t) := \/en(e~'t) converges weakly
in C([0,T]) to a Brownian motion with diffusion coefficient [2(1 + |a|)] 2. Fi-
nally ( satisfies the asymptotics (2.10)—(2.11) and the invariance principle in
Theorem 2.3 with 2/m replaced by 1/(2).

The above asymptotics tells us that the displacement 7 of the droplet behaves
as a Brownian motion whereas the “vibration mode” ( is essentially bounded
in time.

3. Convergence to the linear Stefan problem

In this section we prove Theorem 2.1. It will be convenient to prove conver-
gence to one iteration of (2.4), i.e.

€0 =00 — [dspu b0 + 5 [dse), (31)
0 0
where we used .
/ ds' pr w (0)pw +(0) = % (3.2)

We define, for any 0 < s <,

t
Pt(:s\) = <(pi(5)‘)7pt—s(pg>‘)>a Kt(i\s) = <(p§)‘),/db(sl) pt—S’(p,(s’)\)>‘ (33)
s
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Plugging (2.3) into the first equation in (2.2) we obtain X () solves
Xa(8) =b(t) + FEV (1) / ds / s’ P (o, / AX5(") oo ), (3:40)

FV(t) = — / ds K. (3.5)

Note that in the kernel K § 0) the factor cp( ) is the future w.r.t. the stochastic
integrals.
The strategy of the proof consists in introducing

Ya(t) = Xa(t) - b(t) - BV (1), (3.6)

showing it is a.s. differentiable and proving (see Lemma 3.4 below) the conver-
gence of Yy (t) to the derivative of £(t) — b(t) — fOTds pi—s(0)b(s). Together with
an analysis of FO()‘), this will imply Theorem 2.1. The process Y} (¢) solves

t

Ya(t) = / ds [Ff*’( )+ (s) / ds / ds' P ¢g¢>, / dYx(s") ps,_s,,<p<,,>>

0
(3.7)
where
FV (1) / ds PO K, (3.8)
N (1) / ds / ds' Py PO KN, (3.9)

It is easy to verify for each A > 0 the process Y} is a.s. in C* (R, ), therefore we
can write the last stochastic integral in (3.7) as an ordinary one and get, after
exchanging the order of integrations,

a(t) = FN@) + FV (@) / ds V(s / ds' PO PYY. (3.10)

We can now bound |Y3(#)| by the Gronwall lemma. To this end we need a priori
bounds on F(’\)( t), i = 1,2. A basic tool is the following lemma.

Lemma 3.1. For each N € [1,00) and p,q,r € (1,+00), chosen so that p~1 +
g !'=1, ¢g>max{N,r}, let
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Then there is a constant C = C(q,r) such that

t2 1
(E‘<¢,/db(8)pt2_sv(s)>‘N) " < Clts — 1) (Elpl12)
t1

< (E swp fo(ale)", @y

t1 SSStQ

for any t1 < ty and any random elements ¢ on L,(R), and v(-) on C(Ry; L. (R))
adapted w.r.t. F.

Note we did not assume any adaptability on 1), see the remark after (3.5).

Proof. Applying Holder inequality first on the measure dz (with exponents p
and ¢) and then on the measure dP (with exponents aN~! and a(a — N)™1)
we have

12
(E‘<¢,/db(s)ptz_sv(8)>‘N)1/N
< [e (i | /db —

< (Ellvl) """ (€| / -] ) " (312)
i1
Let us introduce

MU (y / db(s) [pry_sv()]W), 7€ [tuts),  (3.13)

which is an F,-martingale with bracket

M)y / ds [pra_s0(5)2(y)-

By the BDG inequality (see [5, IV, Corollary 4.2]) for each ¢ € (1,+400) there
is a universal constant C' = C(q) such that

e (M) <0 E( [aslpu-solow) " (3.14)
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By taking the limit 7 1 ¢2 we can thus bound the second factor on the r.h.s.

of (3.12) as follows

b2 o\ /1
(€] / ab(5) po-0(5)])

<c(] / st o)) v

q/2

r q/2] 49
cle( [astm-w)”]
t1

to

q/2 1/q

<c|e( [aslpaa o)™
t1

IA

(3.15)

In the last step we used the Young inequality, i.e. ||f * gllq < ||f|l~|lg||, where

(") "' +771 = 1+¢~L. To conclude the proof, we observe for each r' € (1, +00)

there is a constant C' = C(r') such that
2
[l < Cta =1,
t1

plugging this bound into (3.15) and using (3.12) we get (3.11).

We can now get some apriori bounds on X (t).

Lemma 3.2. For each N € [1,00) and ¢ > 0 there is a constant C = C(N, ()

such that

E sup [Xx(t)|¥ < Ce“TAN,
t€[0,T)

sup E sup | Xa(t") = Xa(t)|N < CeCTANN/2,
te[0,T] ¢ eltt+7]
for any 7 € (0,1), A € (0,1), and T € Ry.
Proof. Since ¢ € S(R) is a probability density,

1P| < pies (0).

(3.16)

(3.17)

(3.18)

Furthermore, by a change of variables, for each p € [1, +00], there is a constant

C = C(p) so that, for any A € (0,1),

oM ||, < CA—1H/P,

(3.19)
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Hence, by applying Lemma 3.1 with ¢=! = (/2 and r=! > 1 — (/2 (which is
allowed for ¢ small enough) we get that for each ¢ and N there is a constant
C =C(¢,N) so that, for any X € (0,1),

sup  (E[KVMYN < ovTa<. (3.20)
0<s<t<T

Using definitions (3.5), (3.8), (3.9), and (3.2), (3.18), (3.20) we conclude that

E sup |EV (@)Y CT3N/2)\~¢N

t€[0,T] (3.21)
sup E[FV@IN < TN N i=1,2.
t€[0,T]

IA

Combining (3.21) with (3.2), (3.18) and equation (3.10), by the Gronwall lemma
we get

sup E[VA(t)N <4V sup {EIFEV 0N +EIFY ()N}
t€[0,T) te[0,T)

T
1
+ )N / ds e™/D(T=9) LE|FXN ()N + E|FY (5)|V}

< CeCTA—N, (3.22)

Recalling that X (¢) = Y(t) + b(t) + Fy V(t), since E sup,< [b(#)[N < CTN/?,
inequality (3.22), together with the first bound in (3.21), implies (3.16).
By using again (3.20) we show

sup E sup |F()‘) Fé)‘)(t)|N§CTN/2(/\’<T)N
te[0,Tst+7<T  t'€[t,t+7]

Then (3.17) follows from (3.22) and Esupy ¢y 44 [b(t) — b(#)|V < crN2. o

Given 0 € (0,1), we decompose Fim (t) as follows

FY0) =F)0+FRV®), =012 (3.23)
where

F(S(SIZ( =—1ly>a /ds /db ) Po—sgt

F1(6L)() = 14>46) /dspt s /db ps—s(0), (3.24)

t s—0
1
F2(,61),(t) =73 156} /ds /db(s') ps_s(0)
4 0
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and Fi(j‘,-t’d) (t),i=0,1,2, is defined by difference so that (3.23) holds. We need
0 > 0 above because fotdb(s)pt_s(O) is not well defined as a process in C(R4).

Lemma 3.3. For each N € [1,00) and { > 0 there exists a constant C =
C(N,() such that

1/N )
(E sup |F<“>()|N) < CeCTAC1=O/2 £ 57122 £ N2/3], i=0,1,2,

te[0,T]
(3.25)
for any A € (0,1), 6 € (0,1), and T € R,..
Proof. Setting
t—9 t—34
TP = (o, [ @@ pese) = [ dbis) p-s(0), (3.26)
0 0
we have
tAS
IR0 / ds K — 155y / ds (T + K1),
§
tAS t
FOP (1) / ds P KO) + 154y / ds (PY — pr_s(0)) K0y
)
+ 1>} /dsptfs @M + Kﬁﬁ) s)
tAS s
/ ds / ds' + 1iig / ds / as'} P PO) K,
T / ds ( / ds' PO PO — )Kgfg
5 s
1 t
- 3 Lieza) / ds (T + K. (3.27)

[

The lemma is a consequence of the Holder inequality, (3.27), (3.20), (3.18),
and the following bounds: for each N and ¢, there exists a constant C = C(N, ()
such that, for any A € (0,1),d € (0,1), and T € R

1/N

sup (E|TOOIN)YH < CeCTo=1N2¢, (3.28)

s€[4,T]
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/dsKs)‘s) 5

N\1/N
sup /dspt s KW | ) < CeCT [6(1_0/2 + (AT26)S(AC + \/5)],

I/N CeCTIVE+ (A728) (A +V0)], (3:29)

sup
te[6 T)

s s—0
te s T]
(3.30)
(A NN CT \2/3—
[E( sup (t — 5)%/|PXY — p,_,(0))) ] < CeCTNY3¢. (3.31)
0<s<t<T
Proof of (3.28). By changing variables,

(M) _ / dz (@ — Xr(1) I, (), (3.32)

where

t—4d
0= [ pea(0) [ay [exp { - BEZTNEIY 1oy
0

By the BDG inequality, see (3.13)—(3.14), for each N and ( there exists a con-
stant C = C(N, () such that

t—9
E |It($)|N <CE [ /dspt_5(0)2

< (fanlew{ - B} o)

< CGCT{1{|$‘SX—<}(571)\272C + 1{‘w|>)\—4}|10g(5|}N, (333)

where we used 1 — exp{—22} < 1A 2%, and Lemma 3.2 in the last bound.
By Holder inequality and (3.33) we then have

N\1/N

(] [ twoe-xone))
{|z|<A=¢}

N—1 1/N
s{E[( [ ootz - xaapve-yt dxut(ar)vv]}

{|z|<Ax—¢} {|z|<x=¢}

N

<l / de |I,(x

{lzl<A=¢}
< CeCTa=IN2=3¢, (3.34)



16 L. Bertini, P. Butta, E. Presutti and E. Saada

Analogously, using again the Holder inequality and (3.33), we get that, for each
M >0, N, and (, there is a constant C = C(M, N, () so that

1/N

( E ‘ / dz o(z — X(1) I () ‘N) (3.35)

(2N—1)/2
< { E [( / dz oz — X}\(t))zN/(QN—l)(l + m2)1/(2N—1))

{lz|>x=¢}

[ e}

{lz|>A=¢}

aN-171/(2N)
< [E ( / dz p(z — X\ ()2 N1 (1 4 x2)1/(2N71)) ]
{lz[>A=¢}

1 1/(2N)
x(E / do |It(x)|2N>

1+ 22
{lz|>x=¢<}

< CeCT\MC |logdl,

where we used, in the last step, the decay (faster of any power) of ¢(x) as
xz — 0o0. Choosing M large enough, the bound (3.28) now follows from (3.32),
(3.34), and (3.35).

Proof of (3.29). To prove (3.29) and (3.30), we decompose Kt(i)_é as follows

t

Kt(ft\)fa = <S0('\); /db(s)Pt—sw(A)>

t—6
t

0
+ <(‘0/\[XA O-xr-a7 ~ ¢ / db(s) pt—s‘P(/\)>
t—4

t
(o, [ poae — o), (3.36)
t—9d

where we used

t
<‘10§/\)5 /db(s)l’t—swgi)5> = <90g\?;(>\(t)—X,\(t—6)]’ /db(s)pt—sw()‘)>-

t—6 i—4

It is now possible to switch the order of integrations (the remark after (3.5)
forbids to do it directly on definition (3.3)); then, changing variables and inte-
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grating by parts, we have for ¢t > 4,

t s
/ ds <<p(”, / db(S’)psfsfcp(A’>
§ s—6

t (s'+8)nt
- / db(s') / ds (o™, py_p™)

s'Vé
(s'+8)At—s'

¢
0
=— /ds'b(s')@ / ds (o™, pse™)
0

s'Vo—s'
SN (t—96)

- / ds' b(s") (™, ps_s o™) (3.37)
/dS b pt S’SO(A))

— Liters,201) /ds'b(s')(go(’\),p(;fs,(p(/\))_

t—5
Therefore
N\ /N
( sup /ds () /db ) ps— 590 >‘ )
te[s,T]
s—0
/ 1 / 1
1/N
<C(E sup |b N sup / +/ds
( tE[O,T]| ()| te[s,T] Vs s \/t—s)
<CVoT, (3.38)

where we used the proof of (3.18).
Now we observe that, for any a,b € R and n € [1, 00],

e = @alln < 11€'llnlb — al- (3.39)
In fact for n € [1,00) we have

T—aAb

||<pb—<pa||2=/dw‘ /dw’(y)

z—aVb

n

T—aAb

§|b—a|"_1/dx /dy|cp'(y)|”

z—aVb
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= [b—al"ll¢'l[7,

while (3.39) holds for n = oo because ¢’ is bounded.
Then, by Lemma 3.2 and (3.39), (we will choose (' at the next step),

(@Y A) ey l/a
t:gép] (E ||LPA(XA(t)—XA(t—6)) — )”p)

< ONTHP |||, sup {E||XA(t) — XAt — 6)|*}/®
t€[0,T]

< CeCT A 1H1/p (\=¢'§ +/6).
Hence, by Lemma 3.1 and (3.19)

(A / NY) /N
% — W () ‘
tes[l(l)?T] { E ‘<<P>\(XA(t)—XA(t_5)) e, /db(s) Pi_sp > }

—(i_1 1
< 0(5[1 (z=3)/2 tes[l(l)pT {EllSD,\(XA(t) X (t—6)) —<P('\)||ff} /a”‘P(A)”r

< CeCT(A28)C(A=¢6 + V0), (3.40)

where we have chosen 771 —¢7! =1 —2(, p~! > 1 — 2( (which is allowed for

CEe (05 1/2))7 and CI = pC(]- - 2()
Similarly, by Lemma 3.2, for ¢ > r,

) _ o) a3/

sup {E sup [lpi™ — 7
tef0,T] SE[t—6,t]
<OXTHYT ||, sup {E sup [ Xa(s) = Xa(t— )|}
te[0,T] sE[t—d,t]

S CCCT)\_1+1/T (A_CI(S+ \/5)
Hence, by Lemma 3.1 and (3.19),

N N Ny L/N
sup { ( ) /db 8) Pr—s( 90(3)‘) §7)5)>‘ }
tef0,T]

—(1_1
< Cgl = b sup {(Ellet”13)"/*(E sup [lpf — o 5[12)"/7)
te[0,7T) sE[t—0,t]

< CeCT(A26)¢(A=$6 + V), (3.41)
where we choose ¢, as in (3.40), and ¢' = r{(1 —2({). The bound (3.29) follows
from (3.36), (3.38), (3.40), and (3.41).

The bound (3.30) can be proved by analogous computations which we omit.
Proof of (3.31). We use that (-) is a probability density, 1—exp{—22} < |2|%/3,
and Lemma 3.2 to get

N
E[ s (t=9)'IRY ~ pis (O)]
_8 -_
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<E sup (t—s) / dz dy p(2)o(y)
6<s<t<T

M@ —y + Xa(t) = Xa(9))? N
x‘eXp{_ 2(;—5) : }_1‘
< CeCT A\N@/3-0)

O

Lemma 3.4. Let Yy be the solution of (3.10) and 7 the (unique) continuous
solution of

¢ ¢
1 1 1
n(t) = 5h(t) — 5 / dspis(0) b(s) + / ds(s). (3.42)
0 0
Then for each N € [1,+00) and ¢ > 0 there exists 7 = 7(N, () > 0 such that
LmA~B=0 E sup  |[Ya(t) —n@)|N =0. (3.43)
A0 t<r|log Al

Proof. Recalling definitions (3.24), we claim that for each N there exists a
constant C' = C(N) such that for any § and T

1 N\1/N
(E sup ‘FffL)(t)—ib(t)‘ ) < CVeT, (3.44)
tE[O,T]
t
1 N\1/N
(E sup ‘Féj})(tni / dspt_s(O)b(s)‘ ) < CVT. (3.45)
te[0,T] J

Indeed, by switching the order of integrations in (3.24) we have

1 1
FO)() = 5b(t) = = 31u<0) (D)

1
+ 1(>6) /db /dSPt s(0)ps—sr (0)—5)

s'+4d

(b(t - 8) = b))

N | =

+

from which, recalling (3.2), (3.44) follows by a straightforward computation.
Analogously

/dspt s( 1{t<6} /dé‘pt s(0)b(s)
t
+ 5 1{t>6 / 5 Pi—s( )s
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which implies (3.45).
We now choose § = A\*/3. By Lemma 3.3 and (3.44)—(3.45), for each N and
¢, there exists a constant C' = C(N, () such that for any A and T

1 N\1/N
(E sup ‘Fl(’\)(t)——b(t)| ) < CeCTNY3=C (3.46)
¢€[0,T] 2
t
1 N 1/N
(B sw |FV@®)+3 / dspi-s(O)b(s)| ) < CeCTRC (3.47)
¢€[0,T] 2

Next from (3.22), (3.31), and Holder inequality we get

1\ (NN
[ sup /dsY,\ /ds PP — —)|] < CeCTNY3C (3.48)

telo, T]

Let us define
t

Ralt) = FO(0) = 3000 + B0 + 5 [dspis0)b(s)
0

1
/ ds V(s / ds' PP — —), (3.49)

then (3.46)—(3.48) imply that, for each N and ¢, there is C = C(N, () such that
for any A and T

(E sup |Ra@®)™)"N < CeCTI/3=C. (3.50)
te[0,T]

y (3.10), (3.42), and (3.49) we have

t

Va) = n(0) = Ba0) + 5 [ds (13 (5) = (o).

0

The lemma follows from (3.50) and the Gronwall lemma. O

Proof of Theorem 2.1. We recall X, (t) = f(fds Y,\(s)+b(t)+F0()‘) (t) and observe

that
/dsn )+ b(t /dspt s

where 1 (resp. &) solves (3.42) (resp. (3.1)). Therefore

Xa(t) — £t) = EV(8) + / ds pr_»(0)b(s) + / ds(Va(s) = n(s)).  (3.51)
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We note that, see (3.24), Fo(’ég t)= 2F2(2 (t). Hence, by Lemma 3.3 and (3.45)
(recall we have chosen § = A*/3), for each N and ( there exists a constant
C = C(N, () such that for any A and T

t
1/N

N
(Emﬂﬁ”@+/@mﬂ®W@‘) < CeCTH2/3C (3.52)
t<T )
the limit (2.5) thus follows from Lemma 3.4, (3.51), and (3.52). O

4. The linear Stefan problem

Proof of Theorem 2.2. One iteration of the equation (2.6) solved by the Green
function F' leads to

t t
F@:l—/%m@+%/%F@, (4.1)
0 0

which is the integral formulation of F'(t) = F(t)/2 — p,(0) with initial datum
F(0) = 1. Its solution is (2.8) whose asymptotics yields (2.9), see [1].

The equation (2.6) can also be solved by successive iterations, giving rise to
a series whose terms are multiple integrals that can be computed explicitly:

o
1 t\n/2
F(t) = “1)'—(= 4.2
0=Vt () (4.2)
where T is the Euler Gamma function. One can then verify that the series on
the r.h.s. of (4.2) is indeed the expansion of the r.h.s. of (2.8), see again [1].

In Proposition 4.1 below we will prove that

F(t) = Eo(exp{~L°(1)}), (43)

where P, is the distribution of a Brownian motion b(t) starting from z, E, is
the corresponding expectation, and L®(¢) is the local time in a of b(t). Note
that L°(t) has the same law as |w|, for a Brownian motion w; (see [5, VI,
Corollary 2.2]); we can compute explicitly the r.h.s. of (4.3) and get a third
proof of (2.8). O

We now formalize the probabilistic interpretation of the Green function F'(t)
in terms of the local time of a Brownian motion. This interpretation will play
a crucial role in the proof of the asymptotics for the two centers.

Definition 4.1. Let @, be the joint law of a Brownian motion b(t) starting
from z and of an independent time s with a mean 1 exponential distribution.
A “Brownian motion starting from z and killed with a rate given by L°(¢)” is
then the process z(t) defined on the state space R U {0’} by

s ={ o7 Higsy (44
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where 0" denotes the cemetery point. For ease of reference we will sometimes
call z(t) a “Brownian motion killed with rate dp”, and denote its law by Q.

Remark. Despite the fact that L°(t) depends on the whole past {b(u),u < t},
z(-) is a Markov process. Indeed, conditioning on {z(u),u < t}, if z(t) = 0',
then z(t') = 0, for all ¢ > ¢, independently of the previous history; if instead
z(t) = z € R, then s > L%(t) and the (conditional) law of the residual time
s — L°(t) is again an exponential distribution of mean 1. The conditional law
of z(t + -) is then @, thus concluding the proof that z(-) is Markovian.

Proposition 4.1. The transition probability of the process z(t) restricted to
R has a density q;(x,y) with respect to the Lebesgue measure, which is solution
of

t
a(z,y) =p(x —y) — /ds Pi—s(2)g5(0,y). (4.5)
0

Furthermore F(t) is the probability of survival at time t for the process z(t)
starting from 0, and (4.3) holds.

Proof. For any Borel set B in R,

+oo
%@@eBﬁa/%fs%@weBﬂﬂﬂ<@
0

“+oo

= /ds e ? /dy pe(y — ) Payy (Lo(t) < s)
0 B

= /dy pt(y - ZL') Ew,y;t(e_LO(t))a (46)
B

where in the last two terms, P, . is the law of a Brownian bridge §(¢) from
T to y in time ¢, E; ;. is the corresponding expectation, and L°(t) is the local
time of B(t). Thus the restriction to R of the transition probability of x(t) has
a density pi(z,y) = pi(y — @) Eg y(exp(—LO(t))). We are going to prove that
pe(z,y) solves (4.5), thus pi(x,y) = ¢:(x,y), which yields

a(z,y) = pe(z — y) Eaye(exp{=L°(t)}). (4.7)

We will see that (4.5) is the backward Kolmogorov equation for z(t). We
first define smoothened versions of (4.5) and of the killed Brownian motion. Let
J € C§°(R) be a positive function with compact support in the positive half
line and [dz J(z) = 1; let J.(z) := e~ *J(e"'z), € > 0, be the approximation of
the Dirac measure dg; finally let

t
gm:/@gwm:/mgwy@, (4.8)
0
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where the last identity, which holds a.s., is the occupation times formula for
local times, see [5, VI, Corollary 1.6]. We may and will consider a version of
the process of Definition 4.1 where all L*(t) are continuous in z and ¢, see [5,
VI, Theorem 1.7], so that z¢(t) defined by (4.4) with L°(t) replaced by L.(t),
converges pointwise as € goes to 0 to z(¢). By proceeding as in (4.6), the
transition probability of the process z¢(t) restricted to R has density

q; (z,y) = pe(y — =) Bz ysu(exp(—L7(2))).- (4.9)
By the Feynman - Kac formula ¢ (z,y) is consequently the solution of
0 1 62
5140 @Y) = 556 (@) — 6 (2,9) (@),

%z, y) =0(z —y).

(4.10)

By taking its integral version we get a regularization of (4.5), namely

(@) = (e —y) — / ds / dzpp+(x — 2)J. ()65 (2, 1)- (4.11)

We next let € go to 0. By [5, VI, Corollary 1.9] and the dominated conver-
gence theorem, the r.h.s. of (4.9) has a limit as € goes to 0 and, for each ¢ > 0,
the convergence is uniform for (z,y) on compacts. Therefore ¢ (z,y), t > 0,
converges to the continuous function p;(z — y) Ey ye(exp{—L°(t)}) = pi(z,y)
which is by (4.6) the density of the killed Brownian motion of Definition 4.1; it
remains to prove that this is also equal to g(z,y).

Again by the above continuity properties, for any s € (0,1),

gl_r{%) dz pi—s(x — 2)Je(2)45 (2, Y) = Pr—s(2)ps(0, ), (4.12)

as ¢ (z,y) converges to ps(z,y) uniformly on compacts. By (4.9) there is C' so
that for any s € (0,t)

R L e O e rr s
Then by dominated convergence and using (4.12), we can compute the limit as
€ goes to 0 of (4.11). It yields that pi(z,y) satisfies (4.5), and it is therefore
equal to g;(z,y). This concludes the proof of the first statement of the propo-
sition, namely that the function ¢;(z,y), solution of (4.5), is also the transition
probability density of the killed Brownian motion.

To prove (4.3), we take B = R in (4.6), observe that Q.(z(t) # 0') =
Q. (z(t) € R), then by (4.7),

Qu(a(t) £0) = / dy ¢i(z, ).
R



24 L. Bertini, P. Butta, E. Presutti and E. Saada

On the other hand, from the first identity in (4.6),
Qu(a(t) £0) = / ds e P (LO(t) < 8) = Eu(exp{~L°(t)}),
0

and (4.3) follows by comparing the last two equations. |

Remark. In the course of the latter proof, we have introduced the process
xf = {z°(t), t > 0} and shown that its transition probability density on R, de-
noted by ¢ (z,y), solves (4.10). Since Q4 (z°(¢) = 0') is simply 1 — [ dyg(z,y),
(4.10) completely determines the process. On the other hand (4.10) can be in-
terpreted as the backward Chapman — Kolmogorov equation restricted to R for
the Markov process with state space S = R U {0’} and generator

SAf@) + L@O) - f@]  HeeR,
A f(z) = (4.13)

0 if x =0".

The action of A on ¢f(z,y), with y held fixed, which is by definition the back-
ward Chapman —Kolmogorov equation restricted to R, is exactly (4.10), since
A (0',y) = 0.

The forward Chapman —Kolmogorov equation restricted to z and y in R
gives again (4.10) but with z and y interchanged. Indeed, let f(z) be a regular
function for z € R, f(0') =0, then

GEUEO) = [wa@n{3r0 - Fwiw).

After an integration by parts, since f is arbitrary,
2

6 £ — 1 6 £ (=4 £
5 (z,y) = 39,74 (z,y) — J*(y)q; (z,9),
4z, y) = d(z — y),

which is the forward Chapman — Kolmogorov equation for the restriction to R of
the transition probability. A comparison with (4.10) shows that ¢ (z,y) depends
symmetrically on z and y, a property therefore enjoyed also by its limit ¢;(z,y);
this conclusion could also have been drawn directly from (4.7).

5. The linear Stefan problem with two centers

The matrix F(¢) is related to an equation similar to (4.5) with traps at 0
and a.

Proposition 5.1. Let ¢;(x,y) be the solution of

a(z,y) = pe(z—y) — /ds [Pi—s(2)gs(0,9) + pi—s(@ — a)gs(a,y)].  (5.1)
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Then the Green function F(t), solution of (2.16), is given by

F(O) = 1— [yds 45(0,0) = [yds ¢(a,0)
—f(fds qs(0,a) 1-— fg’ds qs(a,a) -
Proof. We prove that the r.h.s. of (5.2) satisfies (2.16). Let

t t
Foo(t)=1— /ds qs(0,0), Foo(t) = —/ds gs(a,0).
0 0

We have, using (5.1) and integration by parts

t t s
Foo(t) =1 - / ds ps(0) — / ds / ds' [pes (0)FLo(5") + Po—st (a) Flo(s)]
0 0 0

¢
=1- /ds'[pt_sz (O)FO’()(SI) + Pi—g (a)Fo’a(Sl)]. (53)
0
The other terms are analogous. m|

We will see in Proposition 5.2 that the function ¢;(z,y) is the transition
probability of a killed Brownian motion with death at 0 and a. This will es-
tablish, via Proposition 5.1, a relation between F(t) and the killed Brownian
motion, which will enable us to complete the proof of Theorem 2.4.

In this section we denote by @, the joint law of a Brownian motion b(t)
starting from z and of two times, sy and s,, with independent exponential
distributions of mean 1. Denoting by 77 := inf{u > 0 : L*(u) > t} the inverse of
the local time L*(t), hence L*(7¢) = t, we define the Brownian motion starting
from z and killed with rate dg at 0 and J, at a, as

b(t) if 1o >t TS >t

z(t) =< 0 if Tgo <t 78 > Tgo, (5.4)
a if 78 <t 19 >7L,

0" and a' being the cemetery points of the Brownian motion when killed respec-
tively at 0 and at a. An argument similar to the one after Definition 4.1 (which
is omitted), would show that z(-) is a Markov process.

The following proposition can be proved as in the single trap case of Propo-
sition 4.1.

Proposition 5.2. The transition probability of the process x(t) restricted to
R has a density equal to g;(x,y), solution of (5.1). Moreover

(It(a“a y) = pt(x - y) Ez,y;t(exp(_LO(t) - La(t)))a (55)
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and, for any x € R,

Q:c(w(t) = OI) = / ds qs(w,()),

Qu(z(t) =d) = / ds qs(x,a).
0

Proof of Theorem 2.4. We first observe that from (5.2) we get (2.18). Indeed it
is enough to note that ¢;(z,y) = ¢:(«',y") where z' and y' are obtained from x
and y by reflection around a/2. Propositions 5.1 and 5.2 imply (2.18) as well
as the monotonicity of Fy () and Fy 4(t). The proof of the asymptotics (2.21)
and (2.22) is obtained by using Laplace transforms.

Since F'*(t) is monotone decreasing, we can find its asymptotics applying
Tauberian theorems. By using (2.16)-(2.17), the Laplace transform F+ (\) of
Ft(t) is

ﬁ)\—l/2
CV2A + 1 4 e—lalvax’

B\ = / dt e MF* (1) A>0, (5.7)
0

from which, by applying the Tauberian theorem for densities, see e.g. [3, XIIL.5,
Theorem 4], (2.21) follows.
Analogously, the Laplace transform F~ (\) of F~(t) is

~ 1 2\1/2
Foyo i V2 .
2\A+1— -V
Since F'~(t) converges as t — oo (by the monotonicity of Fy(t) and Fp (1)),

its limit coincides with the limit as A goes to 0 of AF'~ (\), which proves (2.22).
A second proof of (2.22) is given below. O

(5.8)

Alternative proof of (2.22). By (5.6)

t—o0

lim Qu(x(t) = a') = / dt qi(z,a) =: G(). (5.9)

Since limy—, oo LY(t) = 400 a.s. (see [5, VI, Corollary 2.4])

Jim Q. (z(t) € R) =0,
lim Q,(z(t) = 0') =1 - G(a),

t—o0

and setting

F(t,2) 1= 51 = Qa(alt) = 0) + Qu(alt) = )], (5.10)
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(observe F'~(t) = F~(t,0)) we have

tlggoF (t,z) = G(z). (5.11)
From (5.9), (5.5) and continuity properties of local times, see [5, VI, Corollary
1.8], G(z) is a positive, continuous and bounded function; furthermore, by rou-
tine computations that are omitted, G(z) solves (in a distribution sense), for
a >0,

1
[§A — (b0 +0)| G = —6,. (5.12)
We can now conclude that (2.22) holds. Indeed the unique solution of (5.12) is
1 1
— 1 <
21+a if =<0,
1 1 T
Gx)=<¢ = i
@=Y 315st17a f 7€00)
1 1
_Z i >
(" T 2114 £ z>a,
and, by (5.11), lim;_,, F'~(¢,0) = G(0) O

A. Existence and uniqueness

To prove existence and uniqueness of (2.2) we assume, without loss of gen-
erality, A = 1. Let B be the Banach space whose elements are the vectors
(X,h) € R x Ly(R) endowed with the norm

X, )l == \/IXP? + [IR]I3.

For each (Xy, hg) € B we consider the Cauchy problem

X(t) = Xo +b(t) + /ds a(X(s), h(s)), (A.1)
0

h(t) = peho — / db(5) PrsPx(s) — / ds a(X (), h(s)) prosox (s (A2)

where we recall ¢ € S(R) is a probability density, and ¢x(z) = p(z — X). In
the particular case
a(Xa h) = (‘anh)a (A3)
(2

the system (A.1)—(A.2) with initial conditions (X, ko) = (0, 0) reduces to (2.2).
We first prove an existence and uniqueness theorem for the system (A.1)—
(A.2) in the case the map « is bounded and globally Lipschitz.
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Theorem A.1l. Assume the map (X,h) — a(X,h) from B to R is bounded
and globally Lipschitz. Then, for each (Xo,ho) € B there exists a solution
of (A.1)~(A.2) (X(-),h(:)) € C(R4;B) such that

sup E [|(X(t),h(t)]|5 <00 VT >0. (A.4)
t€[0,T]

This solution is unique in the following sense; if (X (t), h(t)) is another contin-
uous solution for which (A.4) holds, then

P( sup [[(X(®),h(1)) = (X(),h(t)[=0)=1 VT >0. (A.5)
t€(0,T]
Proof. Let (X, h) := a(X, h)ex; by (3.39), the map X — ¢x of R into La(R)
is bounded and globally Lipschitz. Then, for some K > 1 and any (X, h),
(Y,9) € B,

(X, 1) [* + 18X, W15 + lex; < K, (A-6)
la(X, h) —a(Y, g)| + [I1B(X,h) = B(Y, g)ll2 + llox — vl
< K|[(X,h) = (Y, 9)lls- (A7)

We prove the existence result by Picard iterations. We set (X (@) (¢), h(9(t)) =
(Xo, ptho) and, for n > 1,

X™(t) = Xo + b(t) /dsa (n=1)(5), h("=V(s)), (A.8)

B () = prho — /db ) Pr—ePxnmnr() = /dspt BEED (5), A1 (s)).

(A.9)
By the Cauchy —Schwarz inequality, for any n > 1,
E[X(MH(5) - X (1)

< t/ds E |a(X(") (s), K™ (5)) — a(X =V (s), h(»=V) (s))|2 (A.10)

Analogously, by using first (a + b)? < 2(a? + b?) and then the Cauchy —Schwarz
inequality,

s n 2
E IR0 @) =™ @))3 < 2 E/ds | Pe=s[oxm sy — Lxtn-1s)]||5

+ 20 E [ds ouma [BOX) 6),10)(5)
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XAV

Recalling (A.7) and using that p; is a contraction in L2(R), from (A.10) and
(A.11) we get, for n > 1,

E (XD (0), D (1) — (XM (@), ™ ()13 (A.12)

< 2K*(1+1) /ds E I(X™)(s), A (5)) — (XD (s), AV () [

Analogously, in the case n = 0, from (A.6) we get
E (XM @), h V(@) = (XO@), OB < 2K(t + 7). (A.13)
By iterating (A.12) and using (A.13), we have, for any n > 0,

< Kt + )

E (|(X" D (1), D (2)) = (X (1), ™ (1)1 < (A.14)
Thus the sequence {(X(™(t), (™ (t))} converges in Lo(dP) and also a.s. (by
the Borel — Cantelli lemma). Moreover the convergence is uniform on each finite
interval [0,T]. Let us denote by (X (¢),h(t)) the limiting process. Taking the
limit n — oo in (A.8)—(A.9) we see that (X (t), h(t)) is a solution of (A.1)-(A.2),
whereby F;-adapted. Moreover (A.4) follows from the definition of (X (¢), h(t))
and (A.14).

Let us prove that the process (X (), h(-)) is a.s. continuous. The continuity of
X (+) is a straightforward consequence of (A.1) and (A.6). In fact the Brownian
motion b(¢) is a.s. continuous and the map s — a(X(s), h(s)) is bounded. Since
h(t) solves (A.2) and t — pyhg is continuous, we are left with the continuity of
the process k(t) := h(t) — ptho. For any ¢t > 0 and § € (0, 1],

—k(t + 6) + k(t) = / d5(5) (Pess—s — Pros)Px (o)

t+0
+ /db(s) Di+6—sPX(s)

t

+ / ds (X (), 1(8)) (Pea5—s — Prs)Px (o)

+ / ds /(X (), h(8))Prd—s0x(s)

Then, recalling (A.6),

E [|k(t +0) — k(t)||3 < 16K%(A; + As) + 16( A3 + Ay), (A.15)
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where
t

0
t4+46

Ay :=E /dspt—i-é—sQOX(s)
t

4

’
2

4

’
2

i
4
Az :=E /db(s) (pt+6—s _pt—s)SOX(s)
0

)
2
t+0

4
A4 = E /db(S)pt+6—s90X(s)
t

2.

By the Cauchy —Schwarz inequality,

t
2
Aq < t2 E (/ds ||(pt+6—s - pt—s)(pX(s)“g)
0

; 2
= 2( [dspuss - p)olR)

’ t s+4 N
- (t5)2(/ds /dT H%prcp" 2)
0 s
< (Ie"1.9)", (A.16)

where in the first identity we used that ||pipx|l2 = ||pspll2 for all X € R.
Similarly

4
2
Ay < 8( [dsIplR)” < (el (A.17)
0

Setting ¢ (z) := /1 + |z|, by Holder inequality, we have, for any f € Ly(R),
I1£112 < 192115 11114 with  [[$77|13 < +o0. (A.18)
By (A.18) and the BDG inequality (see (3.14)),

4

4

t
Ay < 0 BE | [db) 6 rroms = pmsdioxc
0

2

t
<CE H /ds [¥ (Pets-s —pt—s)‘px(s)]2H
0

2
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< Ct / ds E / dzp(z + X () [(pr4s—s — Pr—s)P](x)*
0

t
<Ct(1+E sup |X(u)]?) /ds 1Y (ps+s — Ps)ella

u€[0,t] 5
t s+d
< Ct8*(14+E sup |X(u)|?) /ds /dT||¢pT<p”||i, (A.19)
u€][0,t]
0 s

where we used, in the fourth inequality, ¢ (z + X)* < C(1 + | X |*)9(z)*. Since
P(z) < Y(y) + /|z — y|, we bound

eI} < 161, (w4 + 16 [da( [dypeto = p)Vo =l @)’
= 16lp, (0§ +167 [da  [dp )2/ BT p1 ()26 (@ 4 27
<1611 + 167 9" [ [ de ()2 VD]
x /dw /dzpl(z)2<p"(:c+zﬁ)4 < C(1+7). (A.20)

Moreover, since X (t) is continuous, (A.4) implies E sup,¢jo 4 | X (w)]* < +o0.
Then, from (A.19) and (A.20), there is Cy(t) < 400 such that

Az < Cy(t)6%. (A.21)
Analogously, for some Cs(t) < +00,
s
A SCS1+E swp [X@P) [dslumelis R (a22)
u€[0,t+4]
0

From (A.15)-(A.17), (A.21)-(A.22) and the Kolmogorov criterion, see [5, I,
Theorem 2.2] follows the a.s. continuity of k(t).

We are left with the uniqueness. By arguing as in getting existence, if
(X(t), h(t)) is another solution of (A.1)-(A.2), we find ¢(t), uniformly bounded
on compacts, such that

E I(X (1), h(t) — (X (1), A(t))IIE < (t) /ds E [I(X (), h(s)) — (X(5), h(s)) I3,
0

whence, by the Gronwall lemma, E [|(X(t),A(t)) — (X(t),h(t))]|% = 0. Since
(X(t), h(t)) is continuous, (A.5) follows. O

In order to discuss the regularity of the map = — h(t, ), h(t) as constructed
before, we need the following lemma.
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Lemma A.1. Let Y(:) be a F;-adapted process and

t

Ii(z) := /db(s)pt—s(PY(s)(m)'

0

Then I(-) € C*(R) a.s.
Proof. Let I}(z) := fgdb(s)pt_sgo'y(s) (x) and

| L) if 6 =0,
&i(,0) == { 5t—1[It(x +6) — Ii(z)] otherwise.

By using the BDG inequality and the Taylor expansion one can show that there
exists a constant C(t) uniformly bounded on compacts such that

E |&(z,0) =& (@', 8P < Ct)(je—2'|P+]6—0'P)  Vaz,2' €R, 6,0 € [-1,1].

By Kolmogorov’s criterion we get I;(-) € C*(R) a.s. and its derivative is given
by Ij(z). Since ¢' € S(R) as well, the lemma follows by induction. m|

Since the map = — fgds (X (s), h(s))pi—spx(s) is in C*°(R), from the above
lemma we get that h(t,-) € C°(R). A straightforward computation shows then
that h(-) solves also the differential (in z) form of (A.2), i.e.

t

t
Wt =ho + [ds [300(s) - a(X (s, hepxeo] ~ [dex: (429
0 0

Theorem A.2. Theorem A.1 holds also for a(X, h) as in (A.3).

Since a(X, h) is locally Lipschitz and |a(X, h)| < ||¢]|2 ||#||2, we do not really
need to exploit the “good sign” in the nonlinearity of (2.2). Finally by using
Lemma A.1 we get that h(t,-) € C°°(R) and satisfies also (A.23) with a as
in (A.3).

Proof. Given M € N, we define the truncation xar : Ry — [0,1] by

xm(s) = Lis<my(s) + (M +1 =) linrcocniry(s), s € Ry,

and set
am (X, h) == a(X, h)xam(|[hll2)-

Since ays is bounded and globally Lipschitz Theorem A.1 applies. We denote
by (Xar, har) the solution of the truncated problem. We show next the sequence
{(X, har)} is fundamental with probability 1. The theorem will then follow
by routine arguments, which are omitted, see e.g. [4, I, §6].
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Let us introduce the stopping time 737 := inf{t > 0 : ||hap(t)|2 > M}.
Since, for M' > M, (X (t), har(t)) = (Xar (t), har () for t € [0, 7ar], we have,
for any T > 0,

P( sup sup [[(Xn(t),hm(t)) — (Xner (t), b (8))l|5 > 0)
M'>M t€[0,T)

< P(TM<T)

=P ( sup ||ha(t)|> > M).
te[0,T]

It is therefore enough to show the r.h.s. above goes to zero as M — +oo0.
By using It6’s formula in (A.23) we have

e (t)” = {2haa (1) [5 M (1) = @xyar (X (1)), e ()] + Py el
— 2hm (t)ox (1) db(2),

from which we get, for M > ||ho]|2,

as I = 10O — [ ds [1Va1 ()18 + 2000001 () xas [ (3)])]
0
+ [dslloxaoll =2 [ (i han()
0 0

t t
< Ih(O)[2 + / ds lgll2 — 2 / db(s) (@ x,0(s), T (5)),
0 0

whence, by the Doob and the Cauchy —Schwarz inequalities,

T
Ets[lépT] Ihar @3 < [IR(O)II5 + Tllell + E/d8||90||§ [1har ()],
€10,
0

which, by Gronwall’s lemma, yields

limsup E sup ||har(t)]3 < +o0, (A.24)
M—+oo  t€[0,T]

and we are done. O
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