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We prove the Generalized Nash and Logarithmic Nash inequalities for Gibbs
measures with Dirichlet form associated to the Kawasaki dynamics. © 1999
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1. A STRATEGY FOR THE NASH INEQUALITIES

Let Z¢ be the d-dimensional integer lattice with the Euclidean metric
d(-,-). Let Z be the family of finite sets in Z% For a set A < Z% by |A|
we denote its cardinality (volume) and we define the R-boundary of A
by dgAd={jeCA:d(j, 4) <R}, where ( A=7%\A. Let Q=M? be the
product space defined with a compact metric space M. By X ,, 4 Z% we
denote the smallest g-algebra of subsets in £ with respect to which all the
coordinate functions w w;, i€ A, are measurable and we set 2 =2..
For a probability measure x4 on (£, 2), we denote by u(f) = uf the corre-
sponding expectation of the u-integrable function f and we use the follow-
ing notation u(f; g)=ufg —ufug for the covariance of the functions f
and g. By u, we denote the free measure on (€, '), i.e. a product measure
of uniform probability measures on (M, %4,,). The related conditional
expectations with respect to X , will be denoted by x, 4, or in a special
case i (;y = Mo, ;- Given xe M* and ye M, we define a configuration
Xe, yeQ as

(X if jed
(e y)f_{yj if jeCA.
In particular if 4= {i}, for some ie Z% we will use a simplified notation
Xeop y=xe;p. If M is a smooth Riemannian manifold and for any iez¢
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258 BERTINI AND ZEGARLINSKI

and weQ a function Max f(x | w)=f(xe,w) is differentiable, we
introduce the gradient V, with respect to the coordinate w,, i€ Z¢, by

Vifl@) = (0 f(- | ))(w)),

where 0, denotes the corresponding gradient operator on the manifold M
and we compute its length using the corresponding scalar product in the
tangent space T, M as

[Vif(o)| = (0 f(- | @) (OS] @))( )IT/2M|

If M is a finite space, we define a discrete gradient

Viflo) = flo) = (1o, 1./ )(@)

and in this case its length is simply the absolute value of this expression.
The gradient with respect to the coordinates in a set 4 = Z¢ will be denoted
by V,.f=(V,f)ic. and in case when A =79 we simply set V ,4f = Vf. We
define the square of the gradient as

|V/1f|2E z |Vif|2'
ied

We introduce the space ¢(£2) of continuous functions on 2, which becomes
a Banach space under the uniform norm |-|[,, and a space %,=%,(Q),
ge[1, o) of functions in ¥(£2) for which the following Lipschitz type semi-
norm is finite

1/q
|||f||qz< 5 |v,-f|z) VS = sup [Vef(o).
iezd w

One notes that 6,2 %), if ¢ =>p.
We will use the following definitions.

DerFINITION 1.1. o A probability measure u satisfies Standard Spectral
Gap inequality iff there is M, € (0, c0) such that

M, -u(f —uf ) <pVfI? (SSG)

for any f for which the right hand side is finite.
o A probability measure u satisfies Standard Logarithmic Sobolev

inequality iff there is ¢, € (0, o0) such that
L 1/212
u flogﬂf <Cep |V (SLS)

for any nonnegative function f for which the right hand side is finite.
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Let & ={u%: AeF, weQ} be a local (respectively of range R) specifi-
cation on (£, 2), i.e. a family consisting of probability kernels such that
for any bounded measurable (respectively 2 ,-measurable) function f, the
function w +— p4(f) is 2, (respectively X2 o 4)-measurable and the following
compatibility condition is satsified

VA, cd,e T pG ny (f)=ua,(f)
A probability measure x on (Q, X) satisfying

VAes  u(uy(f))=n(f) (DLR)

for any bounded measurable function f, is called a Gibbs measure for &.
The (convex) set of all Gibbs measures for & will be denoted by %(&') and
by 0%(&) the set of its extremal points.

DEFINITION 1.2. Let & ={u%: A€ F, weQ} be a local specification of
range R and let ¢, =@(j—k)e[0, ), for j, ke Z? be such that for any
cube A and any je 0z 4 we have

ijﬂhfuug Z D+ IVifll..

keAduj

e The local specification & will be called Strongly Mixing iff for any
J, keZ? we have

Pr=(j—k) < pge= MR (SM)

with some constants ¢,, M,e (0, c0).

It is known that (SM) implies (SSG) and (SLS), respectively, (see e.g.
[1] and [14]-[16], [8]-[10], [7], [6], ..., respectively).

Suppose for Xe %, diam(X)<R, and every jeZ? we are given a
Markov generator Ly, ; in %(£2) such that

(1) Iffis 2y, -measurable then Ly, ;f is 2(x,a,x)+ -measurable,
and

(ii) For any f, g in its domain (Ly, ;) we have
,u“)}+j(fLX+jg) ::ua,x)'+j(gLX+jf)-

For A€ %, we introduce a finite volume Markov generator %, as

B?AEZ Z LXquj

a jiX,+j=4
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with the summation over a finite set of a’s. Let P =¢"“1 denotes the
corresponding Markov semigroup on %(£2). We introduce also a densely
defined on smooth cylinder function Markov pre-generator

Lf = Z LX1+jf=A1i_{gd$Af

zx,jeZd

For ¥ and ¥, the corresponding Dirichlet form with the measure u and
1% will be denoted by

D,(f)=u(/(=£f))

and

D (/) =De(f) =p4(f(=Z4f)),

respectively.

Under very general conditions, see e.g. [ 5, 9], it extends to the Markov
generator (denoted later on by the same symbol) of the semigroup P, =e'?
and on cylinder functions we have

P,f= lim P!yf.
A—-z74

DEFINITION 1.3. o The family { %} ,. is called locally conservative iff
for every cube A€ .%, the subspace .7, < L,(u%) of X ,-measurable func-
tions which satisfy

L. f=0 (®)

1s nontrivial, i.e., contains nonconstant functions.

o The family {%,} ,. - has a local Spectral Gap property iff, for every
cube 4 €%, there is m, € (0, co0) such that

my-pwG(f —u5f)? <Dy o(f) ()
for every we 2 and any f belonging to the set X , of 2 ,-measurable func-
tions orthogonal to .#, for which the right hand side is finite.

e The family { %} ,. s satsifies a local Logarithmic Sobolev inequality
iff for every cube 4 € # there is ¢, € (0, co0) such that

“e <f log £> <cy Dy (1) €29
ﬂAf

for every we Q and any nonnegative function /e X, for which the right
hand side is finite.
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Later on we will consider nonnegative (nonlinear) convex functionals
{A 4} 4o 5 defined on a dense domain in %(2) and vanishing on constants.
Such functional will be called subadditive ift

VA, Ay e 7, dind, =0 A () +AL(F) S A4 oa(S) (L1)

We will restrict ourselves to the homogeneous functionals of degree 2, i.e.
such that for every Ae R*, we have

A4(f)=22A4(f). (12)

Let A denote the functional defined by

A(f)= lim A4(f), (1.3)

A—74

where the limit is taken along an increasing sequence of 4 € . invading Z°.
Note that, by subadditivity, the above limit always exists (possibly infinite)
and do not depend on the sequence.

In our further considerations the following additional properties of the
stochastic dynamic will play an important role. These properties abstract a
scaling behaviour, which is relevant in order to prove a Generalized and
Logarithmic Nash inequality of a local conservative dynamics satisfying ()
and (=), respectively. In the next Section we shall prove they hold for the
Kawasaki dynamics.

DEFINITION 1.4. o A locally conservative family {%,} ,., is called
asymptotically diffusive iff for every cube Ae.%, there are m,=
m(|A])e (0, ), m,—1=250 and ¢,=¢(|4])e(0, ), ¢, 2==,0,
such that we have

,u‘j(f—,u‘/‘;f)ZSmZI~DA,w(f)+8A-AA(f) (®®)

with some subadditive functional A4 ,(-), for any we Q2 and function f for
which the right hand side is finite.

o A locally conservative family {%,} ,. is called S-asymptotically
diffusive iff for every cube Ae%, there are c,€(0, 0), c, =
c(|4]) 21==5 o and e,€(0, ), ¢,=¢(|4]) =A== 0, such that we
have

i <f 1"guwff><CA-DA,w(f“2>+,sA-AA(f“2> (®®®)

A
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with some subadditive functional 4 ,(-) satisfying
AL(EN)2) < AL(f7?) (1.4)

with any conditional expectation E, for any all nonnegative functions f for
which the right hand side of (®® ®) is finite and any w e .

In this Section we prove the following general result.

THEOREM 1.1.  Suppose the local specification & of range R satisfies the
Strong Mixing condition (SM).

(I) If a locally conservative family {%,} ,. 5 is asymptotically dif-
fusive, then the following inequality is true for every Le N

u(f =) <m(L)~'-D,(f) +&L)- A(f) (1.5)

with some &(L) € (0, o0 ), & L) <=2 0 and a functional A(f) = A(f) + || f I3,
for any function f for which the right hand side is finite.

(I1)  If a locally conservative family { %} ,.  is S-asymptotically dif-
fusive, then the following inequality is true for every L e N

u <flog /f;) < (LY -D,(f?)+&L)-A(f7?) (1.6)

with some &L) € (0, 0), &L)-~22 0 and a functional A(fV?)=
A+ S 2N3 for any nonnegative function f for which the right hand
side is finite.

The bound (1.5) (respectively (1.6)) is called Generalized Nash (respec-
tively Logarithmic Nash) inequality; we refer to [2] for an overview and
a motivation in the context of infinite dimensional Markov semigroups, see
also Section 3 for a further discussion.

Proof of Theorem 1.1 (I): Let A, be a reference cube of side L in Z<.
For ieZ% let A;:=Ay+i(L+2R) be the translate of 4, by a vector
i(L+2R)eZ% It will be convenient to label all these translated cubes by
a natural number; we thus obtain a family of cubes {A,}{° such that for
[#1', d(A4;, 4,)=2R. Let {Y,} ¢ be the increasing sequence defined by
Yoi=, Yii=Up< Ay, if 121 Let I'y=), Y,. To {Y,} & we associate a
family {E,} & of conditional expectations defined by E, f = f and for />0,
E f(w) :=,u“;,lf, for any fe €(Q).

We then have

Nw)=u7 f= Z (f1-1(@) = fi(®)), (1.7)



COERCIVE INEQUALITIES FOR GIBBS MEASURES 263

where f,:=E,f=,u‘/‘1’1f,,1. The series on the right hand side of (1.7) is

actually a finite sum when f'is a cylinder function (i.e. depends only on a

finite number of coordinates) and is absolutely convergent if f € %,(£2).
Since the sequence f; has orthogonal increments, we get

u(f = =plur f =)+ Y ulfioi—f1)? (1.8)

=1
—ﬂ(ﬂrof u)? Z ﬂA,(ﬁ—l_ﬂA,f1—1)2)- (1.9)

We estimate first every term in the infinite sum on the right hand side.
We note that keeping the variables outside A; fixed, we can use the
asymptotic diffusivity inequality (@ @) for the cube A, (of side L) and the
function f,_, to get

Ha(froa =14 fio)?<m(L) 71Dy o (fioy) +e(L9) - Ay (fi-1). (1.10)

Using the fact that our cubes are separated by 2R and our local specifica-
tion is of range R, we have

D, olfi-1) =Dy, oltty, ) <uG D4, o)) (1.11)
Also by convexity of our subadditive functionals we get
A (fio1) <A () (1.12)

This together with (1.8) give

u(f —uf )V <wpr, f— Z Thou(D oy () +e(L) - A, ()}

<m(LY) 71D ,(f) +a(LY) - Af) +plur, f—uf)>, (1.13)

where in the last step we have used the definitions of our Dirichlet forms
and our assumption about the subadditivity of the family {4,}, . To
estimate the last term on the right hand side of (1.13) we note that, under
the Strong Mixing condition, the measure u satisfies (SSG) inequality,
[1], ... Therefore we have

wur, f—uf)? Yo Vg, f12. (1.14)

We observe that

Vur, f1P= % Vur fI? (1.15)

Jjelr,
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and that by our construction for every jeC Iy there is a unique cube A4,
such that jedg A, ;, which implies

\Vitr, f12< V4, F 115 (1.16)
Thus using (1.14)—(1.16) together with the Strong Mixing condition, we get
2
plpr, [ =P <MY Y < ) (pjk'lka|u> (1.17)
I jedpd; \keA;uj
which with the use of Holder inequality can be transformed to

pitr, f—uf <M sup( y qo,-k>z Y Y g VSR

JEORAy \keAyu j I jedpd; ked;uj
(1.18)

Using this and (1.13) we get
w(f =) <m(L) 1D, (f) +e(L) - A(S)+ M !

'sup< Z (/ij>z Z Z ‘ij'HkaHi-(l-lg)

JE€ORAy \keAyu j | jedgpd; keduj

Now we take advantage of the fact that the position of our reference
cube A, was arbitrary and thus we can replace the inequality (1.19) by its
average with respect to the translations a = (a', ..., a?) in the cube A, of
side L+ R centered at the origin. Using the Strong Mixing condition we
have

aedy | jedgrd;+a ke(dj+a)uj

Z Z Z (ij}' IV fII7

\ d{
kezd L+R) aedy I:[(A;udpd) +al>k jedpd,+a

1
<C7- X VLSl (1.20)

kezd

with

TS = P L ouf

aedy I:[(4;00pA4) +al>k jedpd;+a
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Thus we conclude that

1
u(f = P <m(L) 7D (f) +e(L)-Af)+ C- ¥ IVeflE. (121

L kezd
Choosing
1
&(L) = max {a(Ld), CL} (1.22)
and recalling that
A=A+ X IV flZs (1.23)
kezd

we get the first part of Theorem 1.1.

Proof of Theorem 1.1 (I11). The proof of the second part is similar. We
use first the following martingale decomposition of entropy:

)

> i)
u <f — (1.24)
; ( SANG 11 :uAfl 1
We estimate each term in the sum on the right hand side using the
S-asymptotic diffusivity property (® @ ®) as

o fi
uA,<lelog T | <L) Dy, (S 12D (L) A (f12)

ﬂﬁ,fl—l

SALY) Dy, ([ +e(L?)- Ay (f1P),  (1.25)

where in the second line we have used our assumption (1.4). This implies
the following bound:

(o)

¥ (s (S tog ) ) <o) D12 L) a1 (126)
=1 :uA,flfl

The first term on the right hand side of (1.24) is estimated using the
Standard Logarithmic Sobolev inequality for the measure u. We get

o
“ <”F° <f gu&m» <t [Vr, )2

<c X IViur N2 (1.27)

jeCr,
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Since one can show, see e.g. [8, 10], that under the Strong Mixing condi-
tion we have

Vs H'I< Y Y @allVef "l (1.28)
j€OpA keduj
with
Y Y @a<CilogL)? (1.29)
jeopA keduj
for some constant C, € (0, o0), by the similar arguments as before one can

get the estimate

/’tro+af

(L+R)* az a <#r°+“f10g uuro+af>

S IV SR (1.30)
kezd

with some constant C,€ (0, oo). Using (1.24)—(1.30) we get the desired
inequality (1.6) with

2d
&(L) = max {S(Ld), C, (IOgLL)} (131)
We recall in fact that
A=A+ Y IV S MPI12 (1.32)

kez?
This ends the proof of the second part and so of Theorem 1.1. ||

Remark. 1In the continuous case the factor (log L)?? can be omitted.

2. THE NASH INEQUALITIES FOR GIBBS MEASURES

In this Section we show that the strategy described in the previous
Section can be applied in nontrivial situation of particle systems with non-
zero interaction.

We choose the configuration space to be given by Q={0,1}%" Let
&= {dy} y.» be a translation invariant interaction potential of a finite
range R>0, ie. a family consisting of continuous real functions such
that for every Xe % the function @y is 2 y-measurable and we have
®,=0 if diam(Y)>R. Let |®|=2,,,[Pxl,. For the reasons which
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will be more clear later, we distinguish the one particle potential &V =
{®;y = — Ao} ;. 4, Where LeR and w; are called the chemical potential
and the coordinate function at the point i e Z% respectively. One defines a
finite volume energy U, in A€ % corresponding to the interaction poten-
tial @, by

U,= Z Dy
XeF: XnA#* K
and a finite volume Gibbs measure 1 at 4 €. with boundary conditions
given by a configuration w e 2 as

Ho | AP (@ ey )

ﬂ0|A(e_U(‘b"‘w)) ’

#A(f) (2.1)

where 4, denotes the integration with respect to symmetric product
measure on £ restricted to 2. To stress the dependence of 1 on the one
particle potential @V, we will also use a notation x4 , = u%. It is standard
that the family &;={u% ,: weQ, A€ 7} is a local specification. For the
rest of this paper we will take on the following:

ASSUMPTION.  The local specification &= {1, ,: weQ, A€ F | is Strongly
Mixing uniformly in A.

Let
0,f(w)=f(T;0)— flw),
where T; is a measurable bijection on @ defined by
w; if I=i
(Tyw),; =1, if I=j

w,; otherwise.
For later purposes we note that
0;flw)=[w,(1 —w;) +w,(1=w,)]-(V,—T;V,) flw), (2.2)
where, in this Section,
Viflw) = flo) — flo)

with w'(j) :=1—w(i), if j=i and () otherwise.
We introduce the following elementary Markov operator

Zif(w)=cy(w) 6, f(w), (2.3)
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where

&% Uty

cilm)=
We remark that ¢;(w)=c;(w) and that these coefficients are independent
of the one particle potential. Moreover we have

0<(1 + @2 sup; Hé,-jm,-j}\lu)—l <Cﬁ(w) <1 (2.5)

the lower bound being also independent of the one particle potential. It is
not difficult to see that for any 4314, j we have

1, 8Ly ) = ud (JL 5 8)- (2.6)

Let us introduce a Markov (pre-)generator #,, A< Z“ defined (on the
dense set %) as
=Y (2.7)

ijs
ijr=4
where the summation is running over the nearest neighbors pairs {ij) of
points contained in the set A. If A =77 we will suppress the corresponding
subscript from the notation.

We note that the family { %,} , . is locally conservative. In fact it is not
difficult to see that for any characteristic function

Xan(@) = (N 4(@) =n) (28)

with n=0, ..., | 4|, and where
Nw)=) o,

we have
LyXan=0. (2.9)

Thus &, vanishes on all functions which are measurable with respect to the
o-algebra X(N ,) = X', generated by N ,.

It is a standard matter to show that ¥, extends to a Markov generator,
[5], denoted later on by the same symbol. Let P{Y =¢’“41 and P,=e'? be
the corresponding Markov semigroup, respectively. Using the property
(2.6) one can show that for any 1€ R and for any Gibbs measure u € 4(&;)
we have

wEgLf) =u(f1Zg) (2.10)



COERCIVE INEQUALITIES FOR GIBBS MEASURES 269

for all f; ge%,, and similarly for any finite set 4 €% and any boundary
condition w € 2, we have

1, 8L aS) =15 (JL48). (2.11)

This in particular implies that the set of all invariant measures for P, con-
tains an uncountable set |J,. g %(&;). For more information about the
structure of the set of invariant measures see [3, 11].

We will like to study the ergodic properties of the infinite volume
Markov semi-group via the strategy based on general Nash coercive
inequalities, (i.e. some lower bounds on the corresponding Dirichlet form
of the generator). Under the condition (2.5), it is sufficient to study the
following equivalent quadratic form

D,(f)=3 2 1l f1% (2.12)

<G>

where u,;€%(8,) is—under the Strong Mixing assumption—the unique
Gibbs measure for &,. Respectively in a finite volume A € %, instead of the
quadratic form of £, in L,(u% ,), it will be more convenient to study the
following equivalent form

Dﬁz(f) E% Z ﬂﬁ,z |5ijf|2- (2.13)

Gjr=4

Using this forms give us the advantage that all our inequalities remain true
for other generators constructred with rates given by

4 a;c

’_

where a;; is symmetric in i and j, uniformly bounded and strictly positive
functions independent of w; and w;.

To formulate the main result of this Section let us introduce the following
semi-norm

1/q
Mlso=( X 19.512) (214
ied

In this Section we prove the following result.

THEOREM 2.1. (i) The family {%,} ;.5 is asymptotically diffusive in
the sense that for any A€ R, qe[1,2) and any cube A€ F, w e Q, we have

pa (f=uG 2 <m DG () +edlflZ, (2.15)
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with

ma=mg | A7

& =¢o ||~ @0—D

for some constants mq and &, independent on A, w, q and any function f.

(ii) The family { %4} 4.5 is S-asymptotically diffusive in the sense
that for any LeR, qe[1,2) and any cube A€ F, we Q, we have

uM<f10g / f>\cADz’,l(f“2>+éA|||f“2||i,q (2.16)
Ai

with

Ca= e 4|+

E,=8, 4] —(2/9)=1)

for some constants ¢, and &, independent of A, w, ¢ and any function f.

By applying the general result proven in the previous Section we then
conclude that the asymptotical diffusivity and S-asymptotical diffusivity,
implies the Generalized and Logarithmic Nash inequality, respectively.

COROLLARY 2.2. Let the local specification &,={u ,:weQ, AeF}
be Strongly Mixing uniformly in A. Then

(1) For each qe[1,2), 2€R the (unique) Gibbs measure u, e 9(&8,)
satisfies the following Generalized Nash inequality with respect to the
Kawasaki dynamics

1 f = /P <Dy(f)F- A ) (2.17)

where oc—(l/q—l/Z)(l/d—i—1/q—1/2)_1 if 1/q—1/2<1/(2d), a=1/3 if
1/g—1/2>1/(2d) and 4 J)= C £ N, for some constant C=C®, A d q),
for any function f€,.

(i) For each 0>0 ge[1,2), LeR the (unique) Gibbs measure
W, € 9(&)) satisfies the following Logarithmic Nash inequality with respect to
the Kawasaki dynamics

i 1108 L

f> <DL A (2.18)
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where &= (1/g—1/2)(1/d+1/q)~Y if 1/g—1/2<1/(2d), a=(d+3)"1 =6
if 1)g—1/2>1/2d) and A" =C||f|l, for some constant C=
C(®, A, d, q,0), for any nonnegative function f e t,.

Proof of Corollary 2.2. By Theorem 2.1 we have that the family
{ L4} 1cs 1s asymptotically diffusive, respectively S-asymptotically dif-
fusive. Hence, by Theorem 1.1, the Gibbs measure u, satisfies inequality
(1.5) with m(L?)=moL ™2, &L)=28& max{L ™", L=~} respectively
(1.6) with ¢(L9)=coL?*?, & L)=2&, max{L '(log L)*, L=~} g,
max{L~'*° L~4*4=D} where §>0 is arbitrary. By using an (easy) a
priori bound of Dirichlet form D,(f) in terms of the seminorm |||-|||,, see
[2, Lemma 7], the inequality (2.17) and (2.18), follows from (1.5) and
(1.6), respectively, by optimizing on L. ||

Proof of Theorem 2.1. Asymptotic diffusivity. We begin by observing
that

1G A =1 2V =15 (G (L = w5 (S I NODT TN ,))

+u G S TN ) =5 ()2 (2.19)

with x4 (- | N,) denoting the conditional expectation knowing N, asso-
ciated to the measure u% , and is given by

1o Kak])

P =ui(f), (2.20)
My, A(XA,k)

ﬂﬁ,{(f| N,=k)

where the notation introduced on the right hand side emphasizes the fact
that this conditional expectation is independent of the chemical potential A.
To estimate the first term on the right hand side of (2.19) we note that,

[6], there is a constant g, € (0, 0o0) such that for any n=1, ..., | 4] we have
w5 O(f = 1520 <ao |4174- D 2(f), (SG(u5))
where
DY) =

Y Hieloyf1
>=da

<y

Therefore we get

1 G AL =1 (S INDTP TN D)) <ag [4179-DG (/). (2.21)
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To estimate the second term on the right hand side of (2.19) we note that
under assumption of strong mixing the finite volume measures satisfy the
following Standard Spectral Gap inequality

ﬂﬁ,z(g_ﬂﬁ,zg)2<M71 : Z ﬂﬁ,z |Vig|2 (SSG)
ied

with some constant M € (0, oo0) independent of A, w and g (in fact a weaker
mixing property suffices, [ 1]). To apply this in our situation we will need
the following simple lemma proven in [2, Lemma 18].

LemMA 2.3 [2, Lemma 18]. For any real function F and any finite set
A7 we have

Z /‘z,z |ViF(ﬂL/L1),/1(f| NA))|2
ied
|4]

= Z [F(ulg () = Ful™ " U ke 1 20 i)

i' F(ulg™ () = F(ul “OIP (Al = k) -1 () (222)

Using (SSG) together with (2.22) for F(x)=x, we obtain

Mﬂﬁ,,{(ﬂﬁ, A1 Ny) _ﬂﬁ, z(f))z
|4]

<Y G =1l NN k1 ()
k=1
4] —1
+ Z L5 = 15 OO (Al = k) - G 2(a v)- (2.23)

The estimate of the right hand side will be based on the following lemma.

LEmMMmA 2.4. There are constants a,, a, depending only on @, such that
for any cube A and any boundary condition @, we have

e = ef)?

1
kor k—1lw 2 ~ - .
W% — 1 | \almax(k, A —k) Mg

van (S 9L (2.24)

ied

for any k=1, ..., |4].
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We will prove this lemma later. Now assuming it, we see that using the
estimate SG(u%“), [6], and applying Lemma 2.4 to bound the first and
the second sum from the right hand side (2.23), respectively, one easily gets
the following estimate

1 (1 (TN ) —us ()

<2a0a1M—1.|/1|2/d.Dj‘1’,,1(f)~|—a2M 1|A| <z IVifll. > (2.25)

ied

Combining this together with (2.19)-(2.21) we arrive at the following
inequality

S =P AP DS ) b (T AL (226)
ied

with some constants m,, ¢,€(0, c0). From this the general case with
ge[1,2) follows by a simple use of Holder inequality. This ends the proof
of asymptotic diffusivity estimate (2.15) assuming Lemma 2.4. |

Proof of Lemma 2.4. We begin from recalling a lemma, [ 6, Lemma 3.1],
which allows us to compare the (mutually singular) measures u%* and
ukrte Let

G,(n):= (1 =) exp{ —V, U (5 og )} (2.27)
Gin) = nrexp{ —V, Uyl o, 0)}. (2.28)

We have:

LemMa 2.5 [6, Lemma3.1]. The following identities hold for any
bounded A = 7% and each w e Q

(a) plgf —pi*t “’f—m TARUAND!
W RIS / Y 15°(G) 229)
ied ied
(b) +1wf M4 wf—l/” Zﬂ —n) V.if)
IEA
_Z Iuk+1wf G)/Zﬂk+lw ) (230)

for any k=0, ..., |A| — 1 and all functions f € €(Q
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Now we note first that the first terms on the right hand sides of both
cases in Lemma 2.5 have the same bound.

1 X VSl
| ied

This is because we have

’Tl"”(n,-V,-f)’ sup (45 1o(n)) - Y VoS

k+1 ied

k lteA ied
<etlel — 2 IVifll, (2.31)
| ied
and
k,
W (1 =) V f)’ --sup (4 Vsl
|| —k IGZA 4 || — 4 ZA
<P — N V.S, (2.32)
|A ied

where the second step in these two inequalities is justified by the following
lemma proven in [6, Lemma 3.3].

LEMMA 2.6 [6, Lemma 3.3]. For any bounded A = Z? and each we Q

k k
e ”(p”m<ﬂl,€1’w(77i)<e4 ”(p”m (2.33)
and
k k
e (- (1-00) )

for any k=0, ..., |A| and all ie A.

Now we need only to estimate the second term from the right hand side
of (2.29) and (2.30), respectively, and finally, for a given &, choose the most
convenient estimate. For this we note that by Holder inequality, we have

<Zu fG)> <l ). Y W5UGRG) (235

ied i,jed
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and
<Z 'uk+1 % f Gz)) <,uk+1 % f f Z ,le+1 , G‘J) (2.36)
ied i,jed
Thus we need to estimate the following ratios:
Siseatli®GiG) o Tasealit GGy
(Xica i (Gy))? (Xica ™1 (G)))?

To this end we note first that, using (2.27) and (2.28) together with
Lemma 2.6, we have

(2.37)

e SIPI(A —k)< Y 1k (G, (2.38)
ied
and
e SIPlk+ 1)< Y AR((CH) (2.39)
ied

Thus to get the bounds of the ratios from (2.37), we will need the following
lemma which is proven in the Appendix A.

LEmMMmA 2.7. There is a constant Ce (0, 00) such that for any k=
0, .., |4 —1, we have

Y 156G G < CH(|4] k) (2.40)
i,jed

and
Y k(G G < CH(k+1). (2.41)
i,jed

With the above bounds we can now finish estimating the ratios given in
(2.37). Using Lemma 2.6 together with (2.38), (respectively (2.39) in the
second case), we get

ZijeA:uA “(Gy; G) Celz”@'#

— < (2.42)
(Xica 1§ 2(G))? 4] —
and respectively in the second case
k+1, 00 A A
Zz jea l 4 - ( i G21)<C€12 o] 1 ) (2.43)
(Xieany"Gy) k+1
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From this and (2.35)—(2.39) we obtain

2 (2 W1 G) / T M;‘”(G»)z

1
<2Ce™ ndﬁnm.ﬂ’;w(f_ﬂ’jwf)z (2.44)

and
. 2
2(2#’2’ /Zm I G)>
ied ied

1
S2CeB N WG = ) (2:45)

Combining these bounds together with (2.31)-(2.32) and recalling
Lemma 2.5, we arrive at the following estimate

1
g f —ulmef 1P <2Ce2 1 max(k 1A —F) Wi f — 1l “f)?
+2e'2 121 <|A| 2 Vit > (2.46)
ied

This ends the proof of Lemma 2.4, hence of part (i) in Theorem 2.1. ||
Proof of Theorem 2.1. S-Asymptotic diffusivity. We begin by observing

that
ﬂﬁz(fl()g > NA /1</1A,1<f10gf NA>>
’ ﬂcj,zf (fIN,)
" A NA
b (A V. o W> (247)
where, we recall
WS | N =) Pt Zael) e ) (248)

ﬂA, /1(XA,k)

To estimate the first term on the right hand side of (2.47) we note that,
[13], there is a constant ¢, € (0, c0) such that for any k=0, ..., | 4] we have

whe <f log ,/w) <G |- D5(f17),  (LN(g5))
A
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where
D’jl’“’(fl/z)zé Z Iul/cl,w |5ijfl/2|2'
{jy=4

Therefore we get

/
NA AS TN,

To estimate the second term on the right hand side of (2.47) we note that
under assumption of strong mixing the finite volume measures satisfy the
following Standard Logarithmic Sobolev inequality [ 6-10, 14-16],

K, <ﬂA pi <f10g

NO><QLMMRD14ﬂﬂy (2.49)

><c. > K, V. g"??, (SLN)

ied

1,4 <g log
A, A
with some constant ¢ € (0, o) independent of A4, w, and g.
Applying (SLN) and using Lemma 2.3 with F denoting the square root
we get

i N
K5 (/131, A{f 1Ny log IuA/l(f|A)>

ﬂﬁ,zf
|4]
<E Y (WS N2 =T PP ke 1 (a)
k=1
4] —1
+0 Y RN P = (NP Al =k) - 1% (L 0)-
k=0

(2.50)

The estimate of the right hand side will be based on the following lemma

LemMA 2.8. There are constants by, b, dependent only on @, such that
for any cube A and any boundary condition w, we have

(52D = (™) PR by AP (D4 (1) + DA e f12)]

+hee (1 21V, f“2|> (251)

ied
for any k=1, ..., |A4].

We will prove this lemma later. Now assuming it, we see that by
applying Lemma 2.8 to bound the first and the second sum, respectively,
from the right hand side of (2.50), one gets the estimate
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MhUWNM>
g

ey <ﬂ‘2’,a(f| V. tog HA L

<o A0 D ()20 (S VL)L e
ied

Combining this together with (2.47)—(2.49) we arrive at the inequality
@ L . 1+ (2/d) [}
w5 | flog—o— | <co- | 4] DG ()
' wa . ’
2
+or (T 191 (2.53)

ied

with some constants ¢y, é,€(0, o0). From this the general case with
ge[1,2) follows by a simple use of Holder inequality. This ends the proof
of S-asymptotic diffusivity estimate (2.16) assuming Lemma 2.8. ||

Proof of Lemma 2.8. We note first that we have
(a5 N2 = (= (N2

=G ) = 1l O G U2+ (W22 (254)

and
e (f) = w522 )] = e @l = (f = T
=@k (S = TR f P+ 1P
<('ul/cl, ~k lw(fl/Z 71/2)2)1/2

(GNP + (2N, (2.55)

where 712 is integrated with respect to the isomorphic copy a5~ "¢ of
k=1 Using this we get

(WG = (WD < (W@ @ a5 b o(f 2 = TV2)%) 172
< (,ul/cl,w(fl/Z _Iuljl wf1/2)2)1/2

+ (Iuljl— l,w(fl/Z_Iuljl—l,wf1/2)2)1/2

IR (256)
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and from this

[R5 D2 = () 2P
S N R R A R A VAR i AL
3 [y of R e (2.57)

Now we use the spectral gap inequality SG(u* ) to estimate the first part
from the right hand side of (2.57) as

3Lul (f 2 = ulg of V22 + T (S = il o))
<3ag [AP- DY) + DL (1)) (2.58)

The last part from the right hand side (2.57) can be estimated using
Lemma 2.4 and SG(u% ) as

1
3 ko2 _ k=lorl22 <3 Cokof £172 Kk wf1/2)2
| “f Hy 2 almax(k, A —k) i (f Wi fe)
#30 (Y |vl-f“2u>2
|A| ied

<3a “ao | AP D5(f172)

"max(k, |4| —k)
1

T V) (2.59)

ied

+3a2-<

Combining (2.54)—(2.58) and (2.59), we arrive at the desired estimate. This
ends the proof of Lemma 2.8. ||

3. SOME FINAL REMARKS

In this paper we have shown that there is a systematic method of
proving of coercive inequalities for a general class of nontrivial infinite
dimensional models. In particular under general assumptions concerning
the mixing property of a local specification which assures that the corre-
sponding unique Gibbs measure satisfies the Standard Spectral Gap and
the Standard Logarithmic Sobolev inequality, we have shown that also a
family of Generalized Nash and Logarithmic Nash inequalities hold. The
later type of inequalities provides us with new interesting bounds on
entropy in terms of a Dirichlet forms related to some stochastic dynamics
with a diffusive behaviour. On the other hand it can be considered as
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an interesting characterization of the domain of the generator of this
dynamics.

To get another profit from our inequalities in the form of a control of the
decay to equilibrium in [, or entropy sense, one needs to get more infor-
mation about monotonicity properties of the related 4 functionals. For this
it would be useful to have more information about monotone or bounded
functionals for a given stochastic dynamics. In general it is a difficult and
wide open question how characterize them and should be studied in a
future. Here we would like to point out that in fact to get some decay it
is sufficient to have a weaker property than monotonicity or boundedness,
and for example the following fact is true.

ProposITION 3.1.  Let u satisfies the General Nash Inequality
H(f =uf P <D(f)* Af)' (3.1)
for some a€(0, 1) and a functional A satisfying
A(P,f)<max{l, °} B(f) (32)

for some e¢€[0,a/(1 —a)) and a functional B densely defined on some
domain 9(B). Let y=o/(1 —a); then

B
WP~ )<y L) (33)

Sor any t =max{1, (2¢/(y + &))"~} and function f € 2(B) N 2(D).

Proof. We can assume uf=0. Let us define F(¢):=u(P,f)?% the
inequalities (3.1) and (3.2) imply

%F(l)z —2D(P,f) < —2F(¢t)"* (max{1, £*}) =" B(f)~'".

Solving the above differential inequality we get, for 1 > 1,

y l—efy _17~7
ro<an (5 [ 1+

and elementary estimates yield (3.3). ||

Finally we would like to indicate that our analysis of the product case
[2] suggests that, in case of the Kawasaki dynamics, it should be possible
to get the coercive inequalities of interest to use also with some functionals
which could give some faster decay to equilibrium. This problem should
also be studied in a future.



COERCIVE INEQUALITIES FOR GIBBS MEASURES 281

APPENDIX A: COVARIANCE ESTIMATES FOR
CANONICAL GIBBS MEASURES

In this Appendix we prove the technical estimates used in the proof of
Theorem 2.1. We shall need some mixing property for the canonical Gibbs
measures % ©, which are formulated in the lemma below, see [6, A.2] and

[13].

LemmA A.l. Let 0>0, there exist a function ¢:R— [0, c0), @(r)<
©or %% and a constant Bye (0, c0) depending only on the interaction @,
such that for any cube A< 7% and we Q

|1 “(f, ©)| < By Isupp f1 Isupp gl I f1l,, lg]l.,
X [|4] "+ ¢(d(supp f, supp g))] (A1)

for any k=0, ..., |A| and all X ,-measurable functions f, g.

As a consequence we get the following estimate on the dependence of
1% on the boundary condition w, see [6, Lemma 3.2].

LEMMA A2 ([6, Lemma 3.2]). There is a constant B, € (0, c0) dependent
only on the interaction @, such that for any cube A< 7% weQ and each
i€edpd

15 =15 () < By Isupp f1 £l [14] ="+ @(d(i, supp /)] (A2)
for any k=0, ..., |A| and any X ,-measurable function f.

Remark. We note that, by changing the constants B, B,, the above
Lemmata A.1, A.2 holds also when the cube A is replaced by A\{/} (or
A\{j,j'}), where j, j' € A. We shall therefore apply them also in the latter
setting without further mention.

From the above estimates we deduce a sharp bound on the covariance
between 7, and 7;.

LEMMA A.3. There is a constants B, € (0, o0) dependent only on the
interaction @, such that for any cube A <7 and we Q

k

k
Ky, oo <B 1_
|iuA (771’ ’7])| 2 |/1| < |/1|

>[|A|—1+q)<d<z;j>>] (A3)

for any k=0, ..., |A| and all i, je A.
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Remark. We note that if there is no interaction, @ =0, we have

k k 1
k AW 1)) = —— 1_7 :
wa(n(@);n(j)) |A|< |/1|> [4] —1

so that (A.3) catches the correct dependence on k, |A|.

Proof. We note first that we have the following representation of the
covariance of interest to us

15 n s my) = i i) — g 2 0n:) - 15 <(ny)
=15 () 1 (1) — 15 (1)
X (g “0my) 1ty () + 1 (U= my) 1 ol12))
=l () 15 (V=) (1) = G o). (A4)

The first two factors from the right hand side of (A.4) can be estimated
using Lemma 2.6. To estimate the last factor on the right hand side of (A.4)
we use the decomposition

|NA\1 77]—1(;7 ) — ﬂl/{f\c;,njzo( UBIES |:uA\] n (1) _ﬂljf\c;,nj:1(’7i)|
+ |ﬂ/f\j,ﬂj:1(’7i) _ﬂ]jf\cj,njzo(ﬂi»

The second term in the above inequality is estimated by applying Lem-
ma A.2; to bound the first term we use Lemma 2.5 (a) or (b), dependent on
whether k£ <(]|4|/2) or not. Since both cases are similar, we consider here
only the case k< (|A4[/2); to simplify the notation we introduce A'= A\
and o' =w e {w;=1}. We have

k, o'
k—1, o ko Diea lg” (n; G
Iz (n:) — w5 (n;) W (ny Vi) — o
- . 1; . ZleA'ﬂ]fi' (G))

| e 157 (033 G
= 15 (n,(1 —2p,)) — e B 0 2
k ZleA’iuA’ (G))

(A5)

From Lemma 2.6 the first term on the right hand side of (A.5) has the
estimate

I
—ul?(p (1 =2n))< 4lel, _—_
k /uA (’71( ’71)) e |Ar|
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Using Lemma A.l together with estimate (2.38) we get

Yiea 157 (05 G))
Dlea ﬂlﬁi'w (G)

<A —k) T Y By R VILIA| T+ Br- (d(i, )]

led’

< By- R%" '¢'[1+BR- S (. 0))} (4] k)"

lezd
<2B,- R%8 I [1 +Bgr- Y, o(d(l, 0))} AT (A.6)
lez?
where Bg=sup{(d(i,/')/d(i, 1)) :i# 1 and [,I' : d(/,]') < R} and in the last

step we have 1nserted our assumption k <(|4|/2). This ends the proof of
Lemma A.3. |

We can now prove Lemma 2.7 which has been used in the proof of the
asymptotically diffusive inequality (2.16).

Proof of Lemma 2.1. We shall prove only the inequality (2.40), the
proof of (2.41) being similar. We note that

/llji (G Gj) ::u]/cf w(/‘ljiw(Gﬁ Gj [ 7 77;))
+,U]/€1’ w(ﬂ]j{ “(G; [, 77j)§ ﬂ];fw(Gj [ 7:, ’lj))' (A7)

Since G;=(1—n,) exp{ =V, Uy (e, )} =(1—1,) g;, for the first term on
the right hand side of (A.7), we have

X WG (G Gy I ny)

i,jedA
Z ﬂ 1_7/)(1 ) |:u/1 gt’gjlﬂl 0977]:0”
i,jed
4 |lo| k =
< Z e . 1— |1uA glﬂgjlnl ’ 1_0)|
i,jed 4]
1 p2d,8 |P| k —1
< ByR*8 1?1 .1 — Al - LAl + e(d( )]
i,jed
<| (14 3 o)) ByRee 1o |14l -k (AS)
iezd

where we have used Lemma 2.6, the definition of g, together with the fact
that the interaction @ is of finite range R and Lemma A.1.
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It will be useful to represent the second term on the right hand side of
(A7) as

1 s (G L ) 15 (G | i, 17,-))
ﬂljlw(gj |’71:09 ']]ZO)_RA(la ])n (A9)

where

R (i, j) = RY(i, j) R2(i, j) 1’5 (n.(1 =) w5 (1 —n,) m))
+ RY (L, ) 152(g; | n:=0,1,=0) w5 (1 —n,) ;) 1 (1 —n))
+ R%(i, j) 1 “(g: | m:=0, 1, =0) & “(57,(1 — 1)) (1 —1p,)

in which

RYG ) =u5(gi | n:i=0,m;=1) — %5 (g, | n,=0,1,=0)
q

R, ) =p5°(g; | ni=1,m;=0) —u%;(g; | n,=0,1;=0).

Using Lemma A.3, since |g,[l, <exp{2|®||}, we can bound the first
term on the right hand side of (A.9) as

G =n); (L=n,)) < 15 (i | 1;=0,7,=0)]

i, jed

k k
<t 2 (1-T) T Ll )
i,jed

< <1 + Y e(d(, O))> B,e*1?l |kA| (|4] — k). (A.10)

iezd

It remains to consider the second term on the right hand side of (A.9).
For this we proceed as in Lemma A.3,

IRL(E, I < w55 2(g) — 1§28l + 115 (g) — 15 2(ga)l.

where A=A\{ij}, d=w e, {w;=0, w;=1}. We then bound the first
term using Lemma 2.5 (see (A )—(A. )) and the second by applying
Lemma A.2. The bound for R%(i, j) is analogous. We find

1
|RY(i, )| < By <|A|+ go(d(i,j))) I=1,2
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r some constant B, depending only on &. Hence
. 1 .
Y IRALNDISBy ) <A+<ﬂ(d(l,J))>
i,jed i,jed | |

x [20%5 (1 —my) w5 (i) + el () w5 2(1 —15)]

1 k k
<3B,ed %l <+go(d(i, j))> — <1 —>

! 2\ AT\ 14]

i,jeAd

<3B4e8'4"<1+ Y (d(0, i))>«|i|(|/1|—k), (A.11)

iezd

where we used Lemma 2.6.

From (A.8)—(A.11) we deduce the estimate (2.40). The proof of (2.41) is

similar. This ends the proof of Lemma 2.7. |
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