Università di Roma "La Sapienza" Corso di Fisica Matematica Superiore

Esercizi sul momento angolare // Gennaio 2016

Gli **Esercizi** proposti sono risolubili utilizzando esclusivamente la teoria svolta durante le lezioni del corso. I **Problemi** possono invece richiedere più tempo, qualche astuzia e la consultazione di materiale bibliografico.

1 Algebra del momento angolare

Indicheremo con i simboli $\{J_1, J_2, J_3\}$ tre operatori autoaggiunti, densamente definiti in uno spazio di Hilbert \mathcal{H} , che soddisfano le relazioni di commutazione

$$[J_a, J_b] = i \sum_{c=1}^{3} \varepsilon_{abc} J_c$$
 (AMCR)

per ogni $a, b \in \{1, 2, 3\}$. Al solito, si intende che le relazioni di commutazione sono verificate su un comune dominio denso di essenziale autoaggiuntezza \mathcal{D} , invariante rispetto all'azione degli operatori ⁽¹⁾. I simboli $\{L_1, L_2, L_3\}$ sono invece riservati alle componenti del momento angolare nella rappresentazione naturale in $L^2(\mathbb{R}^3)$, definiti sul dominio $\mathcal{S}(\mathbb{R}^3)$, che in particolare soddisfano (AMCR) se si usano unità naturali $(\hbar = 1)$.

ESERCIZIO 1. Sia $\psi_* \in \mathcal{D}$, $\psi_* \neq 0$, tale che $J_a \psi_* = m_a \psi_*$ per ogni $a \in \{1, 2, 3\}$. Dimostrare che $m_a = 0$ per ogni $a \in \{1, 2, 3\}$.

ESERCIZIO 2. Nel caso della rappresentazione naturale in $L^2(S^2)$, si determini un vettore ψ_* che soddisfa le proprietà menzionate nell'esercizio precedente. Si dimostri che tale vettore è unico a meno di normalizzazione e fase, *i.e.* che esiste un unico stato con tali proprietà. Considerando poi la rappresentazione naturale in $L^2(\mathbb{R}^3)$, si determinino tutti i vettori ψ_* che soddisfano le proprietà dell'esercizio precedente.

ESERCIZIO 3. Si determini uno stato in $L^2(\mathbb{R}^3)$ per cui le componenti del momento angolare L_2 e L_3 possono essere misurate *simultaneamente* con accuratezza arbitraria.

ESERCIZIO 4. (Per chi ha seguito il corso di algebre di Lie) Si verifichi l'isomorfismo di algebre di Lie $\mathfrak{so}(3) \simeq \mathfrak{su}(2)$, ad esempio utilizzando la rappresentazione esplicita (da dimostrare)

$$\mathfrak{su}(2) \simeq \left\{ A \in \operatorname{Mat}(2, \mathbb{C}) : A^* = -A, \operatorname{tr} A = 0 \right\},$$

$$\mathfrak{so}(3) \simeq \left\{ B \in \operatorname{Mat}(3, \mathbb{R}) : B^T = -B, \operatorname{tr} B = 0 \right\}.$$

⁽¹⁾ Nel seguito questo aspetto sarà taciuto se non essenziale per l'esercizio

Esercizio 5 (Rappresentazione di spin 1/2). Si considerino le matrici di Pauli

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 $\sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$ $\sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

Esse definiscono tre operatori autoaggiunti nello spazio di Hilbert \mathbb{C}^2 .

- (i) Si verifichi che gli operatori $S_j := \frac{1}{2}\sigma_j$ soddisfano le relazioni (AMCR).
- (ii) Si verifichi che l'operatore $\mathbf{S}^2:=S_1^2+S_2^2+S_3^2$ è un multiplo dell'identità e il suo unico autovalore è j(j+1) per j=1/2.
- (iii) Si dimostri che

$$\sigma_i \sigma_j = \delta_{ij} \mathbb{I} + i \epsilon_{ijm} \sigma_m$$
 per ogni $i, j \in \{1, 2, 3\}.$

Più in generale, si dimostri che per ogni $\mathbf{a}, \mathbf{b} \in \mathbb{R}^3$ si ha

$$(\mathbf{a} \cdot \sigma) (\mathbf{b} \cdot \sigma) = (\mathbf{a} \cdot \mathbf{b}) \mathbb{I} + i(\mathbf{a} \wedge \mathbf{b}) \cdot \sigma$$

dove $\mathbf{a} \cdot \sigma := \sum_{j=1}^3 a_j \sigma_j$ e il simbolo \wedge indica il prodotto vettoriale.

(iv) Si verifichi che gli operatori $\{\sigma_i\}$ formano una base ortonormale in

$$\mathfrak{su}(2) \simeq \{ A \in \operatorname{Mat}(2, \mathbb{C}) : A^* = -A, \operatorname{tr} A = 0 \}$$

rispetto al prodotto Hilbertiano canonico (forma di Killing)

$$\langle A, B \rangle_{\mathfrak{su}(2)} = \frac{1}{2} \operatorname{tr}(A^*B).$$

Il prefattore $\frac{1}{2}$ è introdotto per motivi legati alla teoria delle rappresentazioni delle algebre di Lie.

(v) Si mostri che

$$e^{i\frac{\theta}{2}\mathbf{n}\cdot\boldsymbol{\sigma}} = \cos(\theta/2)\,\mathbb{I} + i\sin(\theta/2)\mathbf{n}\cdot\boldsymbol{\sigma}$$

dove \mathbf{n} è un vettore di lunghezza unitaria.

(vi) Dimostrare che

$$e^{-i\frac{\theta}{2}\sigma_3} \sigma_1 e^{i\frac{\theta}{2}\sigma_3} = \cos\theta \,\sigma_1 + \sin\theta\sigma_2$$

$$e^{-i\frac{\theta}{2}\sigma_3} \sigma_2 e^{i\frac{\theta}{2}\sigma_3} = -\sin\theta \,\sigma_1 + \cos\theta\sigma_2$$

$$e^{-i\frac{\theta}{2}\sigma_3} \sigma_3 e^{i\frac{\theta}{2}\sigma_3} = \sigma_3.$$

In altre parole, la coniugazione con l'operatore unitario $e^{-i\frac{\theta}{2}\sigma_3} = e^{-i\theta S_3}$ agisce sul vettore $\sigma = (\sigma_1, \sigma_2, \sigma_3) \in (\mathfrak{B}(\mathbb{C}^2))^3$ come la rotazione di angolo θ intorno all'asse 3.

2 Momento angolare in rappresentazione naturale

Esercizio 6 (Trasformazione in coordinate polari). Sia

$$V: L^2(\mathbb{R}^3) \to L^2(\mathbb{R}_+ \times S^2, r^2 dr d\sigma)$$

l'operatore unitario che implementa la trasfomazione dalle coordinate cartesiane (x_1, x_2, x_3) alle coordinate polari (r, θ, ϕ) (definita q.o. in \mathbb{R}^3).

- (i) Mostrare che V è una trasformazione unitaria, se σ è la misura su S^2 indotta dalla misura di Lebesgue su \mathbb{R}^3 e dall'iniezione $S^2 \to \mathbb{R}^3$;
- (ii) calcolare esplicitamente la forma degli operatori $\widehat{L}_j := V L_j V^{-1}$ e $\widehat{\mathbf{L}}^2 := V \mathbf{L}^2 V^{-1}$ come operatori differenziali nelle variabili θ e ϕ .

ESERCIZIO 7. Sia $H_0 = -\frac{\hbar^2}{2m}\Delta$ definito in $W^{2,2}(\mathbb{R}^3) \subset L^2(\mathbb{R}^3)$.

- (i) Calcolare esplicitamente $\widehat{H}_0=VH_0V^{-1}$ come operatore differenziale nelle variabili $r,\theta,\phi.$
- (ii) Facoltativo: calcolare il dominio di autoaggiuntezza di \widehat{H}_0 (può essere utile riflettere su come gli spazi di Sobolev si comportano rispetto ad un cambiamento di coordinate q.o. C^{∞} -regolare).
- (iii) Mostrare che $[H_0, L_j] = 0$ per ogni $j \in \{1, 2, 3\}$.