Chapter 5

Metodi per la ricerca degli zeri

5.1 Introduzione

In questo capitolo ci occuperemo della soluzione di equazioni del tipo

$$f(x) = 0 (5.1)$$

dove f è una funzione a valori reali della variabile reale x. Una soluzione (o radice) di (5.1) è un numero reale x^* tale che $f(x^*) = 0$.

Geometricamente, le soluzioni di (5.1) sono i punti in cui il grafico di f interseca l'asse delle x.

L'equazione (5.1) può non aver soluzioni, averne esattamente una o più d'una (in numero finito o infinito).

Esempi

se f(x) = |x| + 1 il problema non ha soluzioni

se $f(x) = \log x$ il problema ha un'unica soluzione $x^* = 1$

se $f(x) = \sin x$ il problema ha infinite soluzioni in $[a, b] = (-\infty, +\infty)$, $x^* = k\pi$ con $k = 0, \pm 1, \pm 2, ...$

Nello studio del problema (5.1) ci sarà talvolta utile considerare funzioni $f:[a,b]\to\mathbb{R}$ tali che

$$f(ta + (1-t)b) \le tf(a) + (1-t)f(b) \text{ per ogni } t \in [0,1]$$
 (5.2)

Una funzione che verifichi la condizione (5.2) si dice convessa in [a, b]; geometricamente la condizione (5.2) si traduce nel fatto che il grafico di f è

"sotto" la retta che unisce i punti $(x_1, f(x_1))$ ed $(x_2, f(x_2))$, per ogni x_1 e x_2 in [a, b].

Esempi

 $f(x) = x^2$ è convessa su tutta la retta reale,

 $f(x) = x^3$ è convessa su ogni [a, b] con $a \ge 0$.

Le questioni matematiche connesse all'equazione (5.1) riguardano l'esistenza, l'unicità e il calcolo della soluzione. Un basilare risultato di esistenza e unicità è espresso dal seguente:

Teorema 1. Siano a e b due numeri reali tali che

(i)
$$f(a)f(b) < 0$$

(ii) f sia continua su [a,b],

allora esiste almeno un $x^* \in (a,b)$ tale che $f(x^*) = 0$. Se inoltre f è monotona oppure convessa su (a,b), allora la soluzione di (1) in (a,b) è unica.

Nel seguito del capitolo ci occuperemo del problema del calcolo della soluzione. Solo in casi molto particolari l'equazione (5.1) può essere risolta esplicitamente. Per esempio:

$$Ax^2 + Bx + C = 0$$

ha le due soluzioni

$$x_1^* = (-B + D^{1/2})/2A$$
, $x_2^* = (-B - D^{1/2})/2A$,

con $D=B^2-4AC$ e $A\neq 0$. Osserviamo che in generale sarà possibile effettuare il calcolo di $D^{1/2}$ solo in modo approssimato.

Non è altrettanto semplice stabilire che

$$5000(1 - e^{-x/20}) - 200x = 0$$

ha una soluzione $x^* \cong 9.2843$.

Nei paragrafi successivi descriveremo alcuni metodi per il calcolo (approssimato) di soluzioni di (5.1). Supporremo sempre che siano verificate le ipotesi del Teorema 1 con f(a) < 0 < f(b). La individuazione di un intervallo [a,b] in cui siano soddisfatte le ipotesi del Teorema 1 è conseguenza di uno studio analitico di f. Da un punto di vista numerico questo studio può essere fatto mediante un programma che disegni il grafico di f (in un intervallo ragionevolmente grande).

5.2 Metodo di bisezione 59

5.2 Metodo di bisezione

Il metodo di bisezione produce contemporaneamente approssimazioni per difetto e per eccesso dell'unica soluzione x^* di (5.1). Si costruiscono due successioni di punti a_n , b_n , per n = 1, 2, 3, ..., nella maniera seguente:

$$a_0 = a$$
, $b_0 = b$
$$a_{n+1} = a_n$$
, $b_{n+1} = (a_n + b_n)/2$ se $f((a_n + b_n)/2) > 0$
$$a_{n+1} = (a_n + b_n)/2$$
, $b_{n+1} = b_n$ se $f((a_n + b_n)/2) < 0$

Si dimostra facilmente per induzione su n che

$$a_0 \le a_1 \le \dots \le a_n \le a_{n+1}\dots$$

$$b_0 \ge b_1 \ge \dots \ge b_n \ge b_{n+1}\dots$$

$$f(a_n) \le 0 \le f(b_n) , \qquad 0 \le b_n - a_n \le (b-a)/2^n .$$
(5.3)

Da ciò segue che per ogni n

$$a_n \le x^* \le b_n \tag{5.4}$$

e che le due successioni hanno lo stesso limite. Sia

$$\xi = \lim_{n \to +\infty} a_n = \lim_{n \to +\infty} b_n .$$

Per continuità si ha

$$0 \le \lim_{n \to +\infty} f(b_n) = f(\xi) = \lim_{n \to +\infty} f(a_n) \le 0 , \qquad (5.5)$$

e quindi necessariamente $f(\xi) = 0$ e $x = x^*$. È giustificato quindi considerare a_n e b_n come approssimazioni per difetto e per eccesso di x^* . Il numero di iterazioni necessario per ottenere un valore di x^* esatto a meno di ε è calcolabile dalla disuguaglianza $(b-a)2^{-N} \le \varepsilon$, che è verificata per $N > \log(\varepsilon/(b-a))/\log 1/2$.

Occorre osservare che se a_n , per esempio, realizza l'approssimazione voluta di x^* , non è detto che $f(a_n)$ sia una buona stima di $f(x^*)$. Se infatti f cresce molto rapidamente "vicino" ad x^* , può accadere che $f(a_n)$ sia molto diverso da $f(x^*) = 0$, (vedi fig. 5.4).

Il grado di precisione del metodo di bisezione può essere valutato anche sotto questo aspetto nel caso, per esempio, in cui f sia derivabile con derivata

limitata in (a, b). Da (5.4), (5.5) segue infatti, usando il teorema della media di Lagrange, che

$$0 \le f(b_n) - f(x^*) = f'(x^* + \theta_n(b_n - x^*))(b_n - x^*) \le \sup_{x \in (a,b)} |f'(x)|(b - a)/2^n$$

con $\theta_n \in (0,1)$ e, analogamente,

$$0 \le f(x^*) - f(a_n) \le \sup_{x \in (a,b)} |f'(x)| (b-a)/2^n.$$

In conclusione, si hanno le stime dell'errore:

$$-(b-a)/2^n \le a_n - x^* \le b + n - x^* \le (b-a)/2^n - M(b-a)/2^n$$

$$\le f(a_n) - f(x^*) \le f(b_n) - f(x^*) \le M(b-a)/2^n$$
(5.6)

dove

$$M = \sup_{x \in [a,b]} |f'(x)| .$$

5.3 Iterazioni funzionali

In questo paragrafo consideriamo una funzione f che verifichi, oltre le ipotesi del Teorema 1, la ulteriore condizione di avere una derivata f' continua in (a,b). Sia $\lambda(x)$ una funzione derivabile e di segno costante in (a,b), per esempio $\lambda(x) > 0$ in (a,b). Definiamo per ricorrenza una successione (x_n) nella maniera seguente:

$$x_0 \in (a, b)$$
 (5.7)
 $x_{n+1} = x_n - \lambda(x_n) f(x_n) , \qquad n = 0, 1, 2, ...$

Osserviamo preliminarmente che se (x_n) ha limite per $n \to \infty$, sia x, allora necessariamente,

$$\xi = \xi - \lambda(\xi)f(\xi)$$

e quindi $f(\xi) = 0$. Dunque $x = x^*$, l'unica soluzione di (5.1) in (a, b). Dimostriamo ora che se la funzione λ è scelta in modo che

$$L = \sup_{x \in (a,b)} |1 - \lambda'(x)f(x) - \lambda(x)f'(x)| < 1,$$
 (5.8)

allora la successione (x_n) definita da (5.7) è convergente verso ξ , qualunque sia il punto inziale x_0 in (a,b). Sia $F(x)=x-\lambda(x)f(x)$; la condizione (5.8) equivale a

$$L = \sup_{x \in (a,b)} |F'(x)| < 1 .$$

5.3 Iterazioni funzionali 61

Il Teorema 1 garantisce esistenza ed unicità di x^* , soluzione di (5.1) in (a, b). Osservando che $x^* = F(x^*)$ ed usando il teorema della media di Lagrange, si ottiene:

$$|x_{n+1} - x^*| = |F(x_n) - F(x^*)| \le L|x_n - x^*|$$

e, iterando il procedimento,

$$|x_{n+1} - x^*| \le L^{n+1}|x_0 - x^*| . (5.9)$$

Dato che, per ipotesi, L < 1, da (5.9) segue ovviamente la convergenza di (x_n) verso x^* e la stima dell'errore

$$|x_{n+1} - x^*| \le L^{n+1}|b - a|$$
.

Il numero N di iterazioni occorrente per ottenere una approssimazione di x^* di precisione assegnata $\varepsilon > 0$ è quindi fornito dalla disegnaglianza

$$N > \log(\varepsilon/(b-a))/\log L \tag{5.10}$$

(confrontare con l'analoga stima per il metodo di bisezione).

Nel caso in cui f' verifichi

$$0 < m \le f'(x) \le M$$
, per ogni $x \in (a, b)$,

una scelta semplice di λ che soddisfa la condizione (5.8) è la costante

$$\lambda(x) = 1/M$$
, per ogni $x \in (a, b)$.

Si vede facilmente in questo caso che

$$F(x) = x - f(x)/M$$

ha le proprietà:

$$F(x) \in [a, b], \quad |F(x) - F(y)| \le L|x - y|$$

per ogni x, y in [a, b], dove L risulta minore di 1.

Funzioni di questo tipo si dicono contrazioni. Precisamente, una funzione $F:[a,b]\to\mathbb{R}$ è una contrazione se esiste L<1 tale che

$$|F(x) - F(y)| \le L|x - y|$$
, per ogni $x, y \in [a, b]$. (5.11)

Per funzioni di questo tipo esiste un unico punto x^* tale che

$$F(x^*) = x^* ,$$

detto punto fisso di F (principio delle contrazioni).

Dalla discussione precedente segue che se F(x) = x - f(x), ed f è una funzione crescente con $0 < f'(x) \le M$ per ogni $x \in \mathbb{R}$, allora la successione (5.7), con $\lambda(x) = 1/M$, converge verso l'unico punto fisso x^* di F.

Esempio.

Supponiamo di voler applicare il metodo sopra descritto alla ricerca degli zeri di $f(x) = \log(x-1) - \cos x$. È chiaro che $f(x^*) = 0$ se e solo se $F(x^*) = x^*$, con $F(x) = 1 + e^{\cos x}$.

Per il teorema di Lagrange si ha

$$|e^{\cos x} - e^{\cos y}| = -\sin x e^{\cos x} |x - y|.$$

Quindi F verificherà (5.11) su ogni intervallo [a, b] tale che

$$\max_{x \in [a,b]} |\sin x| e^{\cos x} < 1 , \quad F(x) \in [a,b] , \quad \text{per ogni } x \in [a,b] .$$

Questa condizione è verificata, per esempio, in $[a, b] = [\pi/2 + \pi/10^3, 2\pi/3]$, perché in questo intervallo $\cos x < 0$ e inoltre

$$\pi/2 + \pi/10^3 < 1.6 \approx 1 + 1/\sqrt{e} \le 1 + e^{\cos x} < 2 < 2\pi/3$$
.

5.4 Il metodo di Newton

Il metodo di Newton è l'iterazione funzionale corrispondente alla scelta

$$\lambda(x) = 1/f'(x)$$

in (5.8). La successione $\{x_n\}$ è data quindi dalle formule

$$x_0 \in (a, b) \tag{5.12}$$

$$x_{n+1} = x_n - f(x_n)/f'(x_n) = F(x_n)$$
, $n = 0, 1, 2, ...$

Naturalmente xn è ben definita, in accordo con quanto visto in 5.3, se f è derivabile e strettamente crescente (oppure, strettamente decrescente).

L'interpretazione geometrica del metodo è la seguente: la retta tangente al grafico di in $(x_n, f(x_n))$ ha equazione

$$f(x_n) + f'(x_n)(x - x_n) = 0.$$

Il punto x_{n+1} è quindi il punto di intersezione di tale retta con l'asse delle r

5.4 II metodo di Newton 63

Una condizione che assicura la convergenza della successione (x_n) definita in (5.12) verso l'unica soluzione $x^* \in (a,b)$ dell'equazione (5.1) si ricava dalla (5.8).

Supponendo

si ha infatti

$$|F'(x)| = |1 - \lambda'(x)f(x) - \lambda(x)f'(x)| = |f(x)| |f''(x)|/(f'(x)^2|$$

Una condizione sufficiente di convergenza è dunque

$$\sup_{x \in (a,b)} |f(x)| |f''(x)|/(f'(x)) < 1.$$
 (5.14)

In presenza di informazioni supplementari su f la disuguaglianza (5.14) può essere più facilmente verificata. Per esempio, se f è crescente e convessa su (a,b), allora (5.14) diventa

$$\sup f''(x) < (f'(a))^2 / \max\{|f(a)|; |f(b)|\}. \tag{5.15}$$

È importante osservare che la (5.14) esprime una condizione globale di convergenza del metodo di Newton, nel senso che garantisce la convergenza di (x_n) qualunque sia il punto iniziale $x_0 \in (a,b)$. Se essa non è verificata, potrà esistere qualche $x_0 \in (a,b)$ che non dà luogo, tramite (5.12), ad una successione convergente.

Dalla discussione precedente emerge l'importanza di condizioni che assicurino la convergenza locale del metodo di Newton, cioè per valori di $x_0 \in (a',b')$ con $(a,b) \supset (a',b')$. Un semplice risultato in questa direzione è che se f è crescente e convessa in (a,b) allora la successione (x_n) definita da (5.12) converge verso l'unica soluzione x^* di (5.1) in (a,b), qualunque sia $x_0 \in (x^*,b)$.

Infatti, nelle ipotesi di cui sopra, la successione (x_n) è decrescente (osservare che la retta tangente ad una funzione convessa f giace sotto il grafico di f) e pertanto converge ad un limite x. Passando al limite per $n \to \infty$ in (5.12) si trova che

$$\xi = \xi - f(\xi)/f'(\xi)$$

e quindi che $\xi = x^*$. La condizione $x_0 \in (x^*, b)$ ha, ovviamente, solo un valore teorico. Dal punto di vista pratico si sceglierà un punto iniziale x_0 vicino a b.

La rapidità di convergenza del metodo di Newton è quadratica. Più precisamente, se f verifica (5.13) e (5.14) si ha:

$$|x_{n+1} - x^*| \le C|x_n - x^*|^2$$
, $n = 0, 1, 2, ...$ (5.16)

$$C = \sup_{x \in (a,b)} |f''(x)f'(x)|/(f'(x))^2$$
.

La dimostrazione consiste in un uso ripetuto del Teorema di Lagrange. Si ha infatti

$$|x_{n+1} - x^*| = |F(x_n) - F(x^*)| = |f(x_n)f''(\xi_n)|/(f'(\xi_n))^2|x_n - x^*|,$$

con ξ_n compreso tra x_n e x^* . D'altra parte,

$$|f(\xi_n)| = |f(\xi_n) - f(x^*)| \le |f'(\eta_n)| |\xi_n - x^*| \le |f'(\eta_n)| |x_n - x^*|,$$

da cui segue ovviamente (5.16).

5.5 Algoritmi e programmi

Metodo di bisezione. Per implementare il metodo di bisezione occorre assegnare i seguenti dati in input:

f(x) la funzione

[a, b] l'intervallo in cui si cercano gli zeri

 $\varepsilon_1 > 0$ l'errore tollerato sulle ascisse

 $\varepsilon_2 > 0$ l'errore tollerato sulle ordinate.

Posto $a_0 = a$ e $b_0 = b$, l'algoritmo procede come segue:

Passo 1. Calcola $x_n = (a_n + b_n)/2$

Passo 2. Calcola $f(x_n)$

Passo 3. Se $f(x_n) < \varepsilon_2$ e $|b_n - a_n| < \varepsilon_1$ si arresta: x_n è il valore approssimato di uno zero della funzione.

Passo 4. Calcola $f(x_n)f(a_n)$

Passo 5. Se $f(x_n)f(a_n) > 0$ sostituisce x_n ad a_n e ritorna al Passo 1, altrimenti sostituisce x_n a b_n e ritorna al Passo 1.

Il programma. Nel seguente programma Basic il ciclo costituito dai passi 1-5 viene ripetuto fino ad un massimo di N volte con $N = [\log(\varepsilon 1/(b-a))/\log^{1/2})] + 1$.

Se $|f(x_n)| > \varepsilon_2$, il programma scrive che il valore approssimato x_n non è uno zero per la funzione f in [a, b].

Un metodo per la ricerca degli zeri basato sul principio delle contrazioni. Supponiamo che f sia una funzione crescente, per implementare il metodo delle contrazioni occorre assegnare i seguenti dati in input:

f(x) la funzione

[a, b] l'intervallo

M l'estremo superiore di f'(x) in [a,b]

 ε_1 l'errore tollerato sulle ascisse

 ε_2 l'errore tollerato sulle ordinate.

(provate a generalizzare il metodo sotto la condizione |f'(x)| < M). In assenza di altre informazioni sulla f, converrà scegliere $x_0 = (a+b)/2$, dato che questa scelta permette di migliorare la stima dell'errore, ottenendo

$$|x_{n+1} - x^*| \le L^{n+1}|b - a|/2$$
.

L'algoritmo è il seguente:

Passo 1. Calcola $x_{n+1} = x_n - f(x_n)/M$.

Passo 2. Calcola $f(x_{n+1})$

Passo 3. Se $|f(x_{n+1})| < \varepsilon_2$ e $f(x_{n+1} + \varepsilon_1)f(x_{n+1} - \varepsilon_1) < 0$, si arresta: x_{n+1} è il valore approssimato di uno zero della funzione.

Passo~4. Se una delle due condizioni al Passo 3 non è verificata, sostituisce x_{n+1} a x_n e ritorna al Passo 1.

(Si osservi che la seconda condizione al Passo 3 implica che $|x_{n+1}-x^*| < \varepsilon_1$.

Di solito numero massimo di iterazioni non viene calcolato sulla base della stima (5.10) ma viene richiesto in input o fissato come una costante N_{MAX} . Questa scelta è dovuta al fatto che la (5.10) è una stima teorica che nella pratica si rivela largamente per eccesso. Inoltre, per il calcolo di N occorrerebbe dare in input anche il parametro L.

Metodo di Newton

Per implementare il metodo di Newton occorre assegnare i seguenti dati in input:

f(x) la funzione

[a,b] l'intervallo

f'(x) la derivata

 ε_1 l'errore tollerato sulle ascisse

 ε_2 l'errore tollerato sulle ordinate.

Scelto come punto iniziale $x_0 = (a + b)/2$, l'algoritmo procede come segue:

Passo 1. Calcola $x_{n+1} = x_n - f(x_n)/f'(x_n)$

Passo 2. Calcola $f(x_{n+1})$

Passo 3. Se $f(x_{n+1}) < \varepsilon_2$ e $f(x_{n+1} + \varepsilon_1)f(x_{n+1} - \varepsilon_1) < 0$ si arresta: x_{n+1} è il valore approssimato di uno zero della funzione.

Passo 4. Se una delle due condizioni di cui al Passo 3 non è verificata sostituisce x_{n+1} a x_n e ritorna al Passo 1. (si osservi che la seconda condizione al Passo 3 implica che $|x_{n+1} - x^*| < \varepsilon_1$).

5.6 Esercizi

Esercizio 5.1. Determinare per ciascuna delle funzioni seguenti un intervallo in cui siano verificate le ipotesi per la convergenza di uno dei metodi presentati nel capitolo e implementarlo:

(a)
$$x - x^2$$
 (b) $(x - \pi)^2$

(d)
$$x/2 - \sin x$$

(e)
$$2\exp(1/x^2) - x^3$$
 (f) $x^3 + 2x^2 - x^3$

Esercizio 5.2. Scrivere un programma per disegnare il grafico delle funzioni dell'esercizio precedente. Determinare quali sono gli intervalli in cui ciascuna di esse ammette un solo zero e quali quelli in cui ammette più di uno zero. Testare i vari metodi su intervalli di tipo diverso e rappresentare sul grafico la successione approssimante così trovata.

Esercizio 5.3. Sia f continua e $f(x^*) = 0$. È vero che il metodo di bisezione genera una successione (x_n) convergente a x^* , comunque scelto l'intervallo (a,b) contenente x^* ? Trovare eventualmente un controesempio.

Esercizio 5.4. Sia $f(x) = \cos 3x - \cos 2x$. Trovare, se esistono, gli zeri di f(x) nei seguenti intervalli:

(a)
$$[-\pi, -\pi/2]$$
 (b) $[-\pi/2, -\pi/5]$
(c) $[-\pi/4, \pi/5]$ (d) $[\pi/5, 2\pi/5]$.

Trovare tutti gli zeri di f(x) nell'intervallo $[-\pi, \pi]$.

5.6 Esercizi 67

Esercizio 5.5. Si modifichi il metodo di Newton come segue

$$x_{n+1} = x_n - h_n f(x_n) / f'(x_n) ,$$
dove $h_0 = 1$ e $h_n = \begin{cases} \max(10, 2h_n - 1) & \text{se } f(x_n) f(x_{n-1}) > 0 \\ 1 & \text{se } f(x_n) f(x_{n-1}) < 0 \end{cases} .$

Supponendo che le ipotesi fatte nella dimostrazione della convergenza del metodo di Newton siano verificate, si può affermare che la successione (x_n) converge verso uno zero di f(x)?

Esercizio 5.6. Testare il metodo di Newton modificato dell'esercizio precedente sulla ricerca degli zeri delle funzioni dell'esercizio 1. Confrontare il numero di iterazioni necessarie a trovare uno zero con una approssimazione dell'ordine di ε ($\varepsilon=0.1,\ \varepsilon=0.01,\ \varepsilon=0.001$) per questo metodo e per il metodo di Newton standard.

Esercizio 5.7. Metodo della regula-falsi. Sia f continua, crescente, convessa in (a,b), f(a) < 0, f(b) < 0. Si dimostri che la successione definita per ricorrenza come segue:

$$x_{n+1} = a_n - (b_n - a_n)f(a_n)/(f(b_n) - f(a_n), \qquad (n = 0, 1, 2, ...)$$

dove $a_0 = a$, $b_0 = b$ e

$$a_{n+1} = \begin{cases} a_n , & \text{se } f(x_n)f(a_n) < 0 \\ x_n , & \text{se } f(x_n)f(a_n) > 0 \end{cases}$$

$$b_{n+1} = \begin{cases} b_n , & \text{se } f(x_n) f(b_n) < 0 \\ x_n , & \text{se } f(x_n) f(b_n) > 0 \end{cases}$$

converge ad uno zero di f.

Esercizio 5.8. Implementare l'algoritmo relativo al metodo della secante e testarlo sugli esempi seguenti:

- a) $\ln x \arctan x$ b) $\sin x/10 0.01x^2$ c) $\exp x x^3$ d) $|\arctan x| 1$.
- Esercizio 5.9. Scrivere un programma che ad ogni passo esegua un'iterazione del metodo di bisezione, un'iterazione del metodo della secante e un'iterazione del metodo di Newton. Stampare in una tabella il numero della iterazione

e i valori approssimati trovati implementando i vari metodi. Eseguire il programma per le seguenti funzioni:

a)
$$x^3 - 3x^2 + 1$$

b)
$$\ln(x+10) - \exp x$$

a)
$$x^3 - 3x^2 + 1$$

b) $\ln(x+10) - \exp x$
c) $x^5 + 2x + 3x^2 - 5$
d) $|\ln x| - (x-1)^2$
e) $\exp(x - 100x)$
f) $\exp(\cos x) - \ln x$

d)
$$|\ln x| - (x-1)^2$$

e)
$$\exp x - 100x$$

f)
$$\exp(\cos x) - \ln x$$

Esercizio 5.10. Si trovino, a meno di un errore di 0.01, tutti gli zeri reali dei seguenti polinomi:

a)
$$x^3 - 100x^2 - x + 0.02$$

a)
$$x^3 - 100x^2 - x + 0.01$$
 b) $x^3 - 33x^2 + 0.8x - 60$ c) $x^3 + x + 1$.

c)
$$x^3 + x + 1$$

Esercizio 5.11. Determinare in quali intervalli le seguenti funzioni sono delle contrazioni:

a)
$$x^2$$

b)
$$\cos x$$

a)
$$x^2$$
 b) $\cos x$ c) $1/x$ d) $\ln x$

d)
$$\ln x$$

e applicare, se possibile, il principio delle contrazioni per determinarne i punti fissi.

Esercizio 5.12. Determinare lo zero di $f(x) = x - \operatorname{tg} x$ nell'intervallo $(0,\pi/2)$ utilizzando il principio delle contrazioni. Confrontare la velocità di convergenza con quella ottenuta implementando il metodo di Newton e il metodo di bisezione (precisione richiesta $\varepsilon = 0.0001$).

Esercizio 5.13. Calcolare valori approssimati del numero di Nepero e e di $e^{1/2}$ con un errore più piccolo di ε , con $\varepsilon = 10^{-3}$, $\varepsilon = 10^{-5}$, $\varepsilon = 10^{-7}$.

Esercizio 5.14. Calcolare valori approssimati di π e di $\pi^{1/2}$ con un errore più piccolo di 10^{-7} .

Esercizio 5.15. Trovare i massimi e i minimi relativi delle seguenti funzioni:

a)
$$\exp(-x^2)$$

b)
$$x^2 \ln x$$

a)
$$\exp(-x^2)$$
 b) $x^2 \ln x$ c) $-0.5x^4 + 3x^3 - x + 5$.

Esercizio 5.16. Mostrare che $f(x) = x^{100} + ax + b$ ammette al più due zeri reali e determinarli con un errore più piccolo di 10^{-3} .

Esercizio 5.17. Sia $f(x) = 30x^3/(1+x^4)-1$; si implementi il metodo di Newton nella ricerca degli zeri sostituendo alla derivata di f il rapporto incrementale

$$(f(x+h) - f(x-h))/2h$$
 (5.17)

per h = 1, h = 0.1, h = 0.01, h = 0.001. Si confrontino i risultati ottenuti in questo modo con quelli ottenuti implementando il metodo di Newton standard.

5.6 Esercizi 69

Esercizio 5.18. Ripetere l'esercizio precedente per la funzione $f(x) = x^{1/x} - 1$.

Esercizio 5.19. Mostrare che la successione definita in (5.12) converge ad uno zero di f(x) se sono verificate le seguenti coppie di ipotesi:

$$A_1)f'(x) < 0$$
 in (a,b) $A_2)f$ convessa e $f(x_0) > 0$ $B_1)f'(x) > 0$ in (a,b) $B_2)f$ concava e $f(x_0) < 0$ $C_1)f'(x) < 0$ in (a,b) $C_2)f$ concava e $f(x_0) < 0$.