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Abstract

In this lecture notes we report a connection between quantum
groups and knot theory, due and inspired by works of Turaev, Reshetikhin,
Lustzig, Rosso, Jimbo, Drinfel’d and Kauffman, among the others. We
derive framed knot invariants from ribbon categories and ribbon cate-
gories from (topological) ribbon Hopf algebras. We state that quantum
groups have a topological ribbon Hopf algebra structure, which engen-
ders interesting framed knot invariants. In particular, we show how to
derive the Kauffman bracket from the quantum group Uh(sl2).

1 Brief introduction to knot theory

Knot theory is based on assumptions which strictly follow the intuitive idea
of a knot. First of all we say that a knot is an embedding of S1 in R3. We
want for two knots to be equivalent when they have the same entanglement,
that is when they can be transformed one into the other without breaking
the thread. We translate this idea in mathematics by requiring equivalent
knots to be ambient isotopic.
We could also want to consider oriented knots and ask for the (ambient)
isotopy to preserve the orientation. Another notion one frequently uses is
the one of link, that is a disjoint and entangled union of knots in the space.
In the rest of the paper, every time we write knot, we are actually referring
to links.
In general, one could say that knot theory aims at highlighting and distin-
guishing equivalence classes of knots and links, both in the oriented and
unoriented case.

Knots can be represented by knot diagrams, which have the advantage
of living in R2.
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A fundamental result from Reidemeister characterises the isotopy classes
of knots through some moves on their diagrams, called the Reidemeister
moves.

Theorem 1.1. Two knot diagrams represent equivalent knots if and only if
they can be obtained from one another through a finite number of the following
moves:




R1




R2




R3

By looking at the Reidemeister moves, we realise that they do not oc-
cur between knot diagrams, but between portions of knots diagrams with
boundary, the so called tangles. We define an (n,m)-tangle to be a tangle
with n upper boundary points and m lower ones. For example, the following
picture shows a (2,4)-tangle.

Reidemeister moves can be generalised to oriented knots, by considering
all possible orientations of their strings. In this case, we will refer to oriented
(m,n)-tangle.

The notion of framed knot will also be useful in what follows. The in-
spiring idea consists in thickening the knot to obtain a ribbon. Formally, we
require the existence of an homotopy class of a normal non singular vector
field.
As in the previuos case, we define (m,n)-ribbon tangles.

Figure 1: (2,4)-ribbon tangle
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We can consider an equivalence relation on ribbon tangles, which consists
in boundary preserving ambient isotopy. One can prove that 1

∼ ∼

This turns out to be very important because it allows us to represent
ribbon tangles through standard tangles, up to isotopy. In fact, it suffices
to suppose that the normal vector is parallel to the plane. For example, the
ribbon tangle in Figure 1 can be represented by

We call ribbon tangle diagram a representation of a ribbon tangle through
tangles. The next theorem 2 characterises ribbon tangle isotopy through
some moves on diagrams.

Theorem 1.2. Two tangles represent equivalent framed knots if and only if
they can be obtained from one another through a finite number of the following
moves:


 
 


We point out that the second and third move coincide with the second
and third Reidemeister move. In particular, every knot invariant will be a
framed knot invariant, while the inverse is not true in general. Nonetheless,
every time we have a framed knot invariant, it suffices to check the first
Reidemeister move to prove that it is a knot invariant as well.
The previous theorem can be easily adapted to oriented ribbon tangles.

2 Kauffman bracket and Jones polynomial

In this section we introduce a framed knot invariant, known as the Kauffman
bracket.

1[Tur] Chapter I, Section 2.1.
2[Tur] Chapter XII Section 1.2
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Definition 2.1. If K is a commutative ring with unity and a ∈ K is an
invertible element, we consider the K-module Ek,l = Ek,l(a) generated by
(k, l)-tangles and quotiened by the following relations:

1. Boundary preserving planar isotopy;

2. D t = −(a2 + a−2)D ∀D tangle;

3. The skein relations: = a + a−1 .

Ek,l is called the (k, l)-skein module correspondent to a.

Every (k, l)-tangle D represents an element of a class in Ek,l, denoted
by 〈D〉. By applying the skein relation to all crossings in D, we get 〈D〉 in
the form of a linear combination of classes of diagrams with no crossings;
applying the second relation, we can write 〈D〉 as a linear combination of
classes of diagrams with k+l

2 simple disjoint arc diagrams, the so called simple
diagrams. We can therefore conclude that Ek,l is a free K-module which has
the simple diagrams as basis.
In particular, E0,0 ' K is generated by the skein class of 〈∅〉 = 1.

Theorem 2.1. The skein class of a (k, l)-tangle is a ribbon tangle invariant.

Proof. The proof consists in manually verifying that tangles from the same
move are sent in the same skein class. Let’s check for example the first move.

•
〈 〉

= a
〈 〉

+ a−1
〈 〉

= a
〈 〉

+ a−1
〈 〉

=

= [−a(a2 + a−2) + a−1]
〈 〉

= −a3
〈 〉

;

•
〈 〉

= −a−3
〈 〉

;

•
〈 〉

= −a3
〈 〉

= −a3(−a−3)
〈 〉

=
〈 〉

.

In particular, if L is a framed knot, its skein class 〈L〉 ∈ E0,0 ' K is an
invariant . We can also see 〈L〉 ∈ Z[a, a−1] as a Laurent polynomial, which
we call Kauffman bracket.
The Kauffman bracket plays an important role in knot theory because under
a slight modification we get a very famous oriented knot invariant, the Jones
polynomial. Though this is not its original definition, we can introduce the
Jones polynomial 3 through the Kauffman bracket by setting

VL(a) = (−a)w(D)〈D〉, (1)
3Actually, this is the Jones Polynomial up to normalisation. In order to get the Jones

polynomial one should substitute a = t
1
4 and divide by −(t

1
2 + t−

1
2 ).
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where L is an oriented knot, D is a diagram of L and W (D) is its writhe,
i.e. the algebraic sum of the signs of its crossings, where sign( ) = 1

and sign( ) = −1.

Proving that the Jones polynomial is a knot invariant is very easy through
this definition. Again, we prove it manually by analysing the three Reide-
meister moves.

In the following paragraphs we will describe a method for building framed
knot invariants, connect quantum groups to this method and finally show
how a specific quantum group determines the Kauffman bracket.

3 Ribbon categories

In order to describe our family of framed knot invariants, we need the notion
of ribbon category, which is a monoidal category with some extra structure.
Giving complete definitions would result more formal than useful. We there-
fore refer to [Tur] for a complete review on the subject.

The definition of monoidal category encodes the existence of an associa-
tive product with unity. When reading the definition, one should always
think of the properties of the tensor product for modules, in order for it not
to become too abstract.

Definition 3.1. A monoidal category (C, ⊗, 1C , a, r, l) consists of

• A category C;

• A bifunctor ⊗ : C × C → C, called tensor product ;

• An object 1C ∈ Ob(C) called unit object ;

• Three natural isomorphisms a, l, r ∈ Mor(C), such that ∀U, V, Z ∈
Ob(C)
· aU,W,Z : (U⊗V )⊗W → U⊗(V⊗W ), called associativity isomorphism;
· lV : 1C ⊗ V → V ;
· rV : V ⊗ 1C → V.

We also require the commutativity of three diagrams, which encode the idea
that a, l and r behave well with respect to the tensor product.

A monoidal category is said to be strict if a = id, r = id and l = id.
Maclane showed that every monoidal category is equivalent to a strict one.
We will therefore use an abuse of notation and every time we write monoidal
category we will implicitly assume it to be strict.

For modules, we have a canonic isomorphism U ⊗ V ∼= V ⊗ U . The
existence of a braiding in a monoidal category translates this fact.
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Definition 3.2. A braided category (C, ⊗, 1C , c) is a monoidal category
with a natural isomorphism

cU,V : U ⊗ V → V ⊗ U (2)

together with two diagrams which ensure that it behaves well with respect
to the tensor product.

The braiding for modules is involutive. The translation of this feature
brings to symmetric categories, where cU,V cV,U = idW⊗V . In many cases
this is too strong a condition and we therefore encode a weaker one in the
existence of a twist.

Definition 3.3. A twist θ on a braided category (C, ⊗, 1C , c) is a natural
isomorphism

θV : V → V (3)

which behaves well with respect to the braiding in the following sense:

U ⊗ V
θU⊗V

��

θU⊗θV // V ⊗ U
cV,U

��
V ⊗ U U ⊗ V.cU,V

oo

(4)

Duality in a monoidal category generalises the concept of duality for a
module, from the point of view of evaluation and coevaluation pairings.

Definition 3.4. A duality (∗, b, d) in a monoidal category (C, ⊗, 1C) con-
sists of

• An object V ∗ for every V ∈ Ob(C);

• A morphism bv : 1C → V ⊗ V ∗ for every V ∈ Ob(C);

• A morphism dV : V ⊗ V ∗ → 1C for every V ∈ Ob(C);

such that the following diagram commutes for every V ∈ Ob(C) and a similar
one commutes for every V ∗:

V

bV ⊗id %%LL
LLL

LLL
LL

id // V

id⊗dVyyrrr
rrr

rrr
r

V ⊗ V ∗ ⊗ V

(5)

Finally if a braided category has both a twist and a duality and if bV
behaves well with respect to the twist, we call it a Ribbon category.
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4 Rib

In order to understand the role that is played by ribbon categories in knot
theory, we now describe a specific ribbon category, which will have a uni-
versal property with respect to all other ribbon categories. Moreover, the
reader will understand the reason why the characterising morphisms of a
ribbon category are called twist and braiding.

Consider an oriented (k,l)-ribbon tangle.

The boundary components of the oriented ribbon tangle inherit a sign
in {+1,−1} from the orientation of the ribbon tangle: +1 if the direction is
from the top down, −1 otherwise.
We can then build a ribbon category Rib by considering:
• Objects given by the words in the alphabet {+1,−1} and the empty set ;
• Morphisms consisting in ribbon tangles modulo isotopy;
• Composition rule obtained by placing one ribbon tangle under the other;
• Tensor product given by juxtaposition of tangles;
• Duality: (ε1, .., εn)∗ := (−ε1, ..,−εn), εi ∈ {+1,−1}.
• Braiding:

c++

c−1++

c+−

c−1+−

c−+

c−1−+

c−−

c−1−−

• Twist:
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θ+ θ−1+ θ− θ−1−

• Coevaluation and Evaluation:

b+ b− d+ d−

The proof of Rib being a ribbon category can be found both in [Tur] and
in [Kas].
Rib is often called the free ribbon category because of the following property
4.

Theorem 4.1. Let C be a ribbon category and V be an object of C. There
exists one and only one functor

FV : Rib→ C (6)

such that it preserves tensor products, duals, braiding and twist and FV (+) =
V . FV is called the Reshetikhin-Turaev functor for V .

We can consider the full subcategory of Rib which has only the empty
set as object and framed knots modulo isotopy as morphisms. Clearly, the
image of a framed knot through a Reshetikhin-Turaev functor is a framed
knot invariant.
As the reader may expect, we will describe a Reshetikhin-Turaev functor
which sends a framed knot in its Kauffman bracket.

5 Ribbon hopf algebras

In the last section we have shown how ribbon categories determine framed
knot invariants. In the present one, we will show a procedure for deriving
ribbon categories, by considering the category of representations of particular
Hopf algebras, which we will call ribbon Hopf algebras.

4[Kas] Chapter XIV, Section 5.1
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Proposition 5.1. 5 Let (A,∆, ε, s) be a Hopf algebra on K commutative
ring with unity 1. The category Rep(A) of representations, i.e. finite rank
A-modules, is a monoidal category with duality, through the following defini-
tions: if V,W are A-modules

• V ⊗W := V ⊗K W with A-module operation a · v ⊗ w = ∆a(v ⊗ w);

• 1Rep(A) := K with A-module operation a · k = ε(a)k;

• V ∗ := HomK(V,K) with A-module operation (a · y)(x) = y(s(a)x);

• dV : V ∗ ⊗ V → K standard evaluation pairing;

• bV = (dV )∗.

The notion of quasi triangular Hopf algebra involves the requirement of
a specific element R ∈ A ⊗ A, called universal R-matrix. This element will
ensure for Rep(A) to be a monoidal category with duality and braiding.
Before introducing it formally, we need some simple definitions and notation
conventions.

Definition 5.1. The opposite comultiplication is a linear map ∆′ : A→
A⊗A defined by ∆′(a) = τ1,2∆(a), where τ12 is the flip.

We use the following notation. If R ∈ A⊗A, then
• R12 := R⊗ 1A ∈ A⊗A⊗A;
• R23 := 1A ⊗R ∈ A⊗A⊗A;
• R13 := (idA ⊗ τ12)R12 = (τ12 ⊗ idA)R23 ∈ A⊗A⊗A.

Definition 5.2. Let (A,∆, ε, s) be a Hopf algebra and R ∈ A⊗A an invert-
ible element. (A,R) is a quasi triangular Hopf algebra if

1. ∆′(a) = R∆(a)R−1 ;

2. (idA ⊗∆)R = R13R12 ;

3. (∆⊗ idA)R = R13R23.

R is called a universal R matrix.

Proposition 5.2. 6 If (A,R) is a quasi triangular Hopf algebra, Rep(A) is
a monoidal category with duality and braiding cUV : U ⊗V → V ⊗U defined
by:

cU,V (x⊗ y) = τ12(R · (x⊗ y)). (7)

We finally introduce some extra structure on A which will ensure that
Rep(A) is a ribbon Hopf category.

5[Tur] Chatper XI, Section 1.3.1
6[Tur] Chapter XI, Section 2.3.1
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Definition 5.3. A ribbon Hopf algebra consists of (A,R, ν), where (A,R)
is a quasi triangular Hopf algebra and ν is an invertible element in the centre
of A such that:

1. ∆(ν) = τ12(R)R(ν ⊗ ν);

2. s(ν) = ν.

The element ν is called universal twist of A.

Proposition 5.3. 7 If (A,R, ν) is a ribbon Hopf algebra, Rep(A) is a ribbon
category with twist θV : V → V defined by

θV (w) = ν · w (8)

6 Universal quantum enveloping algebras

In the previous sections we saw how every ribbon Hopf algebra determines
a framed knot invariant. Our aim consists in finding ribbon Hopf algebras
which engender interesting invariants.
The first example of ribbon Hopf algebra is given by the universal enveloping
algebra U(g) of a Lie algebra g. In fact, this can be considered a ribbon Hopf
algebra in a trivial way by setting:

• ∆ : U(g)→ U(g)⊗ U(g)
which extends ∆(x) = x⊗ 1 + 1⊗ x, for every x ∈ g;

• ε : U(g)→ K
which extends ε(x) = 0 for every x ∈ g;

• s : U(g)→ U(g)
which extends s(x) = −x for every x ∈ g;

• R = 1⊗ 1;

• ν = 1.

In fact, every cocommutative Hopf algebra can be considered a ribbon
Hopf algebra: one can prove that ∆ cocommutative implies that s is involu-
tive. This implies that the choices R = 1⊗ 1 and ν = 1 are always possible.
Unfortunately, the invariant which is engendered by these trivial ribbon Hopf
algebras is not interesting at all. In fact, R = 1⊗1 implies that the braiding
is involutive, that is cU,V cV,U = idV⊗U . This tells us that the knot invariant
locally verifies

7[Tur] Chapter XI, Section 3.2
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= =

If every crossing can be untied, it is clear that the framed knot invariant
does not distinguish any class and is therefore useless.
This is where quantum groups come at help, by deforming universal en-
veloping algebras in such a way that the resulting "Hopf algebra" is not
cocommutative and engenders interesting knot invariants. The reason we
wrote "Hopf algebra" is because we do not get a standard Hopf algebra, but
a topological one. We now give a brief account on this definition.

Definition 6.1. A topological algebra A is an algebra on the ring C[[h]] of
formal power series in one variable, whose tensor product is not the standard
one, but its completion under the h-adic topology. We call it topological tensor
product.

The reader can find a brief but complete account on the h-adic topology
in [Kas]. The definition of topological Hopf algebra and topological ribbon
Hopf algebra can be intuitively recovered from the classical case.

Definition 6.2. A quantization or deformation of a Hopf algebra A on
C is a topological Hopf algebra Ah on C[[h]] such that:

1. Ah ∼= A[[h]] as modules;

2. Ah/hAh ∼= A as Hopf algebras.

In particular, if we consider the definition of quantum group Uq(g) by
Jimbo and Drinfeld, where g is a semisimple Lie algebra, one can show that
Uq(g) is a quantization of the universal enveloping algebra U(g). We usually
call Uq(g) the universal quantum enveloping algebra of g.
The topological Hopf algebra described by Jimbo and Drinfeld can be canon-
ically considered as a topological ribbon Hopf algebra. One can extend what
we have seen for classical ribbon Hopf algebras to topological ribbon Hopf
algebras: the representations of a topological ribbon Hopf algebra form a
ribbon category in the same way. We must underline though that a repre-
sentation in the topological context is an A-module which is topologically
free and of finite rank, i.e. isomorphic to V [[h]] as module, where V is a
finite dimensional vector space.
Quantum groups turn out to be non-cocommutative and non-involutive topo-
logical Hopf algebras, and they will therefore hopefully engender interesting
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framed knot invariants. In fact, they do. In the next section we will see an
example and show how Uh(sl2) brings to the construction of the Kauffman
bracket.

7 Uh(sl2)

Jimbo and Drinfeld gave a definition of quantum group by generators and
relations. Applying it in the case g = sl2 we get the following definition.

Definition 7.1. Uh(sl2) is the C[[h]]-algebra with {E,F,H} as generators
and the following relations:

• [H,E] = 2E;

• [H,F ] = −2F ;

• [E,F ] = ehH/2−e−hH/2

eh/2−e−h/2

We observe that for h→ 0 we find the relations which define U(sl2):

ehH/2 − e−hH/2

eh/2 − e−h/2
=
ehH/2 − e−hH/2

hH/2
· h/2

eh/2 − e−h/2
·H h→0−−−→ H (9)

Uh(sl2) has a structure of a topological hopf algebra by setting:

• ∆(H) = H ⊗ 1 + 1⊗H;

• ∆(E) = E ⊗ ehH/2 + 1⊗ E;

• ∆(F ) = F ⊗ 1 + e−hH/2 ⊗ F ;

• ε(H) = ε(E) = ε(F ) = 0;

• s(H) = −H;

• s(E) = −ehH/2E;

• s(F ) = e−hH/2F .

We immediately realise that it is not cocommutative nor involutive.
This topological Hopf algebra can be canonically extended to a ribbon one.
We do not write down the explicit expression of the universal twist, since we
won’t use it, but we write down the universal R matrix:

R :=
∞∑
n=0

qn(n−1)/2(q − q−1)n

[n]q!
eh(H⊗H)/2En ⊗ Fn (10)

where q := eh/2.
In general, the representation theory of the universal quantum enveloping
algebra of a semisimple Lie algebra is strictly related to the representation
theory of the Lie algebra, as shown from the following theorem.
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Theorem 7.1. For every dominant weight λ of g, there exists one and only
one finite and topologically free Uh(g)-module Ṽλ such that:

1. Ṽλ/hṼλ ∼= Vλ

2. Ṽλ is generated by an element ṽλ, called heighest weight vector, such
that:

Hiṽλ = λ(Hi)ṽλ Eiṽλ = 0 (11)

When dealing with Uh(sl2) one can show that every finite and topologi-
cally free module is direct sum of modules of the previous form, so that the
representation theory of Uh(sl2) is completely similar to the one of U(sl2).
The following theorem holds.

Theorem 7.2. The indecomposable representations of Uh(sl2) are indexed
by N. Explicitly, the n-th representation Vn is a free module on C[[h]] of rank
n+ 1, whose basis {v0, .., vr} verifies:

• Hvr = (n− 2r)vr;

• Evr = [n− r + 1]qvr+1;

• Fvr = [r + 1]qvr+1;

where once again q = eh/2.

We observe that for k ∈ N and q = eh/2 we have:

[k]q =
ekh/2 − e−kh/2

eh/2 − e−h/2
h→0−−−→ k (12)

so that we find the standard representations of U(sl2).
Let ρn : Uh(sl2)→ gl(n+ 1) be the representation which corresponds to
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Vn. By considering its matrix form, it will behave in the following way:

ρn(E) =


0 [n]q 0 · · · 0
0 0 [n− 1]q · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0

 (13)

ρn(F ) =


0 0 0 · · · 0 0
1 0 0 · · · 0 0
0 [2]q 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · [n]q 0

 (14)

ρn(H) =


n 0 0 · · · 0 0
0 n− 2 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · −n+ 2 0
0 0 0 · · · 0 −n

 (15)

We will show that the Kauffman bracket is the invariant we derive from
the 2-dimensional representation of Uh(sl2), once we set a = q1/2 = eh/4.
We indicate with F1 the Reshetikhin-Turaev functor which corresponds to
such representation. We want to prove that

F1

( )
= q1/2F1

( )
+ q−1/2F1

( )
(16)

To avoid the calculation of F1( ), we observe that equation (16) applied
to tells us that

F1

( )
= q1/2F1

( )
+ q−1/2F1

( )
. (17)

With the appropriate substitution of F1( ), it turns out that it suffices
to prove that

q1/2F1

( )
− q−1/2F1

( )
= (q − q−1)F1

( )
(18)

. Translating the last equation in terms of the ribbon category, we must
prove that

q1/2cV1,V1 − q−1/2(cV1,V1)−1 = (q − q−1)idV1⊗̃V1 (19)

We have said that cV1,V1(x⊗y) = τ12(R·(x⊗y). In terms of the representation
map, this tells us that cV1,V1 = τ12ρ1(R) =: R̂.
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In [Kas] there is the explicit matrix expression of R̂, on the basis {v0⊗v0, v1⊗
v0, v0 ⊗ v1, v1 ⊗ v1}, which can be calculated from (10).

R̂ =


q1/2 0 0 0

0 q1/2 − q−3/2 q−1/2 0

0 q−1/2 0 0

0 0 0 q1/2

 (20)

An explicit calculation tells us that

R̂−1 =


q−1/2 0 0 0

0 0 q1/2 0

0 q1/2 q−1/2 − q3/2 0

0 0 0 q−1/2

 , (21)

so that we can finally state that:

q1/2R̂− q−1/2R̂−1 =


q − q−1 0 0 0

0 q − q−1 0 0
0 0 q − q−1 0
0 0 0 q − q−1

 = (q− q−1)id.

(22)
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