Esercizio 1: Mostrare che per la funzione

$$f(x,y) = \begin{cases} y^2 \arctan(\frac{x}{y}) & \text{se } y \neq 0 \\ 0 & \text{se } y = 0 \end{cases}$$

si ha $\frac{\partial^2 f}{\partial x \partial y}(0,0) \neq \frac{\partial^2 f}{\partial y \partial x}(0,0)$. La funzione è di classe C^2 ?

Esercizio 2: Calcolare il gradiente delle seguenti funzioni radiali $f_i: \mathbb{R}^n \to \mathbb{R}, i = 1, 2$:

$$f_1(\underline{x}) = \log(1 + |\underline{x}|^3), \qquad f_2(\underline{x}) = \frac{\arctan(|\underline{x}|)}{1 + |x|^2}.$$

Esercizio 3: Calcolare Δf_1 , dove f_1 è la funzione definita nell'esercizio precedente.

Esercizio 4: Determinare lo sviluppo di Taylor al secondo ordine (indicando il resto in forma di Peano) delle funzioni:

$$f(x,y) = \cos(e^{2y} - 2\sin(x) - 1) \quad \text{nel punto } (0,0),$$

$$g(x,y) = x^2y^3 \quad \text{nel punto } (1,1).$$

Esercizio 5: Data la funzione $f: \mathbb{R}^2 \to \mathbb{R}$:

$$f(x,y) = x^4 + y^4 - (x-y)^2$$

determinare gli eventuali punti di estremo locale di f.

Esercizio 6: Data la funzione $g: \mathbb{R}^2 \to \mathbb{R}$:

$$q(x,y) = (|x| + y)e^{-xy}$$

determinare gli eventuali punti di estremo locale di q.

Esercizio 7: Data la funzione $h: \mathbb{R}^3 \to \mathbb{R}$:

$$h(x, y, z) = (x + y)(e^z - 1) - (x^2 + y^2)$$

determinare gli eventuali punti di estremo locale di h.

Esercizio 8: Determinare gli eventuali punti di estremo locale e globale della funzione

$$f(x,y) = 4y^2 - 4x^2y^2 - y^4.$$

(Suggerimento: studiare il segno di f...)

Esercizio 9: (a) Trovare $p \in q \in \mathbb{R}$ tali che la $f(x,y) = x^p + y^q$ sia convessa in $\{(x,y) \in \mathbb{R}^2 \mid x,y > 0\}$.

(b) Sia $g:[0,+\infty)\to\mathbb{R}$ una funzione convessa e crescente. Dimostrare che allora la funzione $f:\mathbb{R}^n\to\mathbb{R}$ definita come $f(\underline{x}):=g(|\underline{x}|)$ è convessa.