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Front Fluctuations in One Dimensional Stochastic
Phase Field Equations

L. Bertini∗, S. Brassesco†, P. Buttà‡ and E. Presutti‡

Abstract. We consider a conservative system of stochastic PDE’s, namely a weakly
coupled, one dimensional phase field model with additive noise. We study the fluc-
tuations of the front proving that, in a suitable scaling limit, the front evolves
according to a non–Markov process, solution of a linear stochastic equation with
long memory drift.

Part I. Introduction

1 General setting, model, and results

The term “sharp interface limit” denotes a scaling procedure aimed at the deriva-
tion of interfaces as geometric objects, e.g. surfaces of codimension one with
bounded variation, that is, enough regular for the area measure to be well de-
fined. Of course this makes only sense in the context of systems which undergo
phase transitions and of states where different phases coexist. In the limit the
other degrees of freedom are lost and we are left with the interface alone. Rigorous
proofs are hard, yet a great variety of models has been successfully worked out. The
mathematics involved is correspondingly rich, e.g. the theory of Γ–convergence (to
study the sharp interface limit of Ginzburg–Landau like free energy functionals
in relation with the equilibrium shape of the interface, as in the Wulff problem)
and correspondingly the theory of Gibbsian large deviations (to study the same
problems at the more microscopic level of statistical mechanics); singular limit
in PDE’s, like in the Allen–Cahn, Cahn–Hilliard and phase field equations, and
correspondingly, at the microscopic level, hydrodynamic limits of spin or particle
systems.

This paper deals with fluctuations. Here again the questions are, first, whether
in a sharp interface limit the system is described by a [fluctuating] interface with
closed equations of motion and, secondly, the nature of such equations. The prob-
lem greatly simplifies in one space dimension where the limit interface is repre-
sented by a point which separates the two phases (one to its left and the other one
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to its right). Indeed, until now, most fluctuation results are restricted to d = 1.
Such a state is marginally stable (w.r.t. displacements of the interfaces, see Section
2 for a precise statement) while it becomes stable when there is a conservation law
(which imposes that the mass of each phase is preserved). By the conservation law,
each displacement of the interface must then necessarily come with a deformation
of the profile, hence the intuition that other degrees of freedom may then enter
into play. This is confirmed, but in a sense also infirmed, by our results: indeed
we will see that extra degrees of freedom become relevant, but their effect can be
represented in the limit by terms which depends on the previous history of the
interface evolution.

The system we consider is a phase field equation with additive stochastic
noise, see (1.1)–(1.2) below. Without noise the interface is given by a special in-
stantonic profile connecting the two phases; in the presence of noise, after suitable
rescalings, the limit state is still represented by the same instantonic profile which
is however randomly displaced. The displacement obeys an ordinary stochastic
equation driven by a white noise forcing term and with a long memory drift,
whose effect is to force the interface back toward its initial position, thus restoring
the equilibrium of the two coexisting phases.

The evolution is defined by the following stochastic equations

dm(t) =
{

1
2

∆m(t)− V ′(m(t)) + λh(t)
}

dt +
√
γ dW (a)(t) (1.1)

d [h(t) + m(t)] =
1
2

∆h(t)dt (1.2)

where the unknowns, m(t) = m(t, x), h(t) = h(t, x), (t, x) ∈ R+×R, are two scalar
random fields. In (1.1), λ and γ are positive parameters; ∆ is the Laplacian on R

and W (a)(t) is a white noise with a cutoff in the spatial covariance. This means
W (a)(t) is the canonical process in the filtered probability space (Ω,F ,Ft,P) where
Ω := C(R+;S′(R)) (S′(R) the space of tempered distributions), F its Borel σ–
algebra, Ft the canonical filtration, and P the Gaussian measure with mean zero
and covariance

E

(
〈W (a)(t), ϕ〉〈W (a)(t′), ϕ′〉

)
= t ∧ t′ 〈ϕ, a2

γ ϕ′〉, aγ(x) := a
(
γβ/2x

)
(1.3)

where t ∧ t′ := min{t, t′}, 〈·, ·〉 denotes the inner product in L2(R, dx) as well
as the canonical pairing between S and S′. Above β > 0 and a ∈ C2

0 (R), i.e. a
twice differentiable function with compact support. We assume the normalization
a(0) = 1. Finally V ′(m) is the derivative of a symmetric, smooth double well
potential V (m); for simplicity we assume

V (m) =
m4

4
− m2

2
. (1.4)

Note we are omitting to write explicitly the dependence on the randomness ω ∈ Ω.
This will be done throughout the whole paper without further mention.
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In a companion paper, [2], we prove global existence and uniqueness in a
space of Hölder continuous functions for the system

m(t) = ptm(0) +
∫ t

0

ds pt−s [−V ′(m(s)) + λh(s)] +
√
γ

∫ t

0

pt−sdW
(a)(s) (1.5)

h(t) + m(t) = pt[h(0) + m(0)]− 1
2

∫ t

0

ds (∆pt−s)m(s) (1.6)

where pt = et∆/2 is the heat semigroup, namely the integral operator with kernel

pt(x, y) =
e−(x−y)2/2t

√
2πt

. (1.7)

Observe that the integral on the r.h.s. of (1.6) is well defined because m(s) is Hölder
continuous. The system (1.1)–(1.2) is defined in terms of the integral equations
(1.5)–(1.6) and called “stochastic phase field equations”.

General background and physical interpretation are discussed in the sequel,
here we proceed by stating our main result, presented in the next theorem. We
consider the initial condition

m(0) = m̄, h(0) = 0 (1.8)

where
m̄ξ(x) := tanh(x− ξ), m̄ := m̄0 (1.9)

is a standing wave (that we call “instanton”) with “center” ξ ∈ R. We suppose
that

λ =
√
γ (1.10)

and denote by
(
m(λ)(t), h(λ)(t)

)
the solution of (1.1)–(1.2) with (1.10) and initial

condition (1.8). Our main result is

Theorem 1.1 There exists a process x(λ)(t) in C(R+), adapted to Ft, such that for
each τ, ε > 0

lim
λ↓0

P

(
sup

t≤λ−2τ

∥∥∥m(λ)(t)− m̄x(λ)(t)

∥∥∥
∞

> ε

)
= 0 . (1.11)

Furthermore, denoting weak convergence in C(R+) by =⇒ and defining, after scal-
ing, xλ(τ) := x(λ)

(
λ−2τ

)
, we have that xλ =⇒ x as λ ↓ 0, where x(τ) is the unique

solution of

x(τ) = b(τ) − 3
∫ τ

0

ds
x(s)√

2π(τ − s)
(1.12)

in which b(τ) is a one dimensional Brownian motion with diffusion coefficient
D = 3/4.
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The coefficient 3 in (1.12) and the value D = 3/4 above are related to the
specific choice of the potential V . Existence and properties of the process solution
of (1.12) are discussed in [3].

For the physical interpretation, we start from the equation without noise and
with λ = 0, namely (1.1) with λ = γ = 0. This is the well known Allen–Cahn
(AC) equation with double well potential V (m), which arises as the gradient flow
associated to the Ginzburg–Landau free energy functional

F(m) =
∫

R

dx

{
1
4
|∇m(x)|2 + V

(
m(x)

)}
(1.13)

(F decreases along the solutions of the AC equation). The minimizers of F(m)
are the two constant functions m+(x) = 1 and m−(x) = −1, therefore the values
of the order parameter m = ±1 correspond to pure phases and the interface for
(1.13) is (up to translations) the profile m(x) which minimizes F(m) under the
condition that asymptotically as x → ±∞ it converges to ±1. The associated
Euler–Lagrange equation is the stationary AC equation

1
2

∆m− V ′(m) = 0 (1.14)

which, imposing the above conditions at ±∞, has the instanton m̄ of (1.9) as
its unique solution (modulo translations). Therefore m̄ξ is the equilibrium state
which has the two phases coexisting to the right and to the left of ξ, it represents
the “mesoscopic interface” with ξ its “mesoscopic location” (mesoscopic instead of
macroscopic because the interface is “diffuse” and the transition from one phase
to the other, even though exponentially fast, is not sharp; mesoscopic instead of
microscopic because the AC equation and the Ginzburg–Landau functional can be
derived by a scaling procedure from particle or spin systems, i.e. from an underlying
more microscopic structure).

The next step is with λ > 0, but still γ = 0. Then (1.1) is coupled to (1.2)
and the two together give an example of phase field equations (PFE). Here h
is a thermodynamic potential conjugated to the order parameter m: if m is a
magnetization density, then h is a magnetic field, our notation is inspired by such
an interpretation. More commonly however, m is a relative concentration of one
species in a binary alloy and h is a relative temperature. The effective potential
will then depend on the relative temperature h, our choice is simply to replace
V (m) by V (m)−hm. At the critical temperature, which corresponds to h = 0, the
alloy can exist in two different concentrations m = ±1, but, as the temperature
h changes, the equilibrium concentrations vary, one becomes stable and the other
one metastable. In the presence of a given temperature profile h, the AC rate of
change of the concentration density at x at time t, i.e. dm(t, x)/dt, is given by (1.1)
(with γ = 0). Due to latent heat, there is a corresponding change of temperature
given (in the proper units) by dh(t, x)/dt = −dm(t, x)/dt. Simultaneously, by the
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Fourier law, the temperature diffuses according to the r.h.s. of (1.2). This has a
feedback in (1.1) so that (1.1) and (1.2) are coupled. In conclusion the PFE describe
a change of phase including latent heat effects and, because of that, unlike for the
AC equation, there is a conservation law: the integral of m + h is in fact invariant
under PFE. The noise term in (1.1) takes into account some external fluctuating
force and the resulting equation is known in the physical literature as model C of
Hohenberg and Halperin, [14].

Since m̄ solves (1.14), the state m = m̄, h = 0 is a stationary solution of
PFE, which is therefore interpreted, like in AC, as the mesoscopic interface. We
are then studying in Theorem 1.1 what happens to the interface when there are
small (because γ → 0 in Theorem 1.1), external perturbations which produce a
random change

√
γdW (a)(t) of magnetization (or, in the other interpretation, of

concentration), the analysis including latent heat effects.
The small parameter γ in the noise term has the meaning of a ratio between

mesoscopic and microscopic space units, the former referring to (1.1), the latter
to some microscopic model, as for instance the Glauber + Kawasaki process intro-
duced in [12]. A formal comparison with the microscopic model in [12] would lead
to a more complex structure for the additive noise; however we stick to (1.1) (which
catches the correct behavior of critical fluctuations, see [5]) to make our analysis
simpler. In conclusion the scaling γ → 0 has a natural justification in terms of
the microscopic origin of the noise term, the scaling of time in Theorem 1.1 is on
the other hand justified a posteriori: it is the correct scaling for observing finite
displacements of the interface. On the contrary, the equality (1.10) has no clear
physical interpretation; it is true that a scaling with λ → 0 is widely used in the
PFE literature to stress “kinetic undercooling effects”, see [11], [17], but relating
λ to the noise as in (1.10) is just a matter of technical convenience. We will come
back to this in the next section in the paragraph “the role of the assumptions”.

2 Heuristic analysis and outline of proofs

By Theorem 1.1, with probability going to 1, the process m(λ)(t), t ≤ λ−2τ , is
always close to the manifold of instantons M = {m̄ξ, ξ ∈ R}, see (1.11); the
theorem then identifies the motion along M, (1.12). It is then natural to describe
m(λ)(t) in terms of coordinates along and transversal to M, these are the Fermi
coordinates that we are going to define.

Stability of instantons, Fermi coordinates. Closeness to M is a consequence of the
stability of M under the AC evolution. Under AC, in fact, M attracts exponen-
tially fast all data which are in a small neighborhood, in sup norm, ‖ · ‖∞, of M:
namely there are δ, c and a all positive so that if for some ξ, ‖m − m̄ξ‖∞ < δ,
then there is a ξ′ for which, for all t, ‖m(t) − m̄ξ′‖∞ ≤ ce−at, m(t) being the
solution of the AC equation starting from m. This obviously fails if we add noise
(thus considering (1.1) with λ = 0 and γ > 0), but the noise, in a polynomial
scale, cannot drive too far away from M because of the exponential attraction of
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the deterministic part of the equation: in [10] it is shown that for any τ > 0 and
ζ > 0,

lim
γ→0

P

(
sup

t≤γ−1τ

dist(m(t),M) ≥ γ1/2−ζ

)
= 0 (2.1)

where “dist” denotes distance in sup norm. The analysis extends to our case with
λ =

√
γ and (1.1)–(1.2) coupled, as stated in (1.11) and proved in Section 8.

Going back to AC without noise, observe that stability of M does not mean
stability of the single instanton: let m be a small deviation from m̄ξ, then from
what we said above it will relax under AC to some m̄ξ′ , with ξ′ close but not
necessarily equal to ξ. In the space of all profiles m, m̄ξ is marginally stable along
the direction M while all the other directions are stable. It is then natural to
associate to each m (as above) the value ξ′ of the center of the limit instanton.
In practice, however, it is better to work with a more “geometrical” definition.
Following [10, 9], we define a center ξ of m as a real number which minimizes the
L2–norm of m− m̄x (as a function of x). Then ξ is such that

〈m− m̄ξ, m̄
′
ξ〉 = 0. (2.2)

The center ξ has also a dynamical interpretation. Let Lξ be the operator

Lξv =
1
2

∆v + (1− 3m̄2
ξ)v (2.3)

obtained by linearizing the AC equation around m̄ξ. It is readily seen that Lξ is
self-adjoint in L2(R, dx), it has eigenvalue 0 with eigenvector m̄′

ξ while the rest of
the spectrum is on the negative axis strictly away from 0. Then, if m has center
ξ, the deviation v = m − m̄ξ by (2.2) has no component along m̄′

ξ, hence the
linearized evolution starting from v decays exponentially fast and correspondingly
m converges to m̄ξ, so that the center of m is also the center of the instanton to
which the linearized AC evolution converges. The pair {ξ,m − m̄ξ} is known as
the Fermi coordinates of m.

This notion of a center of a function plays an important role also in our
proofs, so we will spend a few more words, recalling Proposition 3.2 in [9], which
gives a sufficient condition for m = m(x) to have a center.

Proposition 2.1 There is a constant δ > 0 such that if there exists x0 ∈ R so that
‖m−m̄x0‖∞ ≤ δ then the following holds for some constant C = C(δ) independent
of x0 and m.

(i) The function m has a unique center x and

|x− x0| ≤ C‖m− m̄x0‖∞ (2.4)

(ii) the center x has the expansion

x = x0 − 3
4
〈m̄′

x0
,m− m̄x0〉 −

9
16
〈m̄′

x0
,m− m̄x0〉〈m̄′′

x0
,m− m̄x0〉+ R(m− m̄x0),

|R(m− m̄x0)| ≤ C‖m− m̄x0‖3∞ . (2.5)
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Thus, by (2.1) and (1.11) and with the help of Proposition 2.1, we can talk
unambiguously, with probability going to 1, of the center ξ(t) of m(t) both for the
stochastic AC equation and PFE. This gives us a precise definition of the location
of the interface even without sharp interface limits; we will prove convergence to
(1.12) by studying the asymptotic law of ξ(t) as γ → 0.

Heuristics of the AC equation and PFE with noise. We start from the simpler
(and instructive) case of the AC equation with noise, i.e. (1.1) with λ = 0 but
with γ > 0. This is well studied in the literature, [9, 10, 13], even though in
slightly different contexts. The scaling procedure is the same as in Theorem 1.1
and it leads to the same limit law but without drift, i.e. a Brownian motion. To
explain heuristically the result, let us regard the forcing term

√
γdW (a)(t) as a

“source of small kicks” which we decompose in a component along M and another
one orthogonal to M. The latter fights against the AC drift which pushes back
toward M, and because of the small factor

√
γ, to a first order, we forget about

orthogonal components. On the contrary the kicks along M are not contrasted
and they sum up: thus we are approximating

dm(t) ≈ 3
4
√
γm̄′

ξ(t)〈m̄′
ξ(t), dW

(a)(t)〉, 〈m̄′, m̄′〉 =
4
3

(2.6)

where ξ(t) is the center of m(t). Also m(t) ≈ m̄ξ(t), hence

dm(t) ≈ m̄′
ξ(t)dξ(t) (2.7)

and, in conclusion,

dξ(t) ≈ 3
4
√
γ〈m̄′

ξ(t), dW
(a)(t)〉 (2.8)

namely ξ(γ−1t) is a Brownian motion with diffusion 3/4, which is what is proved
in [10].

The argument for the system (1.1)–(1.2) is similar, the only difference from
the stochastic AC equation in (1.1) lies in the simple, innocent looking term λh,
which is however the source of all problems. The same heuristics leading to (2.6)
applies to (1.1) by simply adding λh(t) to the noise; writing

√
γ = λ according to

(1.10), we then get

dm(λ)(t) ≈ 3
4
λm̄′

ξ(t)

{
〈m̄′

ξ(t), h(t)〉dt + 〈m̄′
ξ(t), dW

(a)(t)〉
}

(2.9)

and, using (2.7),

dξ(t) ≈ 3
4
λ
{
〈m̄′

ξ(t), h(t)〉dt + 〈m̄′
ξ(t), dW

(a)(t)〉
}

. (2.10)

On the other hand, writing (1.2) in integral form and recalling that h(0) = 0, we
have

h(t) = −
∫ t

0

pt−sdm
(λ)(s) (2.11)
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Using again (2.7) and taking the scalar product with m̄′
ξ(t) we get from (2.11)

〈m̄′
ξ(t), h(t)〉 ≈ −

∫ t

0

〈m̄′
ξ(t), pt−sm̄

′
ξ(s)〉dξ(s) . (2.12)

The approximate system (2.10)–(2.12) (with ≈ replaced by equality) is not as easy
to study as the one which approximates the stochastic AC equation, but it can
be seen to give the correct result (1.12) for the limit motion of the center, [3]. To
see the relation with (1.12) we make another approximation whose validity will be
justified in the course of the proof of Theorem 1.1. The approximation consists in
replacing m̄′

ξ(t) by m̄′ (i.e. ξ(t) → 0) in the scalar products in (2.10) and (2.12)
(the reason for its validity is that the displacements of the center are finite while
the field h becomes flat because the diffusion in (1.2) acts for long times). The
new system is then (forgetting about the noise cutoff)

dξ(t) =
3
4
λ〈m̄′, h(t)〉+ λdb(t) (2.13)

〈m̄′, h(t)〉 = −
∫ t

0

〈m̄′, pt−sm̄
′〉dξ(s) (2.14)

where b(t) is the Brownian motion with diffusion 3/4 of Theorem 1.1. Using (2.14)
to rewrite the first term on the r.h.s. of (2.13) we get

ξ(t) = λb(t)− 3
4
λ

∫ t

0

ds

∫ s

0

〈m̄′, ps−s′m̄
′〉dξ(s′) .

Integrating by parts, after some simple algebra,

ξ(t) = λb(t)− 3
4
λ

∫ t

0

ds′ξ(s′)〈m̄′, pt−s′m̄
′〉 . (2.15)

Approximating

〈m̄′, pt−s′m̄
′〉 =

∫
dx

∫
dy m̄′(x)pt−s′ (x, y)m̄′(y) ≈

∫
dx

∫
dy

m̄′(x)m̄′(y)√
2π(t− s′)

(2.16)
and recalling that

∫
m̄′ = 2, (2.15) becomes (1.12), in the above approximation,

which can be made rigorous in the limit λ → 0, having set t = λ−2τ .

Main difficulties and outline of proof. The heuristic arguments outlined above
are essentially based on a linear approximation, their validity therefore rests on
a rigorous proof that the non linear effects are negligible. Since the strength of
the noise is

√
γ, we cannot hope to improve the a priori bounds beyond ‖m(t) −

m̄ξ(t)‖∞ ≈ √
γ. Then the non linear terms which are, to lowest order, quadratic

have order γ; since they act for a time λ−2τ (that is γ−1τ), a naive estimate gives
a non–negligible contribution. The fact that they are indeed negligible must then
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come from cancellations, and the true problem is to find them and take them into
proper account.

This is more clearly seen in the stochastic AC equation. Following [10], we
split the time axis into intervals of length T , taking T long, yet very small as
compared to the macroscopic time γ−1τ , for instance T = γ−1/10. The crucial
point is an iterative procedure for which the problem reduces to the analysis of
only one of these intervals, a clear advantage, because in such a “short time” the
non linear effects are under control. Couplings are used for this crucial reduction.
We compare in fact, in the generic interval [nT, (n + 1)T ], the true process m(t)
which starts from m(nT ) and the new process m̂(t) which starts from m̄ξ(nT ),
ξ(nT ) the center of m(nT ), the coupling is simply to use for both processes the
same noise

√
γdW (a)(t). Under the assumption that ‖m(nT )−m̄ξ(nT )‖∞ ≤ γ1/2−ζ ,

see (2.1), it can be seen that, with probability going to 1 as γ → 0, ‖m((n+1)T )−
m̂((n + 1)T )‖∞ ≤ Cγ1−2ζ , (C a constant). By Proposition 2.1, the displacements
of the center in the interval [nT, (n + 1)T ], as computed with the two evolutions,
differ proportionally to γ1−2ζ : since the number of intervals grows proportionally
to γ−1τ/T , the sum of all these differences goes like γ1−2ζγ−1τ/T , which vanishes,
after choosing 2ζ < 1/10. We can then study in each interval the process which
starts from an instanton. Neglecting for simplicity the cutoff on the noise (with
the cutoff some extra computations are needed), then the displacement of the
center in a time interval T does not depend on the initial center and it is therefore
independent of the past. The displacements of the centers (each time restarting
from an instanton) are thus independent variables with mean 0 (by the symmetry
between right and left) and, using classical arguments on convergence to Brownian
motion, in the end, we need to sum their variances; since we are already with
squares, it turns out that the linear approximation is sufficiently accurate and this
explains the validity of the linear approximation in the previous heuristic analysis.

While the above approach works well in the stochastic AC equation, Theorem
1.1 tell us that it fails, as there are long memory effects in the limit law. More
bad news: the last term in (1.12), responsible for these effects, according to the
heuristic analysis of the previous paragraph, comes from the term λh(t) and since
it produces a finite drift in a time λ−2, the order of magnitude of h(t) must be
≈ λ. Therefore we need an accuracy of order λ, which is comparable with the
deviations of m(λ) from M (recall λ =

√
γ) that has been neglected so far.

Our approach to the problem, since when we began the present work, has
been “to trust” [10] and to consider the non linear terms that are left as being
negligible when we linearize (1.1) around m̄ξ(nT ), ξ(nT ) the center of m(λ)(nT ). It
is evidently not possible to use the coupling argument of [10], yet in some maybe
more complicated way, in the end we “must” see that they are not relevant. The
extra term λh(t) is new w.r.t. [10] and has to be dealt anew. According to the
final result and for what said before, we expect h(t) ≈ λ, but let us even suppose,
pessimistically, that h(t) is of the order of unity. Its effect for a time T will then be
of order λT , hence still infinitesimal. Moreover, by (2.11), h(t) can be large only
if dm(λ)(s) is large, but dm(λ)(s) is under control except for the term λh(s). Due
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to the presence of the small factor λ this gives a virtuous feedback which allows
to control the magnitude of h(t).

This is done in Sections 3 and 4. We first write down an integral equation,
(3.7), for v(n)(t) = m(λ)(t) − m̄ξ(nT ), the superscript n recalls that we are con-
sidering t ∈ [nT, (n + 1)T ]. v(n)(t) is written as the sum of 8 terms, two of them,
called Γ(n)

2 (t) and Λ(n)
3 (t) are the important ones, which give contributions to the

limit, respectively the Brownian motion and the drift. All the others vanish, but
at this stage this is not yet established as they depend on the unknown m(λ)(t).
In Section 4 we study by iterations the integral equation (3.7) to prove bounds on
v(n)(t) and on the displacements of the center. We derive in this way (1.11) and
establish even sharper bounds that will be used in the successive proofs.

The proof of the convergence to (1.12) is reported in the remaining sections.
We begin Section 5 by splitting the term Λ(n)

3 (t) into the sum of 3 other terms,
see (5.1)–(5.5), which foresees the approximation done in (2.16). We then use (2.5)
to deduce an equation for the displacements of the center, which are called ψn,
see (5.7). The equation is (5.9), which is a sort of linear integral equation in the
ψn with kernel An,k, k < n, and known data ηn: “sort of” because the ηn still
depend on the unknowns v(n)(·). The elements An,k decay as (n − k)−1/2. It is
then convenient to reduce to the matrix A2, so that we iterate once (5.9) obtaining
(5.17), where the kernel is now A2

n,k and the “known terms” are ηn and (Aη)n.
In Section 6 we study these “known terms” which are splitted into four

groups. The first one consists of truly known terms which survive in the limit
(they come from Γ(n)

2 (t)). The terms in the second group, which instead may de-
pend on v(n)(t), are all directly proved to be negligible using the a priori bounds of
Section 4. For those in the third group we cannot proceed in this way, but we need
to use the integral equation for v(n)(t) and only after sufficiently many iterations,
we can show that they are negligible. Finally, the last group collects terms which
become negligible because of stochastic cancellations. The latter are studied in
Section 7, the others in Section 6.

We draw the conclusions of our analysis in Section 8 where we complete the
proof of Theorem 1.1.

Role of assumptions. We start from the assumption (1.10) which is conceptually
the most important one, the others are of a more technical nature. As already
remarked, there are several studies of sharp interface limits on PFE where λ is
scaled to 0. This describes an intermediate regime (called kinetic undercooling)
where thermodynamical equilibrium is not fully reached. Thus our model should
be regarded as kinetic undercooling in the presence of stochastic perturbations. As
said, the relation between λ and γ stated in (1.10) does not have a straight physical
interpretation, it is just the right way to scale (1.1)–(1.2) and have a nice limit
law. One may however wonder what would happen if we took a different relation
than (1.10). We have not worked out the details, but we can at least present some
educated guess. If we multiply h(t) in (1.1) by a constant θ, we would then derive
a limit law with such a factor multiplying the last term in (1.12). Let us then



Vol. 3, 2002 Front Fluctuations in One Dimensional Stochastic Phase Field Equations 39

consider the scaling behavior of

x(t) = b(t)− 3θ
∫ t

0

ds
x(s)√

2π(t− s)
(2.17)

both when θ vanishes and when it diverges. Set y(t) = θax(θct), then

y(t) = θaθc/2b(t)− 3θθc/2
∫ t

0

ds
y(s)√

2π(t− s)
. (2.18)

Imposing
a + c/2 = 0, 1 + c/2 = 0; a = 1, c = −2 (2.19)

we have (2.18) equal to (1.12). Thus if we take (1.1) with λ → λ1+α and call
θ = λα, we believe that our analysis extends, at least for small |α|, and that the
center ξ(t) of the solution of the corresponding equation is such that

λαξ(λ−2−2αt) (2.20)

converges in law to (1.12).

Concluding remarks and perspectives. A forthcoming paper, [3], is devoted to
the analysis of the limit process (1.12). This can be characterized in terms of a
Brownian motion with absorption at the origin, which in turn is reduced to the
well studied one dimensional Schrödinger equation with Dirac’s delta potentials. A
quite explicit expression for the solution of (1.12), is then available, in particular
it shows that the displacements ξ(τ) of the front have typical size

√
log τ for τ

large; “aging phenomena” are also present.
The “cluster fluctuations” have instead the usual Brownian structure. Con-

sider an initial state with h0 = 0 and m0(x) the symmetric function which coincides
with m̄−ξ(x), ξ > 0, for x ≤ 0. We interpret it as a “plus cluster” in the region
(−ξ, ξ) with the minus phase outside. To make it sharp we set ξ = λ−1-, - > 0, and
consider the process (1.1)–(1.2) (always assuming λ =

√
γ). Preliminary results

(see also [3]) indicate that, in proper units, the coordinates ξ1(τ) and ξ2(τ) of the
two centers, evolve in the limit according to a system of two stochastic equations.
The system can be diagonalized into the variables ξG(τ) := [ξ1(τ) + ξ2(τ)]/2 and
ξ(τ) := ξ1(τ) − ξ2(τ). The variable ξG(τ) has the law of a Brownian motion, ξ(τ)
is independent of ξG(τ) and obeys an equation like (1.12).

We hope to be able to accomplish the above program including the analysis
of the case with several clusters (and suitable scalings), the ultimate goal being
the study of interface fluctuations in many dimensions.
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Part II. Stability of fronts

3 The iterative scheme

Before starting with the proofs we introduce some notation that will be used
throughout the paper:

Notation. C will denote a generic constant whose numerical value may change
from line to line (from the statements it will appear clear on which parameters it
depends). For p ∈ [1,∞] we denote by ‖ · ‖p the norm in Lp(R, dx).

We will study the problem (1.1)–(1.10) by an iterative procedure. To this end,
we divide the microscopic time–line R+ into intervals [Tn, Tn+1], Tn = nT , where
n ∈ N and T = λ−(1∧β)/20 (β as in (1.3)). We then associate to any macroscopic
time interval [0, τ ], τ > 0, the set of microscopic time intervals [Tn, Tn+1], with n ≤
nλ(τ), where nλ(τ) is the integer part of (λ2T )−1τ , namely nλ(τ) = [(λ2T )−1τ ].
To simplify notation, we write m(t) = {m(t, x), x ∈ R} and h(t) = {h(t, x), x ∈ R}
for the solution of (1.1)–(1.10) (omitting the dependence on λ).

We next define, by induction on n ≥ 0, the numbers xn and the functions
v(n)(t) = {v(n)(t, x), x ∈ R}, t ∈ [Tn, Tn+1]. They will have the property that for
each t ∈ [Tk, Tk+1]

v(k)(t) = m(t)− m̄xk
if ‖v(h)(Th+1)‖∞ ≤ δ for all 0 ≤ h ≤ k − 1 (3.1)

with δ as in Proposition 2.1.
For n = 0 we set x0 = 0 and v(0)(t) = m(t) − m̄x0 , 0 ≤ t ≤ T , so that

(3.1) holds. Suppose that, by the induction hypothesis, we have already defined
for all k ≤ n − 1 both xk and v(k)(t) and that (3.1) holds for such k’s. If there
is k ≤ n − 1 such that ‖v(k)(Tk+1)‖∞ > δ, we set xn = 0 and v(n)(t) = 0,
t ∈ [Tn, Tn+1]. Otherwise we define xn as the center of m̄xn−1 + v(n−1)(Tn), which
by Proposition 2.1 is well defined, as ‖v(n−1)(Tn)‖∞ ≤ δ. We then set, according to
(3.1), v(n)(t) = m(t)−m̄xn , t ∈ [Tn, Tn+1], and have (always under the assumption
that ‖v(k)(Tk+1)‖∞ ≤ δ for all k ≤ n− 1)

m(Tn) = m̄xn−1 + v(n−1)(Tn) = m̄xn + v(n)(Tn), 〈m̄′
xn

, v(n)(Tn)〉 = 0 . (3.2)

Let
h(n)(t) = h(t), t ∈ [Tn, Tn+1], (3.3)

introduce the stopping time w.r.t. the discrete filtration FTn+1

Nδ := inf
{
k : ‖v(k)(Tk+1)‖∞ > δ

}
(3.4)

(δ as in Proposition 2.1) and define g
(n)
t := exp{tLxn}, t ∈ R+, with Lxn as in

(2.3). We abbreviate gt = g
(0)
t .
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After expanding V ′(m(t)) in (1.8) and (1.10) about m̄xn , for t ∈ [Tn, Tn+1]
as long as n ≤ Nδ, v(n)(t) and h(n)(t) are given as the solution of

dv(n)(t) =
[
Lxnv

(n)(t) + λh(n)(t)− 3m̄xnv
(n)(t)2 − v(n)(t)3

]
dt + λdW (a)(t)

(3.5)

h(n)(t) = pt−Tnh
(n−1)(Tn)− v(n)(t) + pt−Tnv

(n)(Tn) +
∫ t

Tn

ds
∂pt−s

∂s
v(n)(s)

(3.6)

with initial condition v(n)(Tn) for the first equation. Recall that v(n)(Tn) is de-
termined from v(n−1)(Tn) via (3.2), and that from (3.3) we have h(n−1)(Tn) =
h(n)(Tn).

We will write in the next section v(n)(t) as a sum of 10 terms, v(n)(t) =∑10
i=1 Γ(n)

i (t), but for the moment it is more convenient to keep some of the terms
together. We are going to prove that for n < Nδ,

v(n)(t) = Γ(n)
1 (t)+Γ(n)

2 (t)+Λ(n)
3 (t)+Γ(n)

4 (t)+Γ(n)
5 (t)+Γ(n)

6 (t)+Γ(n)
9 (t)+Γ(n)

10 (t)
(3.7)

where

Γ(n)
1 (t) := g

(n)
t−Tn

v(n)(Tn) (3.8)

Γ(n)
2 (t) := λz(n)(t) := λ

∫ t

Tn

g
(n)
t−s dW

(a)(s) (3.9)

Λ(n)
3 (t) := −λ

n∑
k=1

∫ t

Tn

ds g
(n)
t−sps−Tk

[m̄xk
− m̄xk−1 ] (3.10)

Γ(n)
4 (t) := λ

∫ t

Tn

ds g
(n)
t−s

∫ s

Tn

ds′
∂ps−s′

∂s′
v(n)(s′) (3.11)

Γ(n)
5 (t) := −λ

∫ t

Tn

ds g
(n)
t−sv

(n)(s) (3.12)

Γ(n)
6 (t) := −λ

n∑
k=1

∫ t

Tn

ds g
(n)
t−s

∫ Tk

Tk−1

ds′
∂ps−s′

∂s
v(k−1)(s′) (3.13)

Γ(n)
9 (t) := −3

∫ t

Tn

ds g
(n)
t−s

[
m̄xnv

(n)(s)2
]

(3.14)

Γ(n)
10 (t) := −

∫ t

Tn

ds g
(n)
t−s

[
v(n)(s)3

]
. (3.15)

Proof of (3.7). By applying (∂t − Lxn)−1 to (3.5) we get

v(n)(t) = Γ(n)
1 (t) + Γ(n)

2 (t) + Γ(n)
9 (t) + Γ(n)

10 (t) + λ

∫ t

Tn

ds g
(n)
t−s h

(n)(s) .
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We use for h(n)(s) the expression given by (3.6), and get

v(n)(t) = Γ(n)
1 (t) + Γ(n)

2 (t) + Γ(n)
4 (t) + Γ(n)

5 (t) + Γ(n)
9 (t) + Γ(n)

10 (t)

+ λ

∫ t

Tn

ds g
(n)
t−sps−Tn

[
h(n−1)(Tn) + v(n)(Tn)

]
.

To complete the proof of (3.7) we thus need to show

λ

∫ t

Tn

ds g
(n)
t−sps−Tn

[
h(n−1)(Tn) + v(n)(Tn)

]
= Λ(n)

3 (t) + Γ(n)
6 (t) . (3.16)

From (3.2), we have

h(n−1)(Tn) + v(n)(Tn) = h(n−1)(Tn) + v(n−1)(Tn)− (m̄xn − m̄xn−1) (3.17)

We use this identity in the l.h.s. of (3.16). The difference (m̄xn−m̄xn−1) reproduces
the last term of the sum in (3.10) (i.e. in the definition of Λ(n)

3 (t)). For the term
with h(n−1)(Tn) + v(n−1)(Tn), we use (3.6) to write

h(n−1)(Tn) + v(n−1)(Tn)

= pTn−Tn−1

{
h(n−1)(Tn−1) + v(n−1)(Tn−1)

}
+
∫ Tn

Tn−1

ds′
∂pTn−s′

∂s′
v(n−1)(s′).

The contribution of the last integral to the l.h.s. of (3.16) gives the last term of
the sum in (3.13), i.e. the definition of Γ(n)

6 (t). By iteration we then get (3.16) and
(3.7) is therefore proved. �

4 A priori bounds

We will use the representation (3.7) to prove in Proposition 4.1 below some a
priori bounds on v(n)(t) and other quantities. We need first some more notation;
recalling Proposition 2.1, we set

ξn := −3
4

n−1∑
k=0

〈m̄′
xk

, v(k)(Tk+1)〉 (4.1)

We should think of ξn as a linear approximation to xn, since the increment ξk−ξk−1

is, according to (2.5), the linear approximation to the displacement xk − xk−1 of
the center in the time interval [Tk−1, Tk].

We set

Vn := sup
t∈[Tn,Tn+1]

∥∥∥v(n)(t)
∥∥∥
∞

, Vn,∗ := sup
k≤n

Vk, V∗(τ) := Vnλ(τ),∗ (4.2)
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and
δ∗(τ) := sup

k≤nλ(τ)

|xk+1 − xk| (4.3)

Let also
Zn := sup

s∈[Tn,Tn+1]

∥∥∥z(n)(s)
∥∥∥
∞

, Zn,∗ := sup
k≤n

Zk (4.4)

and B(1)
λ,τ ⊂ Ω be the event (recall the definition of (Ω,F ,Ft,P) given in Section

1)
B(1)
λ,τ :=

{
ω ∈ Ω : Znλ(τ),∗ ≤ λ−ζ

√
T
}

. (4.5)

We will prove in Appendix B the following Gaussian estimate: for each
τ, ζ, q > 0 there is a constant C = C(τ, ζ, q) such that for any λ > 0

P

(
B(1)
λ,τ

)
≥ 1− Cλq . (4.6)

The next proposition is the key ingredient for the bound (1.11), see the
beginning of §8 for the conclusion of the proof.

Proposition 4.1 For each τ, ζ > 0 there is a constant C = C(τ, ζ) such that, for
any λ > 0,

V∗(τ) ≤ Cλ1−ζ
√
T , δ∗(τ) ≤ Cλ1−ζ

√
T on the set B(1)

λ,τ . (4.7)

In particular, for λ > 0 small enough,

Nδ > nλ(τ) on the set B(1)
λ,τ . (4.8)

Proof. Let (mλ, tλ), tλ ∈ [Tmλ
, Tmλ+1], mλ ≤ nλ(τ), be the stopping times (mλ

w.r.t. FTn+1, tλ w.r.t. Ft) so that (mλ, tλ) = (nλ(τ), Tnλ(τ)+1) if V∗(τ) < λT ,
otherwise (mλ, tλ) = (n, t), where n is the first index such that Vn ≥ λT and t the
first time in [Tn, Tn+1] for which ‖v(n)(t)‖∞ ≥ λT .

In the following we may assume λ is small enough, otherwise (4.7) holds
trivially. We claim there is a constant C so that

‖v(mλ)(tλ)‖∞ ≤ CλT . (4.9)

In fact, if tλ ∈ (Tmλ
, Tmλ+1], (4.9) follows from the continuity of ‖v(mλ)(t)‖∞;

otherwise, i.e. if tλ = Tmλ
,

‖v(mλ)(Tmλ
)‖∞ ≤ ‖v(mλ−1)(Tmλ

)‖∞ + ‖m̄mλ
− m̄mλ−1‖
≤ λT + |xmλ

− xmλ−1| ≤ CλT

from (3.2) and (2.4), since ‖m̄′‖∞ = 1 and ‖v(mλ−1)(Tmλ
)‖∞ ≤ λT .
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We will study the evolution till time tλ, so that our next considerations are
tacitly restricted to n ≤ mλ and t ≤ tλ.

By (4.9), Nδ > mλ (for λ small enough) so that we can use (3.7), regarding
it as an integral equation in v(n)(t). We are going to bound one after the other all
eight terms on the r.h.s. of (3.7).

We will use in the sequel the following bounds (see e.g. [9] and references
therein). There is C <∞ so that, for any measurable function ϕ,

‖gtϕ‖∞ ≤ C‖ϕ‖∞ . (4.10)

Moreover, by the Perron–Frobenius Theorem, there are α > 0 and C < ∞ so that
for any ϕ orthogonal to m̄′, 〈m̄′, ϕ〉 = 0,

‖gtϕ‖∞ ≤ Ce−αt‖ϕ‖∞ . (4.11)

Then, by the last identity in (3.2), for t ∈ [Tn, Tn+1]∥∥∥Γ(n)
1 (t)

∥∥∥
∞

≤ Ce−α(t−Tn)‖v(n)(Tn)‖∞
≤ Ce−α(t−Tn)

(
‖v(n−1)(Tn)‖∞ + ‖m̄xn − m̄xn−1‖∞

)
≤ Ce−α(t−Tn)‖v(n−1)(Tn)‖∞ . (4.12)

The second inequality follows from (3.2) and the last one follows from (2.4), pro-
ceeding as in the proof of (4.9).

By definition (4.4) we get

sup
t∈[Tn,Tn+1]

∥∥∥Γ(n)
2 (t)

∥∥∥
∞
≤ CλZn . (4.13)

We next bound Λ(n)
3 . We have

‖ptm̄′
z‖∞ ≤ 2√

2πt
≤ 1√

t
(4.14)

because pt(x, y) ≤ 1/
√

2πt and ‖m̄′
z‖1 = 2 for any z ∈ R. Then

∥∥pt(m̄xk
− m̄xk−1)

∥∥
∞ ≤

∣∣∣∣∣
∫ xk

xk−1

dz ‖ptm̄′
z‖∞

∣∣∣∣∣ ≤ |xk − xk−1|√
t

(4.15)

so that, by (4.10), we get

∥∥∥Λ(n)
3 (t)

∥∥∥
∞
≤ Cλ

n∑
k=1

∫ t

Tn

ds
|xk − xk−1|√

s− Tk

.
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By (2.4), we then get

∥∥∥Λ(n)
3 (t)

∥∥∥
∞
≤ Cλ

√
T

n∑
k=1

Vk−1√
n− k + 1

. (4.16)

We will next bound Γ(n)
4 (t). We write

g
(n)
t−s = pt−s −

∫ t

s

ds′′
d

ds′′
(
g
(n)
t−s′′ps′′−s

)
= pt−s +

∫ t

s

ds′′ g(n)
t−s′′ [1− 3m̄2

xn
]ps′′−s

having used (2.3) in the second equality. Then

Γ(n)
4 (t) = λ

∫ t

Tn

ds

∫ s

Tn

ds′
∂pt−s′

∂s′
v(n)(s′)

+ λ

∫ t

Tn

ds

∫ t

s

ds′′ g(n)
t−s′′ [1− 3m̄2

xn
]
∫ s

Tn

ds′
∂ps′′−s′

∂s′
v(n)(s′) .

By using (4.10) and (see Appendix A)∥∥∥∥ ∂

∂t
ptϕ

∥∥∥∥
∞
≤ 1

t
‖ϕ‖∞ (4.17)

since ‖v(n)(s′)‖∞ ≤ Vn, we get∥∥∥Γ(n)
4 (t)

∥∥∥
∞
≤ CλT 2Vn . (4.18)

This is not optimal but good enough for our purposes. Analogously

∥∥∥Γ(n)
5 (t)

∥∥∥
∞
≤ Cλ

∫ t

Tn

ds ‖v(n)(s)‖∞ ≤ CλTVn (4.19)

∥∥∥Γ(n)
6 (t)

∥∥∥
∞
≤ Cλ

n∑
k=1

∫ t

Tn

ds

∫ Tk

Tk−1

ds′
‖v(k−1)(s′)‖∞

s− s′
≤ CλT

n∑
k=1

Vk−1

n− k + 1
.

(4.20)
Finally, using again (4.10), we have∥∥∥Γ(n)

9 (t)
∥∥∥
∞

≤ CTV 2
n (4.21)∥∥∥Γ(n)

10 (t)
∥∥∥
∞

≤ CTV 3
n (4.22)

hence, recalling the definition of (mλ, tλ) and (4.9),∥∥∥Γ(n)
9 (t)

∥∥∥
∞

+
∥∥∥Γ(n)

10 (t)
∥∥∥
∞
≤ CλT 2Vn (4.23)
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After collecting all these bounds, we have, for t ∈ [Tn, Tn+1], n ≤ mλ, t ≤ tλ,∥∥∥v(n)(t)
∥∥∥
∞

≤ C
{
e−α(t−Tn)

∥∥∥v(n−1)(Tn)
∥∥∥
∞

+ λZn + λT 2Vn

+ λ
√
T

n∑
k=1

Vk−1√
n− k + 1

+ λT

n∑
k=1

Vk−1

n− k + 1

}
. (4.24)

By iterating once the above inequality we get

Vn ≤ C

{
e−αTVn−2 + λ(Zn + Zn−1) + λT 2 (Vn + Vn−1)

+ λ
√
T

n∑
k=1

Vk−1√
n− k + 1

+ λT

n∑
k=1

Vk−1

n− k + 1

}
.

Recalling (4.4), we have

Vn ≤ C
{
e−αTVn,∗ + λZn,∗ + λT 2Vn,∗

+ λ
√
T

n∑
k=1

Vk−1,∗√
n− k + 1

+ λT

n∑
k=1

Vk−1,∗
n− k + 1

}

and since the r.h.s. is an increasing function of n,

Vn,∗ ≤ C
{
e−αTVn,∗ + λZn,∗ + λT 2Vn,∗

+ λ
√
T

n∑
k=1

Vk−1,∗√
n− k + 1

+ λT

n∑
k=1

Vk−1,∗
n− k + 1

}
. (4.25)

Inequality (4.25) yields, for n ≤ mλ ≤ nλ(τ),

[
1− C

(
λT 2 + e−αT + λT lognλ(τ)

)]
Vn,∗ ≤ CλZn,∗ +

n−1∑
k=0

Cλ
√
T√

n− k
Vk,∗ .

For λ small enough the square bracket term is larger than 1/2, so that (provided
we double the value of the constant C)

Vn,∗ ≤ CλZn,∗ +
n−1∑
k=0

Cλ
√
T√

n− k
Vk,∗ . (4.26)

By iteration of (4.26) we get

Vn,∗ ≤ CλZn,∗ +
n−1∑
k=0

C2λ2
√
T√

n− k
Zk,∗ + C2λ2T

n−2∑
k=0

α(n, k)Vk,∗ (4.27)



Vol. 3, 2002 Front Fluctuations in One Dimensional Stochastic Phase Field Equations 47

where

α(n, k) =
n−1∑

h=k+1

1√
n− h

1√
h− k

(4.28)

is a bounded function of n and k.
We bound the second term on the r.h.s. of (4.27) by

Zn,∗
n−1∑
k=0

C2λ2
√
T√

n− k
≤ CZn,∗λ2

√
Tn ≤ CλZn,∗

since n ≤ mλ ≤ (λ2T )−1τ . We then get from (4.27)

Vn,∗ ≤ CλZn,∗ + Cλ2T

n−2∑
k=0

Vk,∗ (4.29)

from which, by Gronwall Lemma, there is C = C(τ) such that

Vn,∗ ≤ CλZn,∗, for all n ≤ mλ . (4.30)

By (4.5), choosing λ small enough, we have, for n ≤ mλ,

Vn,∗ ≤ Cλ1−ζ
√
T on the set B(1)

λ,τ

which implies mλ = nλ(τ) on the set B(1)
λ,τ . Thus the first bound in (4.7) follows

from (4.5) and (4.30). Since Nδ > mλ, (4.8) also follows. Since ‖m̄′‖∞ = 1, the
second estimate in (4.7) follows directly from the first one and Proposition 2.1. �

We are going to prove that the component of v(n)(Tn+1) orthogonal to m̄′
xn

, is
bounded by Cλ1−ζ , thus considerably improving the bound on the full v(n)(Tn+1).
Let

g
(n,⊥)
t := g

(n)
t

(
1− 3

4
|m̄′

xn
〉〈m̄′

xn
|
)

the operator whose kernel is

g
(n,⊥)
t (x, y) = g

(n)
t (x, y)− 3

4
m̄′

xn
(x)m̄′

xn
(y) . (4.31)

The superscript ⊥ recalls L2–orthogonality w.r.t. the eigenvector m̄′
xn

of g(n)
t , i.e.

g
(n)
t m̄′

xn
= m̄′

xn
. It follows from (4.11) that there are constants α > 0 and C < ∞

so that, for any ϕ, ∥∥∥g(n,⊥)
t ϕ

∥∥∥
∞
≤ Ce−αt‖ϕ‖∞ . (4.32)

Let also
z(n,⊥)(t) := z(n)(t)− 3

4
〈m̄′

xn
, z(n)(t)〉m̄′

xn
(4.33)
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be the component of z(n)(t) orthogonal to m̄′
xn

and introduce the event

B(2)
λ,τ :=

{
ω ∈ Ω : sup

n≤nλ(τ)

sup
t∈[Tn,Tn+1]

‖z(n,⊥)(t)‖∞ ≤ λ−ζ

}
. (4.34)

In Appendix B we will prove that for each τ, ζ, q > 0 there exists a constant
C = C(τ, ζ, q) such that for any λ > 0

P

(
B(2)
λ,τ

)
≥ 1− Cλq . (4.35)

Define now
V ⊥
∗ (τ) := sup

n≤nλ(τ)

∥∥∥v(n,⊥)(Tn+1)
∥∥∥
∞

,

v(n,⊥)(Tn+1) := v(n)(Tn+1)− 3
4
〈m̄′

xn
, v(n)(Tn+1)〉m̄′

xn
. (4.36)

Proposition 4.2 Recalling (4.5) and (4.34), set

B(1,2)
λ,τ := B(1)

λ,τ ∩ B(2)
λ,τ . (4.37)

Then, for each τ, ζ > 0 there is a constant C = C(τ, ζ) such that, for any λ > 0,

V ⊥
∗ (τ) ≤ Cλ1−2ζ on the set B(1,2)

λ,τ (4.38)

and, recalling (4.1) for the definition of ξn,

sup
n≤nλ(τ)+1

|ξn − xn| ≤ CT−1/2+ζ on the set B(1,2)
λ,τ . (4.39)

Proof. Let

Λ(n,⊥)
3 (Tn+1) := Λ(n)

3 (Tn+1)− 3
4
〈m̄′

xn
,Λ(n)

3 (Tn+1)〉m̄′
xn

= −λ
n∑

k=1

∫ Tn+1

Tn

dt g
(n,⊥)
Tn+1−tpt−Tk

[m̄xk
− m̄xk−1 ] (4.40)

where we used (4.31). By using (4.14), (4.32), ‖m̄′‖∞ ≤ 1, and recalling (4.3) we
have ∥∥∥Λ(n,⊥)

3 (Tn+1)
∥∥∥
∞

≤ Cδ∗(τ)λ
n∑

k=1

∫ Tn+1

Tn

dt e−α(Tn+1−t) 1√
t− Tk

≤ Cδ∗(τ)
λ√
T

√
nλ(τ) ≤ Cλ1−ζT−1/2 (4.41)

the last inequality being true, by (4.7), on the set B(1)
λ,τ .
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Shorthanding by R(n) the sum of all the terms on the r.h.s. of (3.7), except
for Γ(n)

2 and Λ(n)
3 , and calling R(n,⊥) its orthogonal projection,

v(n,⊥)(Tn+1) = λz(n,⊥)(Tn+1) + Λ(n,⊥)
3 (Tn+1) + R(n,⊥) . (4.42)

The last term is bounded by

|R(n,⊥)| ≤ C
[
e−αT + λT 2 + λT lognλ(τ)

]
V∗(τ) (4.43)

as it follows from (4.12) and (4.18)–(4.20), and (4.23). The bound (4.38) now
follows from the definition (4.34), and equations (4.41)–(4.43).

It remains to prove (4.39). Recalling that x0 = 0, from (2.5) and (4.1),

xn =
n−1∑
k=0

(xk+1 − xk) = ξn − 9
16

n−1∑
k=0

〈m̄′
xk

, v(k)(Tk+1)〉〈m̄′′
xk

, v(k)(Tk+1)〉

+
n−1∑
k=0

R(v(k)(Tk+1)) (4.44)

then, for n ≤ nλ(τ), since ‖m̄′‖1 = 2,

|ξn − xn| ≤ nλ(τ)

(
2V∗(τ) sup

n≤nλ(τ)

∣∣∣〈m̄′′
xn

, v(n)(Tn+1)〉
∣∣∣+

sup
n≤nλ(τ)

∥∥∥R(v(n)(Tn+1))
∥∥∥
∞

)
. (4.45)

By (2.5)
sup

n≤nλ(τ)

∥∥∥R(v(n)(Tn+1))
∥∥∥
∞
≤ CV∗(τ)3 . (4.46)

Since 〈m̄′′, m̄′〉 = 0, |〈m̄′′
xn

, v(n)(Tn+1)〉| ≤ CV ⊥
∗ (τ), (4.39) follows from (4.7),

(4.38), (4.45), and (4.46). �
The bound in (4.38) holds also for v(n)(Tn). Indeed, since 〈m̄′

xn
, v(n)(Tn)〉 = 0,

we have the following proposition.

Proposition 4.3 Let B(1,2)
λ,τ be as in (4.37). Then, for each τ, ζ > 0 there is a

constant C = C(τ, ζ) such that, for any λ > 0

sup
n≤nλ(τ)

∥∥∥v(n)(Tn)
∥∥∥
∞
≤ Cλ1−2ζ on the set B(1,2)

λ,τ . (4.47)

Proof. By (3.2)
v(n)(Tn) = v(n−1)(Tn) + m̄xn−1 − m̄xn . (4.48)



50 L. Bertini, S. Brassesco, P. Buttà and E. Presutti Ann. Henri Poincaré

By Taylor expansion up to fourth order, we have

m̄xn − m̄xn−1 = − m̄′
xn−1

(xn − xn−1) +
1
2
m̄′′

xn−1
(xn − xn−1)2 (4.49)

− 1
6
m̄′′′

xn−1
(xn − xn−1)3 + an−1(xn − xn−1)4

where an−1 is bounded. Thus, by Proposition 2.1, we have

m̄xn − m̄xn−1 =
3
4
〈m̄′

xn−1
, v(n−1)(Tn)〉m̄′

xn−1
+ αn (4.50)

where

αn =
1
2
m̄′′

xn−1
(xn − xn−1)2 − 1

6
m̄′′′

xn−1
(xn − xn−1)3 + an−1(xn − xn−1)4

+ m̄′
xn−1

{
9
16
〈m̄′′

xn−1
, v(n−1)(Tn)〉〈m̄′

xn−1
, v(n−1)(Tn)〉 −R(v(n−1)(Tn))

}
. (4.51)

From (4.48) and (4.50) we get

v(n)(Tn) = v(n−1,⊥)(Tn)− αn . (4.52)

Note that, from (4.7), on the set B(1,2)
λ,τ we have supn≤nλ(τ) |xn−xn−1| ≤ Cλ1−ζ

√
T ;

by (4.38) and (4.46) we have |αn| ≤ Cλ2−2ζT (a better bound is proved in Section
6). The bound (4.47) follows. �

Part III. Limit motion

5 A new integral equation

Unless otherwise stated, we will work in the set B(1,2)
λ,τ which appears in Proposi-

tions 4.2 and 4.3. In particular we can use the integral representation (3.7) for all
n ≤ nλ(τ) (if λ is small enough) and the bounds of Section 4. It is now convenient
to decompose the term Λ(n)

3 (t) into the sum of three new terms; we thus use (4.50)
to write

Λ(n)
3 (t) = Γ(n)

3+8(t) + Γ(n)
7 (t) (5.1)

where

Γ(n)
3+8(t) := −3λ

4

n∑
k=1

〈m̄′
xk−1

, v(k−1)(Tk)〉
∫ t

Tn

ds g
(n)
t−sps−Tk

m̄′
xk−1

(5.2)

Γ(n)
7 (t) := −λ

n∑
k=1

∫ t

Tn

ds g
(n)
t−sps−Tk

αk (5.3)
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and next we decompose Γ(n)
3+8(t) = Γ(n)

3 (t) + Γ(n)
8 (t) where

Γ(n)
3 (t) := −3λ

4

n−1∑
k=0

〈m̄′
xk

, v(k)(Tk+1)〉
∫ t

Tn

ds g
(n)
t−s

2√
2π(s− Tk+1)

(5.4)

Γ(n)
8 (t) := −3λ

4

n−1∑
k=0

〈m̄′
xk

, v(k)(Tk+1)〉
∫ t

Tn

ds g
(n)
t−s

[
ps−Tk+1m̄

′
xk
− 2√

2π(s− Tk+1)

]
.

(5.5)
Note that Γ(n)

3 (t) is obtained from Γ(n)
3+8(t) replacing pt(x, y) by (2πt)−1/2 (recall

that
∫
dx m̄′(x) = 2). In conclusion we have

v(n)(t) =
10∑
i=1

Γ(n)
i (t) . (5.6)

Let us define
ψn := −3

4
〈m̄′

xn
, v(n)(Tn+1)〉 (5.7)

so that, recalling (4.1),

ξn =
n−1∑
k=0

ψk . (5.8)

We then set t = Tn+1 in (5.6) and project it on m̄′
xn

, getting

ψn = ηn −
n−1∑
k=0

An,k ψk (5.9)

where

ηn :=
10∑
i=1
i�=3

ηn(i), ηn(i) = −3
4
〈m̄′

xn
,Γ(n)

i (Tn+1)〉, i = 1, . . . , 10 (5.10)

and

An,k := λ
3√
2π

2
√
T√

n− k +
√
n− k − 1

1k<n . (5.11)

Note that

ηn(3) ≡ −
n−1∑
k=0

An,k ψk . (5.12)

Despite its appearance, (5.9) is not a linear equation in the variables ψn,
because the term ηn still depends on the unknowns v(n)(t). We shall however see,
using the a priori bounds of Section 4, that all contributions to ηn which contain
the unknowns vanish as λ ↓ 0 (this is not exactly true, as some terms will vanish
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only after averaging over n). As already seen in Section 4 the matrix A := ((An,k))
improves after iterations. Calling ψ and η the vectors whose components are ψn

and ηn, (5.9) becomes
ψ = η −Aψ . (5.13)

In R
nλ(τ)+1 we introduce the seminorms |y|n := sup0≤j≤n |yj | and the correspond-

ing seminorms on matrices as

‖M‖n := sup
|y|n=1

|My|n = sup
0≤i≤n

n∑
j=0

|Mi,j | . (5.14)

By the triangular structure of A, see (5.11), we easily get the following lemma.

Lemma 5.1 For each τ > 0 there is a constant C = C(τ) such that for any λ > 0

sup
n≤nλ(τ)

∥∥Aj
∥∥
n
≤ Cj

j!
. (5.15)

Hence, from (5.13),

ψ =
∞∑
j=0

(−A)jη = (1 + A)−1η, sup
n≤nλ(τ)

∥∥(1 + A)−1
∥∥
n
≤ C . (5.16)

It will be convenient to consider also one iteration of (5.13), i.e.

ψ = η −Aη + A2ψ . (5.17)

Explicitly we have

(A2)n,k =
n−1∑

j=k+1

An,j Aj,k 10≤k<n−1 . (5.18)

We conclude the section by showing that A2 has a scaling limit.

Proposition 5.2 For each τ > 0 there is a constant C = C(τ) such that

sup
0≤k<n≤nλ(τ)

∣∣∣(A2
)
n,k

∣∣∣ ≤ Cλ2T . (5.19)

Moreover, for each δ, τ > 0,

lim
λ↓0

sup
0≤τ2<τ1≤τ
τ1−τ2>δ

∣∣∣∣(λ2T )−1
(
A2
)
nλ(τ1),nλ(τ2)

− 9
2

∣∣∣∣ = 0 . (5.20)
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Proof. By (5.11) ∣∣∣(A2
)
n,k

∣∣∣ ≤ Cλ2T

n−1∑
j=k+1

1√
n− j

√
j − k

which proves (5.19).
By (5.11) we have

(λ2T )−1
(
A2
)
nλ(τ1),nλ(τ2)

− 9
2

=
9
2π

×



nλ(τ1)−1∑
j=nλ(τ2)+1

2√
nλ(τ1)− j +

√
nλ(τ1)− j − 1

× 2√
j − nλ(τ2) +

√
j − nλ(τ2)− 1

− π

}
. (5.21)

Since π =
∫ 1

0
dx [x(1 − x)]−1/2, by letting σ = τ1 − τ2 and changing the index of

summation the r.h.s. of (5.21) equals

9
2π




nλ(σ)−2∑
j=0

2√
nλ(σ)− j +

√
nλ(σ) − j − 1

2√
j +

√
j + 1

−
∫ 1

0

dx
1√

x(1− x)




(5.22)
which converges, as λ ↓ 0, to 0 uniformly for σ ∈ [δ, τ ], as can be easily checked.
Proposition 5.2 is proved. �

6 Bounds on η

Recalling (5.8)–(5.10), a term η(i) (as in the previous section, we are here using
vectorial notation) contributing to ψ whose seminorm is |η(i)|n = o(λ2T ) (i.e. such
that (λ2T )−1|η(i)|n vanishes as λ ↓ 0) does not contribute to the limiting equation
for ξn since n ≤ (λ2T )−1τ . This is the case for some of the η(i)’s, i.e. η(1), η(7),
and η(10), as we shall see.

Clearly ηn(2) is not negligible because its typical magnitude is λ
√
T . It will

be examined in the next section, where we shall see that , summed over n it gives
a finite contribution because of cancellations related to its martingale nature.The
other terms, i.e. ηn(i), with i from 4 to 9, live on an intermediate stage: they
are smaller than the a priori bound λ1−ζ

√
T , yet not small enough to be directly

negligible. We shall rewrite the factors v(n)(t) via (5.6), with the idea that if we
get two η(i), i = 4, . . . , 10 then the corresponding terms become negligible. We
will use the following notation.

Definition 6.1 Let ηn(i1, . . . , ik), k > 1, ij ∈ {3, 4, 5, 6, 8} when j < k, ik ∈
{1, . . . , 10}, be the term which is obtained from ηn(i1) by replacing the v(�)(·)–
function in its expression by Γ(�)

i2
(·); then, the new v(�′)(·) function which appears
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is replaced by Γ(�′)
i3

(·) and so forth till the last one, which is not changed. Instead
of an index ij may appear the symbol 3 + 8 or 4 + 5, it means that, at that stage
of the iteration, we replace the v(�)(·)–function by Γ(�)

3 (·) + Γ(�)
8 (·), or respectively

by Γ(�)
4 (·) + Γ(�)

5 (·).
We will also consider i1 = 9, in which case there is a product of two v–

functions. Then, ηn(9|i2, . . . , ik; i′2, . . . , i
′
h) is defined by doing the branching

i2, . . . , ik (with the previous rules) for the first v function and the branching
i′2, . . . , i′h for the second one (the second branching may be absent).

We define

σn := ηn(2) + ηn(4 + 5, 2) + ηn(6, 2) + ηn(9|2; 2) (6.1)

which will be studied in the next section where we will bound its sum over n
using probabilistic arguments, σn is in fact a truly stochastic term. The difference
between ηn and σn is negligible, this being the main result in this section. Let

B(3)
λ,τ :=

{
ω ∈ Ω : sup

n≤nλ(τ)

∣∣∣∣∣
∑
k<n

An,kηk(2)

∣∣∣∣∣ ≤ λ2−ζT

}
(6.2)

B(4)
λ,τ :=

{
ω ∈ Ω : sup

n≤nλ(τ)

∣∣∣∣∣
∑
k<n

λ
√
T√

n− k
ηk(2)

∣∣∣∣∣ ≤ λ2−ζT

}
(6.3)

where ηk(2) and An,k are defined in (5.10) and (5.11) respectively. We will prove
in Appendix B that for each τ, ζ, q > 0 there is C = C(τ, ζ, q) so that

P

(
B(3)
λ,τ ∩ B(4)

λ,τ

)
≥ 1− Cλq . (6.4)

Finally define
xn,∗ := sup

k≤n
|xn|, x∗(τ) = xnλ(τ),∗ . (6.5)

Proposition 6.2 Recalling (4.37), let

Bλ,τ := B(1,2)
λ,τ ∩ B(3)

λ,τ ∩ B(4)
λ,τ . (6.6)

Then for each τ > 0, there is a constant C = C(τ) so that for any λ > 0 and ζ
small enough

|ηn − σn| ≤ Cλ2T 3/4(1 + x2
n+1,∗) on the set Bλ,τ . (6.7)

Proof. We will call negligible a term which is bounded by the r.h.s. of (6.7). We
will next examine one by one all the terms which contribute to ηn − σn and show
that they are all negligible, thus proving Proposition 6.2.
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Step 1. The terms ηn(1) and ηn(10). We have that ηn(1) = 0; indeed by (3.8),
since g

(n)
t is self–adjoint and g

(n)
t m̄′

xn
= m̄′

xn
,

ηn(1) = −3
4
〈m̄′

xn
, g

(n)
T v(n)(Tn)〉 = −3

4
〈m̄′

xn
, v(n)(Tn)〉 = 0 (6.8)

by (3.2).
To show ηn(10) is negligible we use the bound (4.22); since we are in the set

Bλ,τ , we get, from (4.7)

sup
t∈[Tn,Tn+1]

‖Γ(n)
10 (t)‖∞ ≤ CT 5/2λ3−3ζ hence |ηn(10)| ≤ CT 5/2λ3−3ζ .

(6.9)

Step 2. The term ηn(7). By (5.3) and (4.51),

Γ(n)
7 (t) = I1 + I2 + I3 + I4 (6.10)

where

I1 := −λ

2

n∑
k=1

(xk − xk−1)2
∫ t

Tn

ds g
(n)
t−sps−Tk

m̄′′
xk−1

(6.11)

I2 := −λ

n∑
k=1

[
(xk − xk−1)3

6

∫ t

Tn

ds g
(n)
t−sps−Tk

m̄′′′
xk−1

+ (xk − xk−1)4
∫ t

Tn

ds g
(n)
t−sps−Tk

ak−1

]
(6.12)

I3 := −9λ
16

n∑
k=1

〈m̄′′
xk−1

, v(k−1)(Tk)〉〈m̄′
xk−1

, v(k−1)(Tk)〉
∫ t

Tn

ds g
(n)
t−sps−Tk

m̄′
xk−1

(6.13)

I4 := λ

n∑
k=1

∫ t

Tn

ds g
(n)
t−sps−Tk

[
m̄′

xk−1
R(v(k−1)(Tk))

]
. (6.14)

To bound I1 we first consider the term with k = n. We write, for t > Tn + 1,

∫ t

Tn

ds g
(n)
t−sps−Tnm̄

′′
xn−1

=

{∫ Tn+1

Tn

+
∫ t

Tn+1

}
ds g

(n)
t−sps−Tnm̄

′′
xn−1

.

The first integral is bounded by a constant. In the second integral, as well as in
the integrals in I1 when k < n, we write

ps−Tk
m̄′′

xk−1
= 2

∂ps−Tk

∂s
m̄xk−1
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and then use (4.17). We thus get recalling the definition (4.3) of δ∗(τ), and using
(4.10),

‖I1‖∞ ≤ Cλδ∗(τ)2
{

logT +
n∑

k=1

1
n− k + 1

}
≤ C

(
δ∗(τ)
λ
√
T

)2

λ3T | logλ| .

Since m̄′′′
xk−1

∈ L1(R, dx), ‖ptm̄′′′
xk−1

‖∞ ≤ Ct−1/2 and as ak−1 is bounded, using
again (4.10)

‖I2‖∞ ≤ Cλδ∗(τ)3
n∑

k=1

∫ t

Tn

ds (s− Tk)−1/2 + Cλδ∗(τ)4
n∑

k=1

(t− Tn)

≤ C

(
δ∗(τ)
λ
√
T

)3

λ3T 3/2 + C

(
δ∗(τ)
λ
√
T

)4

λ3T 2 .

Recalling the definition (4.2) of V∗(τ) and the definition (4.36) of V ⊥
∗ (τ), we get

‖I3‖∞ ≤ CλV∗(τ)V ⊥
∗ (τ)

√
Tnλ(τ) ≤ C

(
V∗(τ)V ⊥

∗ (τ)
λ2
√
T

)
λ2
√
T .

Finally, recalling (2.5),

‖I4‖∞ ≤ Cλ
√

Tnλ(τ)V∗(τ)3 ≤ C

(
V∗(τ)
λ
√
T

)3

λ3T 3/2 .

Since we are restricting our considerations to the set where δ∗(τ) ≤ λ1−ζ
√
T ,

V∗(τ) ≤ λ1−ζ
√
T and V ⊥∗ (τ) ≤ λ1−ζ , we get

sup
t∈[Tn,Tn+1]

‖Γ(n)
7 (t)‖∞ ≤ Cλ2−2ζ

√
T hence |ηn(7)| ≤ Cλ2−2ζ

√
T . (6.15)

Step 3. The term ηn(8). In order to show ηn(8) is negligible (as specified at the
beginning of the present proof) we cannot use directly the a priori bounds, but we
use equation (5.6) to get

ηn(8) =
10∑
i=1
i�=3,8

ηn(8, i) + ηn(8, 3 + 8) (6.16)

and show each of the terms on the r.h.s. above are negligible.
We have

ηn(8) =
n−1∑
k=0

A
(1)
n,kψk (6.17)

where, recalling 2 = 〈1, m̄′
xk
〉,

A
(1)
n,k := −3λ

4

∫ Tn+1

Tn

ds
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{
〈m̄′

xn
, ps−Tk+1m̄

′
xk
〉 − 〈m̄′

xn
, 1〉 1√

2π(s− Tk+1)
〈1, m̄′

xk
〉
}
1k<n . (6.18)

Let us define (recall that m̄′ > 0)

B
(1)
n,k := λ

∫ Tn+1

Tn

ds

∫
dx

∫
dy m̄′

xn
(x)

∣∣∣∣∣ps−Tk+1(x− y)− 1√
2π(s− Tk+1)

∣∣∣∣∣ m̄′
xk

(y) .

(6.19)
We are going to prove that for any τ > 0 there is a constant C = C(τ) such that
for any 0 ≤ k < n ≤ nλ(τ)∣∣∣A(1)

n,k

∣∣∣ ≤ CB
(1)
n,k ≤ Cλ

[
1 + x2

n+1,∗
]{ 1√

T (n− k)3/2
+ 1k=n−1

}
. (6.20)

Proof of (6.20). Let xn,k := xn − xk and define, for any θ ∈ R and t > 0,

f(t, θ) =
∫

dx

∫
dy m̄′(x)m̄′(y)

∣∣∣∣∣e
−(y−x−θ)2/2t − 1√

2πt

∣∣∣∣∣ .

Then, after a change of variables in (6.19), its r.h.s. becomes equal to λ
∫ Tn+1

Tn
ds

f(s− Tk+1, xn,k).

The case k < n − 1. After changing variables in the time integral, we get, for
k < n− 1,

B
(1)
n,k = λT

∫ 1

0

dt f
(
T (t + n− 1− k), xn,k

)
. (6.21)

Since |e−|ξ| − 1| ≤ |ξ| and m̄′(x) decays exponentially to 0 as |x| → ∞, we get

f(t, θ) ≤ C
1 + θ2

t3/2
(6.22)

and, from (6.21),

B
(1)
n,k ≤ CλT−1/2[1 + x2

n,k]
∫ 1

0

dt
1

(t + n− 1− k)3/2

which proves (6.20) when k < n− 1.

The case k = n− 1. We have, after a change of variables in the time integral,

B
(1)
n,n−1 = λ

∫ T

0

dt f(t, xn,n−1) .

Using the inequality f(t, θ) ≤ 4(2πt)−1/2 when t ≤ 1 and (6.22) when t > 1, we
get

B
(1)
n,n−1 ≤ λ

∫ 1

0

dt
4√
2πt

+ Cλ

∫ T

1

dt
1 + x2

n,n−1

t3/2
≤ Cλ(1 + x2

n,∗) .
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The proof of (6.20) is concluded.

Recall now that

ηn(8, i) = −3
4

n−1∑
k=0

A
(1)
n,k〈m̄′

xk
,Γk

i (Tk+1)〉, i = 1, 2, 3 + 8, 4, 5, 6, 7, 9, 10.

The term ηn(8, 1) in (6.16) vanishes by the same argument as in (6.8). Since
we are working in the set B(1)

λ,τ , see (4.37), we have

|ηn(8, 2)| ≤ Cλ
(
1 + x2

n+1,∗
){n−2∑

k=0

1√
T (n− k)3/2

+ 1

}
λ1−ζ

√
T

≤ Cλ2−ζ
(
1 + x2

n+1,∗
)

(6.23)

which is negligible for ζ small.
To bound ηn(8, 3 + 8) use (6.17), (5.2), and (5.7) to write

ηn(8, 3 + 8) = λ

n−1∑
k=0

A
(1)
n,k

k−1∑
h=0

Bk,hψh, Bk,h :=
∫ Tk+1

Tk

ds 〈m̄′
xk

, ps−Th+1m̄
′
xh
〉 .

(6.24)

We note that, by (5.7), |ψ|n ≤ CVn,∗; it is also easy to verify Bk,h ≤ C
√
T (k −

h)−1/2. Plugging this bounds, together with (6.20), into (6.24), we get

|ηn(8, 3 + 8)| ≤ Cλ2
√
TVn,∗

[
1 + x2

n+1,∗
] n−1∑
k=0

{
1√

T (n− k)3/2
+ 1k=n−1

}

×
k−1∑
h=0

1√
k − h

≤ CλVn,∗
[
1 + x2

n+1,∗
] n−1∑
k=0

{
1√

T (n− k)3/2
+ 1k=n−1

}

≤ CλVn,∗
[
1 + x2

n+1,∗
]

(6.25)

which shows ηn(8, 3 + 8) is negligible.
It remains to bound ηn(8, i), i = 4, 5, 6, 7, 9, 10. The negligibility of those

terms follows directly from (6.17), (6.20), and the bounds (4.18)–(4.22), (6.15).
We thus conclude

|ηn(8)| ≤ Cλ2−ζ
√
T
[
1 + x2

n+1,∗
]

. (6.26)

Step 4. The term ηn(4 + 5). We claim

ηn(4 + 5) =
3λ
4

∫ Tn+1

Tn

ds 〈m̄′
xn

, pTn+1−sv
(n)(s)〉 (6.27)
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Indeed

ηn(4) = −3λ
4

∫ Tn+1

Tn

ds

∫ s

Tn

ds′ 〈m̄′
xn

,
∂ps−s′

∂s′
v(n)(s′)〉

=
3λ
4

∫ Tn+1

Tn

ds′
∫ Tn+1

s′
ds 〈m̄′

xn
,
∂ps−s′

∂s
v(n)(s′)〉

=
3λ
4

∫ Tn+1

Tn

ds′ 〈m̄′
xn

, pTn+1−s′v
(n)(s′)〉 − ηn(5)

which proves (6.27).
In order to bound ηn(4 + 5), we use equation (5.6) to get

ηn(4 + 5) = ηn(4 + 5, 2) + ηn(4 + 5, 3, 2) + ηn(4 + 5, 3, 3)

+
10∑
i=1
i�=2,3

[ηn(4 + 5, i) + ηn(4 + 5, 3, i)] . (6.28)

The term ηn(4 + 5, 2) is in σn. Postponing the analysis of ηn(4 + 5, 3, 2) let us first
show that ηn(4 + 5, i), i �= 2, 3 are negligible.

The terms ηn(4 + 5, i), i �= 2, 3. We have

ηn(4 + 5, 1) =
3λ
4

∫ Tn+1

Tn

ds 〈m̄′
xn

, pTn+1−sg
(n)
s−Tn

v(n)(Tn)〉

since v(n)(Tn) is orthogonal to m̄′
xn

, see (3.2), we can apply (4.11) to deduce that

|ηn(4 + 5, 1)| ≤ Cλ

∫ Tn+1

Tn

ds e−α(s−Tn)λ1−2ζ

having used that ‖v(n)(Tn)‖∞ ≤ Cλ1−2ζ , see (4.47). Thus |ηn(4 + 5, 1)| ≤ Cλ2−2ζ

which for ζ small is negligible.
We next show ηn(4 + 5, 8) is negligible. We have

ηn(4 + 5, 8) =
3
4
λ2

n−1∑
k=0

ψk

∫ Tn+1

Tn

dt

∫ t

Tn

ds

×
〈
m̄′

xn
, pTn+1−tg

(n)
t−s

[
ps−Tk+1m̄

′
xk
− 2√

2π(s− Tk+1)

]〉
. (6.29)

We now use the decomposition (4.31) for g
(n)
t−s above. Recalling (6.19), the

term obtained by replacing g
(n)
t−s(x, y) by (3/4)m̄′

xn
(x)m̄′

xn
(y) in (6.29) is bounded
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by

Cλ

n−1∑
k=0

B
(1)
n,k|ψk|

∫ Tn+1

Tn

dt 〈m̄′
xn

, pTn+1−tm̄
′
xn
〉 ≤ C

√
Tλ2Vn,∗

[
1 + x2

n+1,∗
]

×
n−1∑
k=0

{
1√

T (n− k)3/2
+ 1k=n−1

}
≤ C

√
Tλ2Vn,∗

[
1 + x2

n+1,∗
]

where we used (6.20). We next consider the case when we replace g
(n)
t−s in (6.29)

by g
(n,⊥)
t−s . Since, by (4.14) and (4.32),∥∥∥pTn+1−tg

(n,⊥)
t−s ps−Tk+1m̄

′
xk

∥∥∥
∞
≤ Ce−α(t−s)

∥∥ps−tk+1m̄
′
xk

∥∥
∞

≤ Ce−α(t−s) 1√
s− Tk+1

we can bound (6.29) (with g
(n)
t−s replaced by g

(n,⊥)
t−s ) as

Cλ2
n−1∑
k=0

|ψk|
∫ Tn+1

Tn

dt

∫ t

Tn

ds e−α(t−s) 1√
s− Tk+1

≤ C
√
Tλ2Vn,∗

n−1∑
k=0

{
1k=n−1 +

1√
n− k

}
≤ C

[
λ3−ζT + λ2−ζ

√
T
]

which is negligible for ζ small enough.
It remains to show ηn(4 + 5, i), i = 4, 5, 6, 7, 9, 10 is negligible. This follows

from the bounds (4.18)–(4.22), (6.15), and (6.27).

The terms ηn(4 + 5, 3, i). We write

ηn(4 + 5, 3) =
n−1∑
k=0

A
(2)
n,k ψk (6.30)

where

A
(2)
n,k =

3λ2

4

∫ Tn+1

Tn

ds′′
∫ Tn+1

s′′
ds′
〈
m̄′

xn
, pTn+1−s′g

(n)
s′−s′′

2√
2π(s′′ − Tk+1)

〉
1k<n .

(6.31)
By using the bounds (4.14) and (4.10), it is easy to show

∣∣∣A(2)
n,k

∣∣∣ ≤ C
λ2T 3/2

√
n− k

1k<n . (6.32)
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From (6.30) we thus get

ηn(4 + 5, 3, i) =
n−1∑
k=0

A
(2)
n,kηk(i) . (6.33)

The first one, ηn(4+5, 3, 1), vanishes, by (6.8). By using the bounds (4.18)–(4.22),
(6.15), (6.26), and (6.32) it is immediate to verify ηn(4 + 5, 3, i) is negligible for
i �= 2, 3 if ζ is chosen small enough.

To bound η(4 + 5, 3, 3) we note that, by (5.12)

η(4 + 5, 3, 3) = −A(2)Aψ

with A = ((An,k)) as in (5.11). Hence, recalling (5.16),

η(4 + 5, 3, 3) = −A(2)(1 + A)−1Aη . (6.34)

By (6.32), it is easy to show

sup
n≤nλ(τ)

‖A(2)‖n ≤ CλT (6.35)

so that, by the bound in (5.16),

|ηn(4 + 5, 3, 3)| ≤ CλT
∑
i�=3

max
�≤n

∣∣∣∣∣
∑
k<�

A�,kηk(i)

∣∣∣∣∣ . (6.36)

By definitions (6.2) and (6.6) the term with i = 2 in the r.h.s. of (6.47) is therefore
negligible. For i = 1, 7, 8, 10 (resp. i = 4, 5, 6, 9) we can use the bounds already
proved (6.8), (6.15), (6.26), and (6.9) (resp. the a priori bounds (4.18)–(4.21))
together with ‖A‖n ≤ C to conclude that ηn(4 + 5, 3, 3) is also negligible.

We are thus left with the term ηn(4 + 5, 3, 2). Recalling (6.33), we write it as

ηn(4 + 5, 3, 2) =
n−1∑
k=0

A
(2,L)
n,k ηk(2) +

n−1∑
k=0

A
(2,R)
n,k ηk(2) (6.37)

where

A
(2,L)
n,k :=

3λ2

4
2√

2π(Tn+1 − Tk+1)

∫ Tn+1

Tn

ds′′
∫ Tn+1

s′′
ds′〈m̄′

xn
, pTn+1−s′g

(n)
s′−s′′1〉1k<n

A
(2,R)
n,k :=

3λ2

4

∫ Tn+1

Tn

ds′′
∫ Tn+1

s′′
ds′
[

2√
2π(s′′ − Tk+1)

− 2√
2π(Tn+1 − Tk+1)

]

×
〈
m̄′

xn
, pTn+1−s′g

(n)
s′−s′′1

〉
1k<n . (6.38)
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Since, by (4.10)∣∣∣∣∣
∫ Tn+1

Tn

ds′′
∫ Tn+1

s′′
ds′ 〈m̄′

xn
, pTn+1−s′g

(n)
s′−s′′1〉

∣∣∣∣∣ ≤ CT 2

we have ∣∣∣∣∣
n−1∑
k=0

A
(2,L)
n,k ηk(2)

∣∣∣∣∣ ≤ CλT

∣∣∣∣∣
n−1∑
k=0

λ
√
T√

n− k
ηk(2)

∣∣∣∣∣ (6.39)

which is negligible because we are in the set B(4)
λ,τ , recall (6.3). On the other hand,

by using again (4.10) we get

∣∣∣A(2,R)
n,k

∣∣∣ ≤ Cλ2T 3/2

[
1k=n−1 +

1
(n− k − 1)3/2

]
(6.40)

whence, recalling (4.5)∣∣∣∣∣
n−1∑
k=0

A
(2,R)
n,k ηk(2)

∣∣∣∣∣ ≤ Cλ3−ζT 2

{
1 +

n−2∑
k=0

1
(n− k − 1)3/2

}
(6.41)

which is negligible.

Step 5. The term ηn(6). To study this term we are going to use the same strategy
as for ηn(4 + 5). The explicit expression of ηn(6) is

ηn(6) =
3λ
4

n−1∑
k=0

∫ Tn+1

Tn

ds

∫ Tk+1

Tk

ds′ 〈m̄′
xn

,
∂ps−s′

∂s
v(k)(s′)〉 (6.42)

which we decompose as we did for ηn(4 + 5), i.e. as in (6.28) with 4 + 5 replaced
by 6.

The terms ηn(6, i), i �= 2, 3. We have

ηn(6, 1) =
3λ
4

n−1∑
k=0

∫ Tn+1

Tn

ds

∫ Tk+1

Tk

ds′ 〈m̄′
xn

,
∂ps−s′

∂s
g
(k)
s′−Tk

v(k)(Tk)〉 . (6.43)

Since, by (3.2) and(4.7) ‖g(k)
s′−Tk

v(k)(Tk)‖∞ ≤ Ce−α(s′−Tk)λ1−ζ
√
T , by (4.17) the

double integral above for k = n− 1 is less or equal than

∫ Tn+1

Tn

ds

∫ Tn−1+T/2

Tn−1

ds′
Ce−α(s′−Tn−1)λ1−ζ

√
T

s− [Tn−1 + T/2]

+
∫ Tn+1

Tn

ds

∫ Tn

Tn−1+T/2

ds′
Ce−αT/2λ1−ζ

√
T

s− s′
≤ Cλ1−ζ

√
T .
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On the other hand, for k < n − 1 the double integral in (6.43) is bounded by
C(n− k + 1)−1λ1−ζ

√
T , so that

|ηn(6, 1)| ≤ Cλ2−ζ
√
T | logλ| (6.44)

which is therefore negligible.
We next consider ηn(6, 8); its explicit expression is

ηn(6, 8) =
3λ2

4

n−1∑
k=0

k−1∑
h=0

ψh

∫ Tn+1

Tn

dt

∫ Tk+1

Tk

ds

∫ s

Tk

ds′

×
〈
m̄′

xn
,
∂pt−s

∂t
g
(k)
s−s′

[
ps′−Th+1m̄

′
xh
− 2√

2π(s′ − Th+1)

]〉
. (6.45)

We now use the decomposition (4.31) for g
(n)
t−s above. Since∣∣∣∣

〈
m̄′

xn
,
∂pt−s

∂t
m̄′

xk

〉∣∣∣∣ ≤ C

(t− s)3/2

and recalling (6.19), the term obtained replacing g
(k)
s−s′(x, y) in (6.45) by

(3/4)m̄′
xk

(x)m̄′
xk

(y) can be bounded by

CλVn,∗
n−1∑
k=0

k−1∑
h=0

√
T

(n− k)3/2
B

(1)
k,h ≤ Cλ3−ζT [1 + xn+1,∗] (6.46)

which is negligible. We next consider the case when g
(k)
s−s′ in (6.45) is replaced by

g
(k,⊥)
s−s′ . By (4.17), (4.32), and (4.14) we have∥∥∥∥∥∂pt−s

∂t
g
(k,⊥)
s−s′

[
ps′−Th+1m̄

′
xh
− 2√

2π(s′ − Th+1)

]∥∥∥∥∥
∞
≤ C

e−α(s−s′)

t− s

1√
s′ − Th+1

hence the r.h.s. of (6.45) with g
(k)
t−s replaced by g

(k,⊥)
t−s can be bounded by

Cλ2
√
TVn,∗

n−1∑
k=0

k−1∑
h=0

1
(n− k)

√
k − h

≤ Cλ2−ζ | logλ|
√
T

which is negligible.
It remains to consider the terms ηn(6, i), i ≥ 4, i �= 8. We have

|ηn(6, i)| ≤ Cλ| log λ|T max
k≤n

sup
t∈[Tk,Tk+1]

‖Γ(k)
i (t)‖∞ (6.47)

which, together with (4.18) for i = 4, (4.19) for i = 5, (4.20) for i = 6, (6.15) for
i = 7, (4.21) for i = 9, (6.9) for i = 10, shows that the terms ηn(6, i), i ≥ 4, i �= 8
are all negligible.
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The terms ηn(6, 3, i). The term ηn(6, 3, 1) = 0. Analogously to (6.30), we write

ηn(6, 3) =
n−1∑
k=0

A
(3)
n,kψk (6.48)

where

A
(3)
n,k =

3λ2

4

n∑
h=k+2

∫ Tn+1

Tn

dt

∫ Th

Th−1

ds

∫ s

Th−1

ds′

×
〈
m̄′

xn
,
∂pt−s

∂t
g
(h−1)
s−s′

2√
2π(s′ − Tk+1)

〉
1k<n−1 (6.49)

By (4.17), (4.10), and (4.14) it is easy to show

∣∣∣A(3)
n,k

∣∣∣ ≤ C
λ2T 3/2 log(n− k)√

n− k
1k<n−1 (6.50)

Except for the factor log(n− k) ≤ C| logλ|, A(3)
n,k has the same behaviour as A

(2)
n,k,

compare (6.32) with (6.50). The analysis in Step 4 applies and we can therefore
conclude that all the terms ηn(6, 3, i), i �= 2, are negligible.

We are left with ηn(6, 3, 2). As in (6.38) we define

A
(3,L)
n,k :=

3λ2

4

n∑
h=k+2

2√
2π(Th+1 − Tk+1)

∫ Tn+1

Tn

dt

∫ Th

Th−1

ds

∫ s

Th−1

ds′

×
〈
m̄′

xn
,
∂pt−s

∂t
g
(h−1)
s−s′ 1

〉
1k<n−1

A
(3,R)
n,k :=

3λ2

4

n∑
h=k+2

∫ Tn+1

Tn

dt

∫ Th

Th−1

ds

∫ s

Th−1

ds′

[
2√

2π(s′ − Tk+1)
− 2√

2π(Th+1 − Tk+1)

]〈
m̄′

xn
,
∂pt−s

∂t
g
(h−1)
s−s′ 1

〉
1k<n−1 (6.51)

Setting

B
(2)
n,h :=

3λ
2
√

2πT

∫ Tn+1

Tn

dt

∫ Th

Th−1

ds

∫ s

Th−1

ds′
〈
m̄′

xn
,
∂pt−s

∂t
g
(h−1)
s−s′ 1

〉
(6.52)

we have ∣∣∣∣∣∣
n−1∑
j=0

A
(3,L)
n,j ηj(2)

∣∣∣∣∣∣ ≤
n∑

h=2

∣∣∣B(2)
n,h

∣∣∣
∣∣∣∣∣∣
h−2∑
j=0

λ
√
T√

h− j
ηj(2)

∣∣∣∣∣∣ (6.53)
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and, using (4.10) and (4.17),

∣∣∣B(2)
n,h

∣∣∣ ≤ C
λT

n− h
.

Thus, since we are in the set B(4)
λ,τ , see (6.3), the l.h.s. of (6.53) is negligible. On

the other hand, by using again (4.10) and (4.17) it is easy to show∣∣∣A(3,R)
n,k

∣∣∣ ≤ Cλ2| logλ|T 3/2 1
(n− k)3/2

hence ∣∣∣∣∣∣
n−1∑
j=0

A
(3,R)
n,j ηj(2)

∣∣∣∣∣∣ ≤ Cλ3−ζ | logλ|T 2
n−1∑
j=0

1
(n− j)3/2

(6.54)

which is negligible.

Step 6. The term ηn(9). The iterative scheme to estimate η(9) is the following. We
first branch, using (5.6), one of the v(n)(s) which appears on the r.h.s. of (3.14)
and stop the iteration for the terms η(9|i), i �= 2, 3. In η(9|3) we use again the
equation (5.6) and stop the iteration. We then branch the other v(n)(s) on the
term η(9|2) stopping the iteration with the same rule as before. We thus get

η(9) = η(9|2; 2) + η(9|2; 3, 2) + η(9|2; 3, 3) + η(9|3, 2) + η(9|3, 3)

+
∑
i�=2,3

[η(9|i) + η(9|2; i) + η(9|2; 3, i) + η(9|3, i)] . (6.55)

We need to show that η(9) − η(9|2; 2) is negligible. We start from η(9|i),
i �= 2, 3. We have

ηn(9|i) =
9
4

∫ Tn+1

Tn

dt 〈m̄′
xn

, m̄xnv
(n)(t)Γ(n)

i (t)〉 . (6.56)

For i = 1, by (3.2), ‖g(n)
t−Tn

v(n)(Tn)‖∞ ≤ Ce−α(t−Tn)‖v(n)(Tn)‖∞, by (4.47)
‖v(n)(Tn)‖∞ ≤ λ1−ζ , hence

|ηn(9|1)| ≤ Cλ1−ζ
√
Tλ1−ζ (6.57)

so that it is negligible. On the set B(1,2)
λ,τ , see (4.37) and (6.6), we can use the

bounds (4.7), (4.18), (4.19), (4.20), (6.15), (4.21), and (6.9), which show η(9|i) is
negligible for i = 4, 5, 6, 7, 9, 10. To bound η(9|8) we note that, by (5.5), (4.7),
(using also ‖m̄‖∞ = 1, m̄′(x) > 0, and g

(n)
t (x, y) ≥ 0), we have

|ηn(9|8)| ≤ λCVn,∗
n−1∑
k=0

|ψk|
∫ Tn+1

Tn

dt

∫ t

Tn

ds
1√

s− Tk+1



66 L. Bertini, S. Brassesco, P. Buttà and E. Presutti Ann. Henri Poincaré

×
∫

dx dy dz m̄′
xn

(x)g(n)
t−s(x, y)

∣∣∣e−(y−z)2/[2(s−Tk+1)] − 1
∣∣∣ m̄′

xk
(z) . (6.58)

Since g
(n)
t is self–adjoint in L2(R, dx) we have

∫
dx m̄′

xn
(x)g(n)

t−s(x, y) = m̄′
xn

(y).
Then, from (6.19) and (6.20) it follows that

|ηn(9|8)| ≤ CV∗(τ)T
n−1∑
k=0

B
(1)
n,k|ψk| ≤ CλV∗(τ)2T

(
1 + x2

n+1,∗
)

which is negligible because of (4.7).
We next consider η(9|3, i), i �= 2, 3,

ηn(9|3, i) =
9λ
4

n−1∑
k=0

ηk(i)
∫ Tn+1

Tn

dt

∫ t

Tn

ds

〈
m̄′

xn
, m̄xnv

(n)(s)g(n)
t−s

2√
2π(s− Tk+1)

〉
.

(6.59)
Note that, from (6.8) η(9|3, 1) = 0 and that, for i ≥ 4, from (5.11),

|ηn(9|3, i)| ≤ CλVn,∗
n−1∑
k=0

|ηk(i)|
∫ Tn+1

Tn

dt

∫ t

Tn

ds
1√

s− Tk+1

≤ TCVn,∗
n−1∑
k=0

An,k|ηk(i)| . (6.60)

Since ‖A‖n ≤ C, by using again (4.7), (4.18), (4.19), and (4.20)–(6.9), we show
η(9|3, i), i ≥ 4 is negligible. Next, using (5.12), (5.16) and (6.59),

η(9|3, 3) = −9λ
4

n−1∑
k=0

(
(1 + A)−1Aη

)
k

∫ Tn+1

Tn

dt

∫ t

Tn

ds

×
〈
m̄′

xn
, m̄xnv

(n)(s)g(n)
t−s

2√
2π(s− Tk+1)

〉
(6.61)

whence, recalling ‖(1 + A)−1‖n ≤ C, ‖A‖n ≤ C, ηn(1) = 0,

|η(9|3, 3)|n ≤ CλT

(
sup
k≤n

|(Aη(2))k|+
10∑
i=4

|η(i)|n
)

Vn,∗
n−1∑
k=0

√
T√

n− k

≤ CT
[
λ2−ζT + λ2−2ζT 2

(
1 + x2

n+1,∗
)]

Vn,∗

where we used the bounds (6.8), (6.15), (6.26), (6.9), and (4.18)–(4.21) to estimate
|η(i)| together with the fact that we are on the set Bλ,τ (see (6.2) and (6.6)). Hence
η(9|3, 3) is negligible.

Since on the set Bλ,τ Γ(n)
2 (t) has the same order as v(n)(t) (see (4.5)) we can

bound η(9|2; i), η(9|2; 3, i), i �= 2, 3, and η(9|2; 3, 3) as above.
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We are left with the bounds of η(9|3, 2) and η(9|2; 3, 2). We have ηn(9|3, 2) =
η
(L)
n (9|3, 2) + η

(R)
n (9|3, 2) where

η(L)
n (9|3, 2) :=

9λ
4

n−1∑
k=0

2√
2π(Tn+1 − Tk+1)

ηk(2)

∫ Tn+1

Tn

dt

∫ t

Tn

ds
〈
m̄′

xn
, m̄xnv

(n)(s)g(n)
t−s1

〉

η(R)
n (9|3, 2) :=

9λ
4

n−1∑
k=0

ηk(2)

×
∫ Tn+1

Tn

dt

∫ t

Tn

ds

[
2√

2π(s− Tk+1)
− 2√

2π(Tn+1 − Tk+1)

]

×
〈
m̄′

xn
, m̄xnv

(n)(s)g(n)
t−s1

〉
. (6.62)

Since, by (4.7) and (4.10),∣∣∣∣∣
∫ Tn+1

Tn

dt

∫ t

Tn

ds
〈
m̄′

xn
, m̄xnv

(n)(s)g(n)
t−s1

〉∣∣∣∣∣ ≤ Cλ1−ζT 5/2

we have ∣∣∣η(L)
n (9|3, 2)

∣∣∣ ≤ Cλ1−ζT 3/2

∣∣∣∣∣
n−1∑
k=0

λ
√
T√

n− k
ηk(2)

∣∣∣∣∣ (6.63)

which is negligible since we are in the set B(4)
λ,τ , see (6.3). On the other hand, again

by (4.7) and (4.10),

∣∣∣∣∣
∫ Tn+1

Tn

dt

∫ t

Tn

ds

[
2√

2π(s− Tk+1)
− 2√

2π(Tn+1 − Tk+1)

]〈
m̄′

xn
, m̄xnv

(n)(s)g(n)
t−s1

〉∣∣∣∣∣
≤ Cλ1−ζT 2

[
1k=n−1 +

1
(n− k − 1)3/2

]

whence, by (4.13) and (4.5)

∣∣∣η(R)
n (9|3, 2)

∣∣∣ ≤ Cλ2−ζT 2

[
n−2∑
k=0

1
(n− k − 1)3/2

|ηk(2)|+ |ηn−1(2)|
]
≤ λ3−ζT 5/2

(6.64)
which is negligible.

Since Γ(2)
n (t) has the same order as v(n)(t), it follows from (6.56) that the

term η(9|2; 3, 2) can be analyzed as η(9|3, 2). Proposition 6.2 is thus proved. �
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7 Bounds on the stochastic terms

The stochastic terms in the title are the ones left from the previous section, i.e.
σn, see (6.1). As already mentioned we will obtain bounds for the sums of the
components of these vectors rather than for the components themselves. We define

Sn(-) :=
n−1∑
k=0

ηk(-), - ∈ L := {2, (4 + 5, 2), (6, 2), (9|2; 2)}

Sn :=
∑
�∈L

Sn(-) =
n−1∑
k=0

σk (7.1)

and call S the vector whose components are Sn. Analogously ξ is the vector whose
components are ξn, see (5.8).

Proposition 7.1 Recall that A is the matrix whose entries are defined in (5.11).
Then

ξ = S −AS + R + A2ξ on the set Bλ,τ (7.2)

where

Rn :=
n−1∑
k=0

(ηk − σk)−
n−1∑
k=0

(A[η − σ])k . (7.3)

Moreover, for each τ > 0 there is a constant C = C(τ) such that for any λ and ζ
small enough

|R|n ≤ CT−1/4
[
1 + x2

n+1,∗
]

on the set Bλ,τ . (7.4)

The proof is based on the following simple lemma.

Lemma 7.2 Let M be a lower triangular matrix such that Mn,k = Mn′,k′ whenever
n′−k′ = n−k. Let also u = {uh;h = 0, . . . , n} be a vector and define vn =

∑n−1
h=0 uh

(resp. v0 = 0). Then
n−1∑
h=0

(Mu)h = (Mv)n . (7.5)

Proof. The l.h.s. of (7.5) can be written as

n−1∑
h=0

h−1∑
k=0

Mh,k (vk+1 − vk) =
n−1∑
h=0

h−1∑
k=0

Mh,k vk+1 −
n−1∑
h=0

h−1∑
k=0

Mh,k vk .

We call k′ = k + 1 in the first sum and h′ = h− 1 in the second one, getting

n−1∑
h=0

(Mu)h =
n−1∑
h=0

h∑
k′=1

Mh,k′−1 vk′ −
n−2∑

h′=−1

h′∑
k=0

Mh′+1,k vk
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We may as well extend the first sum from k′ = 0 because v0 = 0. We then get

n−1∑
h=0

(Mu)h =
n−1∑
k=1

Mn−1,k−1 vk +
n−2∑
h=0

h∑
k=0

[Mh,k−1 −Mh+1,k] vk .

Note that the second term above vanishes by the assumptions on M , and this
completes the proof of (7.5). �
Proof of Proposition 7.1. From (5.8) and (5.17),

ξn =
n−1∑
k=0

[η −Aη + A2ψ]k .

Next, apply Lemma 7.2 for A and A2. From (7.1) and (5.8), we get (7.2). Since
‖A‖n ≤ C, the bound (7.4) follows from Proposition 6.2. �

Our next task is to control the stochastic term Sn.

Proposition 7.3 For any τ > 0 we have

lim
L→∞

lim
λ↓0

P

(
sup

n≤nλ(τ)

|Sn(2)| > L

)
= 0 (7.6)

lim
λ↓0

P

(
sup

n≤nλ(τ)

|Sn(-)|
1 + xn,∗

> T−1/4

)
= 0, - ∈ L \ {2} . (7.7)

Proof of (7.6). By (3.9), (5.10), and (7.1),

Sn(2) = −3λ
4

n−1∑
k=0

〈m̄′
xk

, z(k)(Tk+1)〉 (7.8)

which is an FTn–martingale. In Appendix B it is proved there is a C so that, for
any n ≤ nλ(τ) and t ∈ [Tn + 1, Tn+1],

sup
x∈R

E

((
z(n)(t, x)

)2p
)
≤ C(t− Tn)p, p = 1, 2 . (7.9)

Then, by Doob’s martingale inequality, we get, for some constant C,

P

(
sup

n≤nλ(τ)

|Sn(2)| > L

)
≤ 1

L2
E
(
Snλ(τ)(2)2

) ≤ Cnλ(τ)λ2T

L2
(7.10)

which proves (7.6).
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Proof of (7.7).

The case - = (4 + 5, 2). We have (recall (6.27))

Sn(4 + 5, 2) =
3λ2

4

n−1∑
h=0

∫ Th+1

Th

ds 〈m̄′
xh

, pTh+1−sz
(h)(s)〉 .

This is again a FTn–martingale, so that, using again Doob’s inequality, and the
bound

E



∣∣∣∣∣
∫ Th+1

Th

ds 〈m̄′
xh

, pTh+1−sz
(h)(s)〉

∣∣∣∣∣
2

 ≤ CT 3

(which follows from (7.9)) we conclude that for each ζ > 0 there is a constant
C = C(τ, ζ) such that

P

(
sup

n≤nλ(τ)

|Sn(4 + 5, 2)| > T−1/4

)
≤ Cnλ(τ)λ4T 3

√
T ≤ Cλ2T 5/2 . (7.11)

The case - = (6, 2). By (3.13) and (3.9)

Sn(6, 2) =
3λ2

4

n−1∑
h=1

h∑
k=1

∫ Th+1

Th

ds

∫ Tk

Tk−1

ds′
〈
m̄′

xh
,
∂ps−s′

∂s
z(k−1)(s′)

〉
. (7.12)

For each h and k above, we write, recalling that m̄ξ(x) = m̄(x− ξ),

m̄′
xh

(x) = m̄′
xk−1

(x)−
∫ xh

xk−1

dξ m̄′′
ξ (x)

thus obtaining, by exchanging the sums in (7.12),

Sn(6, 2) = −S̃n(6, 2) +
n−1∑
k=1

Xn,k (7.13)

where

S̃n(6, 2) :=
3λ2

4

n−1∑
h=1

h∑
k=1

∫ Th+1

Th

ds

∫ Tk

Tk−1

ds′
∫ xh

xk−1

dξ 〈m̄′′
ξ ,

∂ps−s′

∂s
z(k−1)(s′)〉 (7.14)

Xn,k :=
3λ2

4

∫ Tn

Tk

ds

∫ Tk

Tk−1

ds′ 〈m̄′
xk−1

,
∂ps−s′

∂s
z(k−1)(s′)〉 . (7.15)

We define

M
(n)
k :=

k−1∑
h=1

Xn,h, k = 1, . . . , n
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with M
(n)
1 = 0. For each fixed n, {M (n)

k ; k = 1, . . . , n} is an FTk−1–martingale
since E(Xn,h|FTh−1) = 0. The quadratic variation of M

(n)
k is

[
M (n)

]
k

=
k∑

h=2

(
M

(n)
h −M

(n)
h−1

)2

=
k−1∑
h=1

X2
n,h .

We have

E
(
X2

n,k

∣∣FTk−1

)
=

9λ4

16

∫ Tn

Tk

ds

∫ Tk

Tk−1

ds′
∫ Tn

Tk

du

∫ Tk

Tk−1

du′
∫ s′∧u′

Tk−1

ds′′
∫

dx dx′ dy

×
(
∂ps−s′

∂s
m̄′
)

(x)
(

∂pu−u′

∂u
m̄′
)

(x′) gs′−s′′(x, y) gu′−s′′(x′, y)a(λβ(y + xk−1))2

≤ C‖a‖2∞λ4

∫ Tn

Tk

ds

∫ Tk

Tk−1

ds′
∫ Tn

Tk

du

∫ Tk

Tk−1

du′
∫ s′∧u′

Tk−1

ds′′

×
∥∥∥∥gs′−s′′

∂ps−s′

∂s
m̄′
∥∥∥∥
∞

∥∥∥∥∂pu−u′

∂u
m̄′
∥∥∥∥

1

‖gu′−s′′1‖∞

≤ C‖a‖2∞λ4

∫ Tn

Tk

ds

∫ Tk

Tk−1

ds′
∫ Tn

Tk

du

∫ Tk

Tk−1

du′
∫ s′∧u′

Tk−1

ds′′
1

(s− s′)3/2
1

u− u′

≤ C‖a‖2∞λ4| logλ|T 5/2 .

Since, conditionally on FTk−1 , zk−1 is Gaussian we also have

E
(
X4

n,k

∣∣FTk−1

) ≤ C‖a‖4∞λ8| logλ|2T 5 .

By the BDG inequality (see [16, §6, E. 4.1]) and the above bounds it follows that

E

((
M (n)

n

)4
)

≤ C E

([
M (n)

]2
n

)
= C E

(
n−1∑
h=1

X2
n,h

)2

≤ C

{
n−1∑
h=1

EX4
n,h + 2

n−1∑
k=1

k−1∑
h=1

E
(
X2

n,hE
(
X2

n,k

∣∣FTk−1

))}

≤ C n2λ8| logλ|2T 5 . (7.16)

We next use the following corollary of the Chebyshev inequality,

P

(
sup
n≤N

|ϑn| > δ

)
≤ P


∑

n≤N

|ϑn|p > δp


 ≤ δ−p

∑
n≤N

E (|ϑn|p) (7.17)

and get, by (7.16), choosing p = 4,

P

(
sup

n≤nλ(τ)

∣∣∣∣∣
n−1∑
k=1

Xn,k

∣∣∣∣∣ > T−1/4

)
≤ T

nλ(τ)∑
n=1

Cn2λ8| logλ|2T 5 ≤ Cλ2T 4 .
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It remains to bound S̃n(6, 2). We split it into two terms by using the decom-
position (4.33) for z(k−1). We get

S̃⊥
n (6, 2) :=

3λ2

4

n−1∑
h=1

h∑
k=1

∫ Th+1

Th

ds

∫ Tk

Tk−1

ds′
∫ xh

xk−1

dξ 〈m̄′′
ξ ,

∂ps−s′

∂s
z(k−1,⊥)(s′)〉

S̃‖
n(6, 2) :=

3λ2

4

n−1∑
h=1

h∑
k=1

∫ Th+1

Th

ds

∫ Tk

Tk−1

ds′

×
∫ xh

xk−1

dξ 〈m̄′′
ξ ,

∂ps−s′

∂s
m̄′

xk−1
〉w(k−1)(s′) (7.18)

where we set w(k)(t) := 3
4 〈m̄′

xk
, z(k)(t)〉.

In Appendix A we prove for each γ ∈ (0, 1/2) there exists a constant C such
that ∣∣∣∣

〈
m̄′′,

∂pt
∂t

ϕ

〉∣∣∣∣ ≤ C

t3/2

(
‖ϕ‖∞ ∧ ‖ϕ‖1

tγ

)
. (7.19)

We thus get

sup
n≤nλ(τ)

|S̃⊥
n (6, 2)|

1 + xn,∗
≤ Cλ2

nλ(τ)−1∑
h=1

h∑
k=1

∫ Th+1

Th

ds

∫ Tk

Tk−1

ds′
1

(s− s′)3/2
‖z(k−1,⊥)(s′)‖∞

≤ Cλ2

nλ(τ)−1∑
h=1

h∑
k=1

√
T

(h− k + 1)3/2
sup

t∈[Tk−1,Tk]

‖z(k−1,⊥)(t)‖∞

≤ C T−1/2 sup
n≤nλ(τ)

sup
t∈[Tk−1,Tk]

‖z(k−1,⊥)(t)‖∞ . (7.20)

On the other hand, for each γ ∈ (0, 1/2), since ‖m̄′
xk−1

‖1 ≤ C, we also have

sup
n≤nλ(τ)

|S̃‖
n(6, 2)|

1 + xn,∗
≤ Cλ2

nλ(τ)−1∑
h=1

h∑
k=1

∫ Th+1

Th

ds

∫ Tk

Tk−1

ds′
1

(s− s′)3/2+γ
|w(k−1)(s′)|

≤ Cλ2

nλ(τ)−1∑
h=1

h∑
k=1

T 1/2−γ

(h− k + 1)3/2+γ
sup

t∈[Tk−1,Tk]

|w(k−1)(t)|

≤ C T−γ sup
n≤nλ(τ)

sup
t∈[Tk−1,Tk]

|w(k)(t)|√
T

. (7.21)

Since |w(k)(t)| ≤ C‖z(k−1)(t)‖∞ by using the Gaussian estimate (4.6) (resp.
(4.35)) and (7.21) (resp. in (7.20)), the bound in (7.7) for S̃n(6, 2) now follows.

The case - = (9|2; 2). We have Sn(9|2; 2) =
∑n−1

k=0 ηk(9|2; 2) where

ηk(9|2; 2) =
9λ2

4

∫ Tk+1

Tk

dt 〈m̄′
xk

, m̄xk
z(k)(t)2〉 . (7.22)
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We define
γk := E (ηk(9|2; 2)| FTk

) (7.23)

and then decompose

Sn(9|2; 2) = Mn +
n−1∑
k=0

γk (7.24)

where Mn is an FTn–martingale with bracket

〈M〉n =
n−1∑
k=0

[
E
(
ηk(9|2; 2)2

∣∣FTk

)− γ2
k

]
. (7.25)

Note that the difference between the bracket 〈·〉n and the quadratic variation [·]n
is a martingale, see [16].

We have

γk =
9λ2

4

∫ Tk+1

Tk

dt

∫ t

Tk

ds

∫
dx

∫
dy m̄′(x)m̄(x)gt−s(x, y)2

[
a(λβ(y + xk))2 − 1

]
(7.26)

where we exploited the identity∫
dx

∫
dy m̄′(x)m̄(x)gt−s(x, y)2 =

∫
dx m̄′(x)m̄(x)g2(t−s)(x, x) = 0

which holds because x "→ gt(x, x) is an even function of x.
We claim for each q > logλ−1 T = (1 ∧ β)/20 there is C = C(q) so that

|γk| ≤ C(λT )2
{
λβ−q + λβxk,∗ + e−λ−q/C

}
. (7.27)

By Taylor expansion∣∣a(λβ(y + xk))2 − 1
∣∣ ≤ C

{
λβ(|y|+ |xk|)1|y|≤λ−q + 1|y|>λ−q

}
≤ C

{
λβ−q + λβxk,∗ + 1|y|>λ−q

}
. (7.28)

We use the bound (7.28) in (7.26). There is C so that, for any t ∈ [0, T ] (T > 1),∫ t

0

ds

∫
dx

∫
dy m̄′(x)|m̄(x)|gs(x, y)2 ≤

∫ t

0

ds

∫
dx m̄′(x)g2s(x, x) ≤ CT

the first two terms on the r.h.s. of (7.28) produce the first two terms on the r.h.s.
of (7.27). We estimate next the contribution of the last one. Denoting by Ex,y,t the
expectation w.r.t. a Brownian bridge from x to y in time t, by the Feynman–Kac
formula we get

gt(x, y) = pt(x, y) Ex,y,t exp
(
−
∫ t

0

ds V ′′(m̄(ωs))
)
≤ e2tpt(x, y) (7.29)
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whence∫
dx

∫
dy 1|x|≤λ−q/2 m̄′(x) gt(x, y)2 1|y|>λ−q

≤ e−[λ−2q/(8t)]+2t

√
2πt

∫
dx

∫
dy gt(x, y) m̄′(x) = 2

e−[λ−2q/(8t)]+2t

√
2πt

. (7.30)

On the other hand, since m̄′(x) decays exponentially as x→∞,∫
dx

∫
dy 1|x|>λ−q/2m̄

′(x)gt(x, y)21|y|>λ−q ≤ Ce−λ−q/C

∫
dx g2t(x, x)

√
m̄′(x)

≤ C
e−λ−q/C+4t

√
4πt

. (7.31)

Taking q > logλ−1 T , from (7.30) and (7.31) we find that the last term on the r.h.s.
of (7.28) yields the last one on the r.h.s. of (7.27).

From (7.27), for any λ small enough,

sup
n≤nλ(τ)

1
1 + xn,∗

∣∣∣∣∣
n−1∑
k=0

γk

∣∣∣∣∣ ≤ CTλβ−q . (7.32)

By choosing q ∈ (logλ−1 T, β − logλ−1 T ) (recall we fixed logλ−1 T = (1∧ β)/20) it
follows the l.h.s. of (7.32) vanishes as λ ↓ 0.

We are left with the bound on the martingale part Mn. By Doob’s inequality,
recalling (7.25),

P

(
sup

n≤nλ(τ)

|Mn| > T−1/4

)
≤ C

√
T E
(〈M〉nλ(τ)

) ≤ C
√
T

nλ(τ)∑
k=0

E
(
ηk(9|2; 2)2

)

≤ C
√
T (λ2T )−1

(
Cλ2T 3/2

)2

(7.33)

in the second estimate we used (recall (7.9))

√
E (ηk(9|2; 2)2) ≤ Cλ2

∫ Tk+1

Tk

dt

∫
dx m̄′(x)

√
E
(
z(k)(t, x)4

) ≤ Cλ2T 3/2 .

From (7.32) and (7.33) (recall xn,∗ is increasing), (7.7) for - = (9|2; 2) follows. �

8 Conclusion of the proof

In this section we prove Theorem 1.1. As before we denote by (m(t), h(t)) the
solution of (1.1)–(1.10) (omitting the dependence on λ). Let δ be as in Proposition
2.1 and define the stopping time

tδ := inf{t ≥ 0 : inf
z∈R

‖m(t)− m̄z‖∞ ≥ δ} . (8.1)
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By Proposition 2.1, for each t ∈ [0, tδ] the profile m(t) has a well defined center
x(m(t)). We prove the theorem with

x(λ)(t) := x(m(t ∧ tδ)) .

Observe the process x(λ)(t) is adapted to Ft. Moreover, by Proposition 2.1 and
the continuity properties of m(t), the process x(λ)(t) is continuous.

Proof of (1.11). Given τ, ζ > 0, from Propositions 2.1, 4.1, and recalling (3.1)
there is C = C(τ, ζ) so that, for any λ small enough,

tδ > λ−2τ, sup
n≤nλ(τ)

sup
t∈[Tn,Tn+1]

|x(λ)(t)− xn| ≤ Cλ1−ζ
√
T on the set B(1)

λ,τ .

(8.2)
On the other hand, by (3.1), (4.2), and ‖m̄′‖∞ ≤ 1, we have

sup
t∈[Tn,Tn+1]

∥∥m(t)− m̄x(λ)(t)

∥∥
∞ ≤ Vn + sup

t∈[Tn,Tn+1]

|x(λ)(t)−xn| ∀n : Tn+1 ≤ tδ.

(8.3)
From (4.6), (4.7), (8.2), and (8.3), by choosing ζ small enough (1.11) follows.

To complete the proof of Theorem 1.1 we need to prove the weak convergence
of the scaled process xλ(τ) := x(λ)

(
λ−2τ

)
. Let ξλ(τ), τ ∈ R+, be the (continuous)

process obtained by linearly interpolating the values ξλ(λ2Tn) = ξn. From (4.6),
(4.35), (4.39), and (8.2), for any τ and ε positive,

lim
λ↓0

P

(
sup

0≤s≤τ
|ξλ(s)− xλ(s)| > ε

)
= 0 .

It is therefore enough to prove the convergence of the process ξλ. To this end we
shall use that ξn solves the equation (7.2).

In Sections 7 and 8 we proved bounds on R and S, see (7.4) and Proposition
7.3 which hold with probability going to 1 as λ ↓ 0. They however depend on the
unknown quantities xn,∗. The a priori bounds of Section 4 yield xn,∗ ≤ nδ∗(τ),
which goes like λ−1T−1/2+ζ, according to (4.7) and with n = nλ(τ). With such a
bound, our estimates on R and S become very bad and in any case inadequate to
study the equation (7.2), for which we could only tolerate a bound on xn,∗ which
diverges very weakly as λ ↓ 0.

As mentioned, the bounds of Section 4 on δ∗(τ) are quasi optimal, yet they
yield a bound on xn,∗ which is far from correct. The point is that xn is the sum
of the increments xk − xk−1, whose size has indeed the order of δ∗(τ); but there
are a lot of cancellations, which make the absolute value of the sum much smaller
than the sum of the absolute values. Such cancellations are lost using the a priori
bounds of Section 4, we thus need to go back to the equation (7.2) itself (recalling
that ξn and xn are essentially the same, see (4.39)). It seems, at this point, that we
are back to a non linear problem, with the unknown ξn in both the “known terms”
R and S hidden through xn. Such a non linearity is however not really dangerous,
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as in our bounds for R and S the dependence on xn,∗ is always multiplied by a
function of λ which vanishes as λ ↓ 0. As we will see, this makes easy the proof of
Proposition 8.1 below.

Let
ξ∗(τ) := sup

n≤nλ(τ)

|ξn| (8.4)

and x∗(τ) be as in (6.5).

Proposition 8.1 For any τ ∈ R+,

lim
L→∞

lim
λ↓0

P (ξ∗(τ) > L) = 0 , (8.5)

lim
L→∞

lim
λ↓0

P (x∗(τ) > L) = 0 . (8.6)

Proof. Since (8.6) follows from (8.5) and (4.39), we only need to prove (8.5). Let
(recall (7.1))

S(R)
n :=

∑
�∈L\{2}

Sn(-) (8.7)

and denote as usual by S(R) the vector whose components are S
(R)
n .

Given τ > 0 and ζ > 0 small enough, let Bλ,τ be as in (6.6) and define

Gλ,L := Aλ,L ∩ Bλ,τ (8.8)

where Aλ,L is the event

Aλ,L :=

{
ω ∈ Ω : |S(2)|nλ(τ) ≤ L ; sup

n≤nλ(τ)

∣∣S(R)
∣∣
n

1 + xn,∗
≤ T−1/4

}
. (8.9)

From (4.6), (4.35), (6.6), (6.4), and Proposition 7.3 we have, for any τ > 0,

lim
L→∞

lim
λ↓0

P (Gλ,L) = 1 . (8.10)

We are going to show that given L there is a constant c so that, for all λ
small enough, in Gλ,L we have |ξn| ≤ c for all n ≤ nλ(τ) + 1.

Given any L1 > 0, let N(L1, λ) be the first index n ≤ nλ(τ) for which
|ξn| ≥ L1; otherwise we set N(L1, λ) = nλ(τ) + 1. Then what we have to show is
that there is an L1 so that for all λ small enough, N(L1, λ) = nλ(τ) + 1 in Gλ,L.
Having fixed L1, there is a λ1 so that for λ ≤ λ1 and n ≤ N(L1, λ), by (4.39)
(recall Gλ,L ⊆ B(1,2)

λ,τ )

|xn| ≤ |ξn|+ 1 ≤ L1 + 1, on the set Gλ,L .



Vol. 3, 2002 Front Fluctuations in One Dimensional Stochastic Phase Field Equations 77

Using this, (7.4), and (8.9) we then get there is λ2 = λ2(λ1, L1) ∈ (0, λ1) such that
for any λ ≤ λ2 and n ≤ N(L1, λ),

|R|n ≤ 1, |S|n ≤ L + 1, on the set Gλ,L . (8.11)

Then, by (7.2) and (5.19), for n ≤ N(L1, λ),

|ξn| ≤ C(L + 1) + C

n−1∑
k=0

λ2T |ξk|, on the set Gλ,L . (8.12)

By solving this inequality, we conclude that there is a c = c(C,L, τ), independent
of L1, so that |ξn| ≤ c, for all n ≤ N(L1, λ). By taking L1 ≥ c, we have N(L1, λ) >
nλ(τ). Proposition 8.1 is proved. �

Setting

Yn := Sn(2)−
n−1∑
k=0

An,kSk(2) (8.13)

from (7.4), (8.6), (8.10), and ‖A‖n ≤ C, we have, for each ε > 0,

lim
λ↓0

P

(
sup

n≤nλ(τ)

|S −AS + R− Y |n > ε

)
= 0 (8.14)

so that the analysis of the limiting behavior of the “known term” S −AS + R in
(7.2) reduces to that of Y , which is the content of the following proposition.

Proposition 8.2 Let Yλ(τ), τ ∈ R+, be the process obtained by linearly interpolating
the values Yλ(λ2Tn) = Yn, n ∈ N. Then

Yλ(τ)
λ↓0
=⇒ b(τ) − 3√

2π

∫ τ

0

ds
b(s)√
τ − s

(8.15)

where the convergence is in C(R+), and b(τ) is a one dimensional Brownian mo-
tion with diffusion coefficient D = 3/4.

Proof.We prove first that (S(2))λ(τ) (obtained by linear interpolation from Sn(2))
converges weakly to a Brownian motion. We first prove tightness. Boundedness
has already been proved, see (7.6). Since Sn(2) is a FTn–martingale, by Doob’s
inequality, for each ε > 0, we have

lim
δ↓0

lim
λ↓0

P


 sup

0≤σ<τ≤T
τ−σ≤δ

|(S(2))λ(τ) − (S(2))λ(σ)| > ε




≤ lim
δ↓0

lim
λ↓0

C[nλ(δ) + 1]λ2T

ε2
= 0 .
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To identify the limit we compute the bracket of Snλ(τ)(2) as follows

nλ(τ)∑
k=1

E

(
(Sk(2)− Sk−1(2))2

∣∣∣FTk−1

)
=

9λ2

16

nλ(τ)∑
k=1

E

(
〈m̄′

xk−1
, z(k−1)(Tk)〉2

∣∣∣FTk−1

)

=
9λ2T

16

nλ(τ)∑
k=1

∫
dx m̄′(x)2a(λβ(x + xk−1))2

which converges to Dτ on the set {x∗(τ) ≤ L} for any L > 0. From (8.6) and rou-
tine manipulation, (S(2))λ converges weakly to a Brownian motion with diffusion
D by Levy’s characterization theorem.

To complete the proof, we introduce the family of linear mappings Jλ :
C(R+) → C(R+) defined by

Jλ(ϕ)(τ) :=
nλ(τ)−1∑

k=0

Anλ(τ)−1,k−1 ϕ(λ2Tk)

when (λ2T )−1τ is an integer and by linear interpolation otherwise. It is easy to
verify that

lim
λ↓0

Jλ(ϕ)(τ) = J(ϕ)(τ) :=
3√
2π

∫ τ

0

ds
ϕ(s)√
τ − s

uniformly for ϕ in a compact set. Since J is continuous, we can apply [6, Thm.
5.3] and get

Jλ((S(2))λ)(τ)
λ↓0
=⇒ 3√

2π

∫ τ

0

ds
b(s)√
τ − s

in C(R+) .

Proposition 8.2 is proved. �

Conclusion of the proof of Theorem 1.1. We first show that ξλ converges by subse-
quences to a continuous process, and then that any limit point solves the integral
equation (1.12). By the uniqueness (in law) of the latter, Theorem 1.1 follows.

The boundedness of ξλ follows from (8.5). In order to prove equicontinuity,
we note that from (7.2) and (8.14) we have, for each ε > 0,

lim
λ↓0

P

(
sup

n≤nλ(τ)

∣∣∣∣∣ξn − Yn −
n−1∑
k=0

(A2)n,kξk

∣∣∣∣∣ > ε

)
= 0 . (8.16)

Setting

Ξλ(s) :=
nλ(s)−1∑

k=0

(A2)nλ(s),k ξk (8.17)
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we postpone the proof that, for each ε > 0,

lim
δ↓0

lim
λ↓0

P


 sup

s,s′∈[0,τ ]
|s−s′|≤δ

|Ξλ(s)− Ξλ(s′)| > ε


 = 0 (8.18)

and observe that, by (8.16), Proposition 8.2, and (8.18), for each ε > 0,

lim
δ↓0

lim
λ↓0

P


 sup

s,s′∈[0,τ ]
|s−s′|≤δ

|ξλ(s)− ξλ(s′)| > ε


 = 0 (8.19)

which shows ξλ is tight in C(R+).
It remains to prove (8.18). Let us fix 0 ≤ s′ ≤ s ≤ τ , s− s′ ≤ δ. We have

Ξλ(s)− Ξλ(s′) =
nλ(s′−δ)−1∑

k=0

(
(A2)nλ(s),k − (A2)nλ(s′),k

)
ξk

+
nλ(s′)−1∑

k=nλ(s′−δ)

(
(A2)nλ(s),k − (A2)nλ(s′),k

)
ξk

+
nλ(s)−1∑
k=nλ(s′)

(A2)nλ(s),k ξk

so that

|Ξλ(s)− Ξλ(s′)| ≤ 2 ξ∗(τ)nλ(τ)λ2T sup
τ1,τ2∈[0,τ ]
τ1−τ2>δ

∣∣∣∣(λ2T )−1(A2)nλ(τ1),nλ(τ2) −
9
2

∣∣∣∣
+ 3 ξ∗(τ)nλ(δ) sup

0≤k<n≤nλ(τ)

∣∣(A2)n,k
∣∣

by using (5.19), (5.20), and (8.5) the equation (8.18) follows. We have concluded
the proof that ξλ is tight.

Finally, by (5.20), Proposition 8.2 and (8.16), we conclude that any limit ξ
solves

ξ(τ) = b(τ)− 3√
2π

∫ τ

0

ds
b(s)√

2π(τ − s)
+

9
2

∫ τ

0

ds ξ(s) . (8.20)

It is now easy to verify (1.12) and (8.20) are equivalent; indeed the latter is obtained
by an iteration of the former. �
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Appendices

A Some technical estimates

We have pt(x, y) = pt(x− y, 0) and

∂pt(x, 0)
∂t

=
1√

π(2t)3/2

[
x2

t
− 1
]
e−x2/2t . (A.1)

Proof of (4.17).∣∣∣∣ ∂∂t(ptϕ)(x)
∣∣∣∣ ≤ ‖ϕ‖∞ 1

2t

∫
dy pt(y, 0)

[
1 +

y2

t

]
=

1
t
‖ϕ‖∞ .

Proof of (7.19).〈
m̄′′,

∂pt
∂t

ϕ

〉
=−

〈
m̄′,

∂2pt
∂x∂t

ϕ

〉

=
∫

dx m̄′(x)
∫

dy
1√

π(2t)3/2

[
(x− y)3

t2
− 3(x− y)

t

]
e−(x−y)2/2tϕ(y)

=
1

2t3/2

∫
dx m̄′(x)

∫
dy pt(x, y)

[
(x − y)3

t3/2
− 3(x− y)√

t

]
ϕ(y)

hence, by the Young and Hölder inequalities, (7.19) follows.

B Gaussian estimates

Proof of (7.9). From (1.3) and (3.9) we have, for t ∈ [Tn + 1, Tn+1]

E

(
z(n)(t, x)2|xn

)
=
∫ t

Tn

ds

∫
dy g

(n)
t−s(x, y)

2
a(λβy)2 ≤ C

∫ t−Tn

0

du g
(n)
2u (x, x) .

(B.1)
Next, since sup{g(n)

u (x, y) : x, y ∈ R; 2u ≥ 1} < ∞ (see [7, Lemma A.9]), and
using also (7.29) the desired estimate holds for p = 1. Since the process z(n)

conditioned on xn is Gaussian, the estimate also holds for p = 2.

Proof of (4.6). Let us denote by Pn the probability P conditioned on the center
xn, and by En the corresponding expectation.

From (B.1) and (7.29) to treat the case Tn ≤ t ≤ Tn + 1, it follows there exists
C > 0 such that, for any n ≤ nλ(τ),

sup
t∈[Tn,Tn+1]

sup
x∈R

En

(
z(n)(t, x)2

)
≤ CT . (B.2)
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Proceeding as in the proof of [7, Thm. 2.3], (taking ε = 1 and µ(y) = a(λβy)),
it follows that given α ∈ (0, 1) there exists C such that, for any h, λ ∈ (0, 1],
t ∈ [Tn, Tn+1], and x ∈ R,

En

((
z(n)(t, x + h)− z(n)(t, x)

)2
)
≤ CThα . (B.3)

It is not difficult to prove also Hölder continuity in t:

En

((
z(n)(t + h, x)− z(n)(t, x)

)2
)
≤ CT 2λ−β

√
h . (B.4)

Indeed recall that, from (1.3),

En

((
z(n)(t + h, x)− z(n)(t, x)

)2
)

=

∫ t

Tn

ds

∫
dy
(
g
(n)
t−s+h(x, y)− g

(n)
t−s(x, y)

)2

a(λβy)2

+
∫ h

0

ds

∫
dyg(n)

s (x, y)2a(λβy)2 . (B.5)

Using (7.29) it is easy to see that∫ h

0

ds

∫
dy g(n)

s (x, y)2a(λβy)2 ≤ C
√
h .

To bound the first term on the r.h.s. of (B.5), we use the following formula for
g
(n)
t :

g
(n)
t (x, y) = pt(x, y) +

∫ t

0

ds

∫
dz pt−s(x, z)[1− 3m̄2

xn
(z)]g(n)

s (z, y) . (B.6)

From the properties of the heat kernel pt, the estimate sup{g(n)
t (x, y); x, y ∈ R, t ≥

1} < ∞, the fact that a has compact support and (7.29) for t ∈ (0, 1], one gets
(B.4).

Recall that zn conditioned on xn is Gaussian, and let us now define

σ2
n = sup

t∈[Tn,Tn+1]

sup
x∈R

En

(
z(n)(t, x)2

)
(B.7)

µn = En

(
sup

t∈[Tn,Tn+1]

‖z(n)(t)‖∞
)

. (B.8)

Borell’s inequality (see for instance [1, Thm. 2.1]) tells us that, if µn <√
Tλ−ζ , then

Pn

(
sup

t∈[Tn,Tn+1]

‖z(n)(t)‖∞ > λ−ζ
√
T

)
≤ 4 exp

[
− (λ−ζ

√
T − µn)2

2σ2
n

]
. (B.9)
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To estimate µn, we use (see [1, Cor. 4.15]),

µn ≤ K

∫ ∞

0

dr
√

logN(r), (B.10)

where K is a universal constant and N(r) is the minimal number of balls of radius
r needed to cover [Tn, Tn+1]× R when considering in that set the metric

d
(
(t, x), (s, y)

)
=
√

En

((
z(n)(t, x) − z(n)(s, y)

)2)
.

Let us then estimate N(r). Recall that, from (B.2), we only need to consider
r ≤ √

CT , since for larger r, N(r) = 1 and the integrand in (B.10) equals zero.
For each r > 0, consider the sets A1 = [Tn, Tn+1] × [−(λ2βr)−1, (λ2βr)−1] and
A2 = ([Tn, Tn+1] × R) \ A1. Let us estimate first the number of balls needed to
cover A2.

From now on, to avoid introducing new constants in the notation we suppose
that the support of a is included in [−1, 1], and that λ is sufficiently small. From
(7.29), and since Tn+1 − Tn = T ≤ λ−β/20 and r ≤ √

CT , it is easy to see that if
(t, x) ∈ A2

En

(
z(n)(t, x)2

)
≤

∫ t

Tn

ds

∫
dy e4(t−s)pt−s(x, y)2a(λβy)2

≤ Ce4T

∫ t

Tn

ds
1√
t− s

exp

[
−
(
(λ2βr)−1 − λ−β

)2
2(t− s)

]

≤ exp [−λ−β/(2r2)] ≤ r2

4
. (B.11)

From (B.11), it follows that we may cover A2 with just one ball. From (B.3) and
(B.4), it follows that A1 may be covered by (λ7βr9)−1 balls of radius r. Then, from
(B.10) it follows that

µn ≤ K

∫ ∞

0

dr
√

logN(r) ≤ K

∫ √
CT

0

dr
√

log (1 + (λ7βr9)−1)

≤ Kλ−7β/9

∫ ∞

λ−7β/9√
CT

du

√
log (1 + u9)

u2
≤ Kλ−7β/9

∫ ∞

λ−7β/9√
CT

du
9 logu

u2

≤ C(β)
√
T | logλ| (B.12)

where we have done the change of variables u = λ−7β/9r−1, and C(β) is a constant
that depends on β. Then, we may apply (B.9), to obtain

Pn

(
sup

t∈[Tn,Tn+1]

‖z(n)(t)‖∞ > λ−ζ
√
T

)
≤ 4 exp (−Cλ−ζ/2) . (B.13)
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Finally, recall that, given xn, the random variables{
sup

t∈[Tn,Tn+1]

‖z(n)(t)‖∞; n ≤ nλτ

}

are independent, and the estimate (B.13) does not depend on n (in particular, it
does not depend on xn). Then

P

(
B(1)
λ,τ

)
≥
(
1− 4 exp (−Cλ−ζ/2)

)nλ(τ)

(B.14)

and (4.6) follows.

Proof of (4.35). The estimate (4.35) follows by the same procedure used to prove
(4.6). We use the notation introduced in that proof. Recall that

zn,⊥(t) =
∫ t

Tn

gn,⊥t−s dW (a)(s) (B.15)

and define

σ2
(n,⊥) = sup

t∈[Tn,Tn+1]

sup
x∈R

En

(
z(n,⊥)(t, x)2

)
(B.16)

µ(n,⊥) = En

(
sup

t∈[Tn,Tn+1]

‖z(n,⊥)(t)‖∞
)

. (B.17)

Then,

En

(
z(n,⊥)(t, x)2

)
=

∫ t

Tn

ds

∫
dy

(
g
(n)
t−s(x, y)− 3

4
m̄′

xn
(x)m̄′

xn
(y)
)2

a(λβy)2

≤ ‖a‖∞
∫ ∞

0

ds

∫
dy

(
gt−s(x, y)− 3

4
m̄′(x)m̄′(y)

)2

= ‖a‖∞
∫ ∞

0

ds

(
g2t(x, x) − 3

4
m̄′(x)2

)
≤ C (B.18)

(see [8] for the last inequality). It is easy to see that the estimates (B.3) and (B.4)
also hold for z(n,⊥). Moreover,

En

(
z(n,⊥)(t, x)2

)
≤ CEn

(
z(n)(t, x)2

)
+ Ctm̄′(x)2 (B.19)

(see (4.33)), hence from (B.11) and recalling that m̄′ is exponentially small as
|x| → ∞, it follows that, for λ small enough,

En

(
z(n,⊥)(t, x)2

)
≤ r2

4
for (t, x) ∈ A2 . (B.20)



84 L. Bertini, S. Brassesco, P. Buttà and E. Presutti Ann. Henri Poincaré

Then N(r) ≤ 1 + (λ7βr9)−1, so proceeding as in (B.12), but now with T = 1, we
obtain

µn,⊥ ≤ C| logλ| (B.21)

and the proof finishes as that of (4.6).

Proof of (6.4). Note that, conditionally on the xk−1’s, the random variables
{ηk(2); k ≤ nλ(τ)} are independent and Gaussian with variance bounded by CT .
Therefore (6.4) is easily deduced from the following elementary lemma.

Lemma B.1 Let {ωh, h = 1, . . . , N} be mean zero i.i.d. random variables and set
Yn :=

∑n
h=1(n− h+ 1)−1/2ωh. Assume that for each p ∈ [1,∞) we have E|ωi|p <

∞. Then for each ζ > 0 and q <∞ there exists a constant C = C(ζ, q) such that

P
(

sup
n≤N

|Yn| > N ζ

)
≤ CN−q . (B.22)

Proof. Let Y
(n)
k :=

∑k
h=1(n − h + 1)−1/2ωh, k = 1, . . . , n, which is a martingale

with quadratic variation

[Y (n)]k =
k∑

h=1

1
n− h + 1

ω2
h

hence, by the BDG inequality (see [16, §6, E. 4.1]), for each p ∈ [1,∞) there exists
C = C(p) such that

E (|Yn|p) =E
(
|Y (n)

n |p
)
≤ CE

((
[Y (n)]n

)p/2)
≤ CE

(
n∑

h=1

1
n− h + 1

ω2
h

)p/2

≤C

[
n∑

h=1

1
n− h + 1

(E|ωh|p)2/p
]p/2

≤ C

(
n−1∑
k=0

1
k + 1

)p/2

≤ C (logn)p/2 .

By using (7.17) we thus get

P
(

sup
n≤N

|Yn| > N−ζ

)
≤ N−ζp

N∑
n=1

E (|Yn|p) ≤ CN1−ζp (logN)p/2

taking p large enough the lemma follows. �
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