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Among the most important examples of quantum groups, there are those which are ob-
tained from a Lie algebra g as deformations of the associated universal enveloping algebra
U(g), the so-called quantized universal enveloping algebras. Here, we will review some the-
ory of quantized universal enveloping algebras and their representations, focusing on their
rational and integral (restricted) forms.

Throughout the notes the (not so) basic example of sl2(C) will be examined. For all
proofs see [CP].

1 Hopf Algebras and Deformations

A Hopf algebra over a commutative ring K is a quintuple (A, ι, µ, ε,∆, S), where (A, ι, µ) is
a K-algebra, (A, ε,∆) is a K-coalgebra, and S is an antiautomorphism of A called antipode
which satisfies some compatibility conditions with morphisms ι, µ, ε, ∆. Moreover, ∆ and
ε are K-algebras morphisms, while µ and ι are K-coalgebras morphisms.

Given a complex Lie algebra g, its associated universal enveloping algebra U(g) has
a Hopf algebra structure, where coproduct, counit and antipode are defined on primitive
elements x ∈ g as follows:

(1.1) ∆(x) = x⊗ 1 + 1⊗ x, ε(x) = 0, S(x) = −x.

It is easily checked that ∆ satisfies ∆([x, y]) = [∆(x),∆(y)], hence it extends to a map
U(g)→ U(g)⊗ U(g). The morphisms ε and S extend to maps ε : U(g)→ C and
S : U(g)→ U(g) respectively, endowing U(g) of a Hopf algebra structure. U(g) actually is a
cocommutative Hopf algebra, but it only is commutative if the Lie algebra g is commutative.

A representation of a Hopf A over K just is a left A-module (i.e. we are just focusing
on the algebra structure of A) Given two left A-modules V and W there is a natural way to
define their tensor product as representations: the left action of a ∈ A on V ⊗W is given
by a(v ⊗ w) = ∆(a)(v ⊗ w) for all v ∈ V, w ∈ W . We therefore say that the category of
representations of the Hopf algebra A is a tensor (or monoidal) category.
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A deformation of a Hopf algebra (A, ι, µ, ε,∆, S) over K is abstractly defined as a topo-
logical Hopf algebra (Ah, ιh, µh, εh,∆h, Sh) over the ring of formal series K[[h]] such that
Ah ∼= A[[h]] as K[[h]]-modules and both the product µh and the coproduct ∆h coincide with
the “original” ones modulo h. We say that two such deformations are equivalent if there
exists a Hopf algebra isomorphism over K[[h]] which is the identity modulo h. It turns out
that every definition of the morphisms ιh, εh and Sh is equivalent to the trivial one, that is
the one obtained simply extending K[[h]]-linearly the original morphisms.

Given a Lie algebra g, a Hopf algebra deformation of the universal enveloping algebra
U(g) is called a quantum universal enveloping algebra, briefly a QUE algebra, and
it is denoted by Uh(g).

We are mainly interested in deformations of U(g) which are non-cocommutative, since it
can be proved that when K is a field of characteristic zero, any cocommutative QUE algebra
Ah over K[[h]] is isomorphic as a topological Hopf algebra over K[[h]] to the universal
enveloping algebra of the some Lie algebra deformation gh of g. In particular, for every
complex simple Lie algebra g every deformation would be trivial, since every deformation
of g as a Lie algebra is trivial.

To get an idea of the non-trivial deformation we are interested in, let us examine the
case of sl2(C), discovered by Kulish and Sklyanin (1982).

Example 1.1. Uh(sl2(C)) is the topological Hopf algebra over C[[h]] topologically generated
by elements X+, X−, H with the following relations:

(1.2) X+X− −X−X+ =
ehH − e−hH

eh − e−h
, HX± −X±H = ±2X±.

Coproduct, counit and antipode are defined on generators as:

• ∆h(H) = H ⊗ 1 + 1⊗H, Sh(H) = −H, εh(H) = 0;

• ∆h(X+) = X+ ⊗ ehH + 1⊗X+, Sh(X+) = −X+e−hH , εh(X+) = 0;

• ∆h(X−) = X− ⊗ 1 + e−hH ⊗X−, Sh(X−) = −ehHX−, εh(X−) = 0.

It is clear that the antiautomorphism Sh is not involutive; by a result of Abe it implies
that Uh(sl2(C)) is not cocommutative. However, it is “almost” cocommutative, since we
can relate the coproduct ∆h and its opposite ∆op

h (obtained composing ∆h with the flip
map) by means of a special invertible element Rh in the completion of the tensor product
Uh(sl2(C))⊗ Uh(sl2(C)), called the universal R-matrix. Indeed, among other compatibility
properties, the universal R-matrix satisfies ∆op

h (x) = Rh∆hR−1
h (x) for every x ∈ Uh(sl2(C)).

We therefore say that Uh(sl2(C)) is a quasitriangular Hopf algebra.
It is remarkable that an analogue of the PBW Theorem holds for Uh(sl2(C)). Indeed, the

monomials (X−)
r
Hs(X+)

t
, for r, s, t ∈ N form a topological basis of Uh(sl2(C)). Finally,

note that in the limit h→ 0 we retrieve the “classical” Hopf algebra structure of U(sl2(C)).

This construction can be generalized to arbitrary finite dimensional complex Lie alge-
bras (actually, to Kac-Moody algebras associated with symmetrizable generalized Cartan
matrices).

2



It is useful to introduce the following elements of Z[q, q−1], for m ≥ n ∈ N and an
indeterminate q.

(i) [n]q =
qn − q−n

q − q−1
;

(ii) [n]q! =

n∏
j=1

[j]q;

(iii)

[
m
n

]
q

=
[m]q!

[n]q![m− n]q!
=

∏n
j=1[m− j + 1]q

[n]q!
.

Let g be a finite-dimensional complex Lie algebra, with Cartan matrix A = (aij)
n
i,j=1.

Let Φ be the root system of g, Π = {α1, . . . , αn} the set of simple roots and Φ+ the set of

positive roots with respect to Π. Recall that aij = 〈αi, αj〉 = 2
(αi, αj)

(αj , αj)
, for any αi, αj ∈ Π,.

Let di be positive integers such that the matrix (diaij)
n
i,j=1 is symmetric: it is a result of

Kac that di ∈ {1, 2, 3}, and actually di = (αi, αi)/2 for any simple root αi.

The QUE algebra Uh(g), first appeared in Drinfeld (1987) and Kimbo (1985), is the
topological Hopf algebra over C[[h]] topologically generated by elementsHi, X

±
i , i = 1, . . . , n

and the following relations:

• [Hi, Hj ] = 0, [Hi, X
±
j ] = ±aijX±j ;

• X+
i X

−
j −X

−
j X

+
i = δi,j

edihHi − e−dihHi
edih − e−dih

;

•
1−aij∑
r=0

(−1)r
[
1− aij
r

]
edih

(X±i )rX±j (X±i )1−aij−r = 0, if i 6= j.

Coproduct, counit and antipode are defined on generators as follows:

• ∆h(Hi) = Hi ⊗ 1 + 1⊗Hi;

• ∆h(X+
i ) = X+

i ⊗ e
dihHi + 1⊗X+

i , ∆h(X−i ) = X−i ⊗ 1 + e−dihHi ⊗X−i ;

• Sh(Hi) = −Hi, Sh(X+
i ) = −X+

i e
−dihHi , Sh(X−i ) = −edihHiX−i ;

• εh(Hi) = 1, εh(X±i ) = 0.

We can regard the elements X±i as the “root vectors” associated with the simple roots
αi ∈ Π (the elements Hi play here the role of the elements of Cartan subalgebra h ⊂ g);
however to have root vectors associated with any root β we have to consider an action of
the braid group of g instead of that of the Weyl group W of g as in the classical case.

The braid group Bg has generators Ti, i = 1, . . . , n and defining relations

(1.3) TiTjTiTj · · · = TjTiTjTi · · ·

for all i 6= j, and there are mij elements on both sides of the equation, and mij = 2, 3, 4
if aijaji = 0, 1, 2 respectively. Bg acts on Uh(g) by algebra automorphisms, and the action
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on the generators Hj coincides with the action of the simple reflections si ∈ W on the
corresponding generators of g. In the classical case, choosing a reduced decomposition
w0 = si1 . . . siN of the longest element w0 of W, we get that N is exactly the number of
positive roots of g and that every positive root occurs exactly once in the set β1 = αi1 ,
β2 = si1(αi2), . . . , βN = si1si2 · · · siN−1

(αiN ). In the same setting, we define positive and
negative root vectors X±βr for Uh(g) as follows:

(1.4) X±βr = Ti1Ti2 · · ·Tir−1(X±ir ).

Another difference with the classical case is that root vectors may now be very different
from one another depending on the choice of the reduced expression for w0 (while in the
classical case they coincide up to a sign). However, they allow us to formulate a quantum
analogue of the PBW Theorem for Uh(g):

Theorem 1.2. The set of products

(1.5) (X−β1)r1 · · · (X−βN )rNHs1
1 · · ·Hsn

n (X+
βN

)tN · · · (X+
β1

)t1

for r1, . . . , rN , t1, . . . , tN , s1, . . . , sn ∈ N forms a topological basis of Uh(g).

This was first proved by Rosso (1989) in the sln+1(C) case, using a different definition of
root vectors given by Jimbo, and then by Lusztig (1990) in the simply-laced case first and
then in the general case.

As for Uh(sl(C)), we can define a universal R-matrix for Uh(g), making it a quasitrian-
gular Hopf algebra; the category of finite-dimensional representations of Uh(g) is therefore
a braided category.

2 QUE Algebras: The Rational Form

Intuitively, we think about Uh(g) as a family of Hopf algebras parametrized by h; however
it does not actually make sense, since being Uh(g) defined over a ring of formal series, we
can not specialize h at any elements of K except h = 0. Moreover we have to take care of its
topological structure: as a topological Hopf algebra over K[[h]] it is endowed with the h-adic
topology, and we need, for example, to work with the completion of the usual tensor product
with respect to this topology. Therefore we will rather work with a “rational” counterpart
of Uh(g) introduced by Jimbo (1985), its so-called rational form Uq(g).

Let g be a finite-dimensional complex Lie algebra, with Cartan matrix A = (aij)
n
i,j=1

and integers di, i = 1, . . . , n as above. Let Φ, Π and Φ+ denote the roots system, the set of
simple roots and the set of positive roots of g respectively. Denote by α̌i = 2αi/(αi, αi) the
coroot associated to a simple root αi (we therefore have 〈β, αi〉 = (β, α̌i) for any β ∈ Phi)
and by ρ the semi-sum of all positive roots. Let P be the set of weights and P+ ⊂ P the
set of dominant weights of g. Let q be an indeterminate, and let qi = qdi .

Uq(g) is the associative algebra over Q(q) with generators X+
i , X

−
i , Ki, K

−1
i for i =

1, . . . , n, and the following relations:

• KiKj = KjKi, KiK
−1
i = K−1

i Ki = 1;

• KiX
+
j K

−1
i = q

aij
i X+

j , KiX
−
j K

−1
i = q

−aij
i X−j ;
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• X+
i X

−
j −X

−
j X

+
i = δij

Ki −K−1
i

qi − q−1
i

;

•
1−aij∑
r=0

(−1)r
[
1− aij
r

]
qi

(X±i )1−aij−rX±j (X±i )r = 0 for i 6= j.

Moreover, Uq(g) has a Hopf algebra structure with coproduct, counit and antipode defined
on generators as:

• ∆q(Ki) = Ki ⊗Ki, Sq(Ki) = K−1
i , εq(Ki) = 1;

• ∆q(X
+)i = X+

i ⊗Ki + 1⊗X+
i , Sq(X

+
i ) = −X+

i K
−1
i , εq(X

+
i ) = 0;

• ∆q(X
−
i ) = X−i ⊗ 1 +K−1

i ⊗X
−
i , Sq(X

−
i ) = −KiX

−
i , εq(X

−
i ) = 0.

The defining relations can be deduced from the corresponding relations for Uh(g) if we let
qi = eqih and Ki = edihHi . The same holds for the maps ∆q, Sq and εq on X±i . Actually,
many of the results established for Uh(g) have counterparts for Uq(g). For example, the
braid group Bg acts on Uq(g) as Q(q)-algebra automorphisms in a similar way, and we can
analogously define root vectors X±β for any root β. We therefore have a quantum analogue
of the PBW Theorem for Uq(g) as well.

Theorem 2.1. The set of products

(2.1) (X−β1
)r1 · · · (X−βN )rNKs1

1 · · ·Ksn
n (X+

βN
)tN · · · (X+

β1
)t1

for r1, . . . , rN , t1, . . . , tN ∈ N and s1, . . . , sn ∈ Z forms a Q(q) basis of Uq(g).

However, not every property of Uh(g) translates to Uq(g). For example, it is not true
that Uq(g) possesses a universal R-matrix; it is indeed clear by an explicit description of the
universal R-matrix for Uh(g) that it does not correspond to any element of Uq(g).

Also remind that this rational form Uh(g) only allows us to specialize q up to transcenden-
tal numbers. If we want to specialize q to an arbitrary non-zero complex number ε ∈ C∗ we
need to consider a so-called integral form of Uq(g). Namely, it is an A = Z[q, q−1]-subalgebra
UA(g) of Uq(g) such that the natural map UA(g) ⊗A Q(q) → Uq(g) is an isomorphism of
Q(q)-algebras.

There are two possible integral forms associated with the QUE algebra Uh(g), namely
the “restricted” and the “non-restricted” integral form. Their corresponding specializations
coincide when ε is not a root of unity, but behave very differently when ε is a root of unity.
We will not analyse the non-restricted integral form (which, when specialized at a root of
unity, has properties closely resembling those of the classical universal enveloping algebra),
but we will focus on the restricted integral form instead. This one, when specialized at a
root of unity, provides a characteristic zero analogue to the theory of classical Lie algebras
in characteristic p.

3 QUE Algebras: The Restricted Integral Form

For any integer r ≥ 0 and 1 ≤ i ≤ n define the divided powers

(3.1) (X+
i )(r) =

(X+
i )r

[r]qi !
, (X−i )(r) =

(X−i )r

[r]qi !
.
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The restricted integral form U res
A (g) is the A-subalgebra of Uq(g) generated by elements

(X+
i )(r), (X−i )(r), Ki, K

−1
i for i = 1, . . . , n and r ≥ 1. It is a Hopf algebra over A with

coproduct, counit and antipode given by

• ∆q(Ki) = Ki ⊗Ki, Sq(Ki) = K−1
i , εq(Ki) = 1;

• ∆q((X
+
i )(r)) =

r∑
k=0

q
−k(r−k)
i (X+

i )(k) ⊗Kk
i (X+

i )(r−k), εq((X
+
i )(r)) = 0;

• ∆q((X
−
i )(r)) =

r∑
k=0

q
k(r−k)
i (X−i )(k) ⊗ (X−i )(r−k)K−ki , εq((X

−
i )(r)) = 0;

• Sq((X+
i )(r)) = (−1)rq

r(r+1)
i K−ri (X+

i )(r), Sq((X
−
i )(r)) = (−1)rq

−r(r+1)
i (X−i )(r)Kr

i .

The definitions of the maps ∆q, Sq and εq on the divided powers (X±i )(r) is a consequence
of their definitions of generators X±i of Uq(g), as it can be easily proved by induction on r.
Moreover we have

(3.2) Ki(X
±
j )(r)K−1

i = q±aijr(X±j )(r)

and we can rewrite the “quantum Serre relation” as

(3.3)

1−aij∑
r=0

(−1)r(X±i )(1−aij−r)X±j (X±i )(r) = 0, for i 6= j.

We also have the following immediate identity, which will later be useful.

(3.4) (X±i )(r)(X±i )(s) =

[
r + s
r

]
qi

(X±i )(r+s).

Let us introduce the following remarkable elements of U res
A (g):

(3.5)

[
Ki; c
r

]
qi

=

r∏
s=1

Kiq
c+1−s
i −K−1

i qs−1−c
i

qsi − q
−s
i

for all i = 1, . . . , n, c ∈ Z and r,∈ N.

When c = 0 the elements

[
Ki; 0
r

]
qi

clearly commute with themselves and with the

K±1
i , and for any c ∈ Z the elements

[
Ki; c
r

]
qi

lie in U res 0
A (g) := SpanA〈K±1

i ,

[
Ki; 0
r

]
qi

〉, a

maximal abelian subalgebra of U res
A (g). Moreover, we have the following relations:

(3.6)

[
Ki; c
r

]
qi

(X±j )(s) = (X±j )(s)

[
Ki; c± aijs

r

]
qi

.

The braid group action of Bg on Uq(g) restricts to U res
A (g). Hence, for r ∈ N, we can

define root vectors

(3.7) (X±βk)(r) = Ti1 · · ·Tik−1
((X±ik)(r))

and we can formulate a quantum analogue of the PBW Theorem for U res
A (g) as well.
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Theorem 3.1. The set of products

(3.8) (X−β1
)(r1) · · · (X−βN )(rN )

n∏
i=1

Kσi
i

[
Ki; 0
si

]
qi

(X+
βN

)(tN ) · · · (X+
β1

)(t1)

for r1, . . . , rN , t1, . . . , tN , s1, . . . , sn ∈ N and σi ∈ {0, 1} forms an A-basis of U res
A (g).

This basis in analogue to the basis for Uq(g) given by Theorem 2.1, therefore ensuring
that U res

A (g) actually is an integral form of Uq(g).

For any ε ∈ C∗ the corresponding restricted specialization is

(3.9) U res
ε (g) := U res

A (g)⊗A Q(ε).

We will now examine what happens when ε is a roots of unity: let ε be a primitive `-th root
of unity, where ` is odd and greater than di, for all i (and not divisible by 3 if g is of type
G2). Let εi = εdi .

It has remarkable implications for the representation theory of U res
ε (g) that it can be

somehow factorized into a “product” of the classical universal enveloping algebra of g and a
finite-dimensional Hopf algebra. The origin of this factorization can be found in the following
factorization of the Gaussian binomial coefficient through the classical binomial coefficient
for a decomposition of s ≤ r ∈ N as given by the Eucliden division by `, r = r0 + `r1,
s = s0 + `s1:

(3.10)

[
r
s

]
ε

=

[
r0

s0

]
ε

(
r1

s1

)
.

Hereafter, we will use the notation x0, x1 to denote remainder and quotient respectively of
the Euclidean division of a number x ∈ N by `; clearly 0 ≤ r0 < `.

Combining this factorization property with Equation (3.4), for r = r0 + `r1 we deduce
that in U res

ε (g)

(3.11) (X±i )(r) = (X±i )(r0) ((X±i )
(`)

)r1

r1!
.

It follows that U res
ε (g) is generated as a Q(ε)-algebra by elements X±i , (X±i )(`), K±1

i and[
Ki; 0
ri

]
εi

with 0 ≤ ri < `, i = 1, . . . , n. Indeed, for r < ` we can get (X±i )(r) directly

as (X±i )r/[r]ε!, and ijn the case of r ≥ `, when the same procedure is not possible since
(X±i )` = 0, we can use the decomposition above.

The factorization of U res
ε (g) will therefore essentially be into the part generated by the

X±i and the remainder consisting of the divided powers (X±i )(`). More precisely, we define

Ufin
ε (g) to be the Q(ε)-subalgebra of U res

ε (g) generated by the X±i , K±1
i and

[
Ki; 0
ri

]
εi

,

i = 1, . . . , n. It is a Hopf algebra over Q(ε) of finite dimension 2n`2N+n. Rosso (1992)
proved that Ufin

ε (g) actually is quasitriangular Hopf algebra, using the quantum double
method to give an explicit formula of its universal R-matrix Rε, which cannot be directly
deduced from the formula of the universal R-matrix of Uh(g).
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It is immediate that the definition of the restricted integral form mimics that of the
Chevalley-Kostant Z-form for the classical universal enveloping algebra of a complex Lie
algebra g, which we call UZ(g). It is indeed the subring of U(g) generated by the divided
powers (x±)(r) = (x±)r/r!, for r ∈ N, and x± the Chevalley generators of g. Therefore,
it should not come as a surprise that these two objects are related. Indeed, if we consider
U res

1 (g) = U res
ε (g)⊗A Q, the specialization of Uq(g) at 1, and we let Ũ res

1 (g) be its quotient
by the two-sided ideal generated by Ki− 1, i = 1, . . . , n, we have the following isomorphism
of Hopf algebras over Q:

(3.12) UQ(g) := UZ(g)⊗Z Q ∼−→ Ũ res
1 (g), x±i 7→ X±i .

Let now p ∈ N be an odd prime, and consider the hyperalgebra of the algebraic group
GFp over Fp associated to g: UFp = UZ(g)⊗ZFp. It is known that there exists a Hopf algebra
homomorphism over Fp, called the Frobenius map

(3.13) Fr : UFp −→ UFp

such that

(3.14) Fr(x±i )(r) =

{
(x±i )(r/p), if p divides r

0, otherwise

and the kernel of Fr is the two-sided ideal of UFp generated by the augmentation ideal of Ufin
Fp

(i.e. the kernel of the counit morphism), the latter being the restricted enveloping algebra
of g (that is, the subalgebra of UFp generated by the x±).

It is a result of Lusztig the existence of an analogous map for U res
ε (g) in characteristic

zero. It is the unique Hopf algebra homomorphism over Q(ε)

(3.15) Frε : U res
ε (g) −→ UQ(g)⊗Q Q(ε)

such that

Frε(Ki) = 1

Frε((X
±
i )(r)) =

{
(x±)(r/l), if ` divides r

0, otherwise
(3.16)

and its kernel is the two-sided ideal of U res
ε (g) generated by the augmentation ideal of Ufin

ε (g)
(i.e. the kernel of the counit morphism). This also explains how to think the “factorization”
of U res

ε (g) mentioned above.

Note however that despite the analogies between U res
ε (g) and UFp(g) there are some dif-

ferences. They reflect the differences between the decomposition (3.10) and its characteristic
p analogue:

(3.17)

(
r

s

)
=

(
r0

s0

)(
r1

s1

)
· · · (mod p)

for s ≤ r ∈ N and r =

∞∑
k=0

rkp
k, s =

∞∑
k=0

skp
k the corresponding p-adic decompositions.

Differently from the Gaussian binomial case, there is no bound (independent of r and s) on
the number of factors appearing in the RHS of Equation (3.17), and all the terms have the
same form. This reflects in the fact that UFp(g) is not finitely generated, while U res

ε (g) is,
and that the map Fr is an endomorphism of UFp(g) while Frε is a map between different
algebras.
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4 Representation theory of the rational forms

The theory of finite-dimensional representations of Uq(g) is very similar to that of U(g);
the main result is an analogue of the classical Weyl Theorem about complete reducibility.
Moreover, the irreducible Uq(g)-modules are still parametrized by their highest weight, but in
general we will have 2n irreducible modules corresponding to each irreducible U(g)-module,
arising from the choice of n = |Π | signs. However, if we restrict ourselves to the case of
σ = (1, . . . , 1) the theory proceeds more or less as for U(g). All the results still hold we
specialize q at an arbitrary complex number ε ∈ C∗ which is not a root of unity. We will later
see what happens for the roots of unity case. Unless otherwise stated, all representations
will be on complex vector spaces.

Let us introduce some definitions, which mimic those for the classical case.

• A weight is an n-tuple ω = (ω1, . . . , ωn) ∈ (Q(q)∗)n. We write ω′ ≤ ω if ω′−1
i ωi =

q(αi,β) for some β ∈ Φ+ and for all i = 1, . . . , n (Bruhat order);

• For a Uq(g)-module V , the weight space of weight ω is (if not empty) the Q(q)-subspace

(4.1) Vω = {v ∈ V |Ki · v = ωiv, i = 1, . . . , n}.

• A primitive vector in V is a non-zero vector v ∈ V such that

(4.2) X+
i · v = 0, i = 1, . . . , n and v ∈ Vω for some weight ω;

• A highest weight Uq(g)-module is a Uq(g)-module V which contains a primitive
vector v ∈ V so that V = Uq · v. Such v is called a highest weight vector. In
particular, if v ∈ Vω (ω is uniquely determined by V ) we have

(i) V =
⊕
ω′≤ω

Vω′ ;

(ii) dimQ(q)(Vω) = 1.

So, V is direct sum of all its weight spaces and the weights occurring in the decompo-
sition necessarily are less or equal than ω in the Bruhat ordering.

• Given a weight ω we can construct the corresponding Verma module:

(4.3) Mq(ω) = Uq(g)/〈X+
i ,Ki − ωi1〉i=1,...,n.

It is a highest weight Uq(g)-module with highest weight ω and canonical highest weight
vector vω given by the image of 1 ∈ Uq(g). As in the classical case, every highest weight
Uq(g)-module with highest weight ω is isomorphic to a quotient of Mq(ω), and since
dim(Mq(ω)ω) = 1, Mq(ω) admits a unique irreducible quotient Vq(ω) (hence every
irreducible highest weight module is isomorphic to some Vq(ω)).

We are mainly interested in highest weight Uq(g)-modules with highest weight ωσ,λ where

ωi = σ(αi)q
(αi,λ), for λ ∈ P and σ ∈ Hom(∆, {±1}) a sign. Indeed it can be proved that

every finite-dimensional irreducible Uq(g)-module V is a highest weight module of highest
weight ω = ωσ,λ for some sign σ and λ ∈ P+. Moreover, X±i acts locally nilpotently on V
(i.e. V is integrable).

9



For λ = 0 we have ωi = σ(αi) for all i = 1, . . . , n, and dim(Vq(ωσ,0)) = 1. Moreover, the
following decomposition of Uq(g)-modules holds

(4.4) Vq(ωσ,λ) ∼= Vq(ωσ,0)⊗Q(q) Vq(ω1,λ)

where we denote by 1 the sign (1, . . . , 1) (equivalently, 1(αi) = 1 for all i = 1, . . . , n). Up to
tensoring with a one-dimensional module, we can therefore reduce ourselves to consider the
so-called modules of type 1: Vq(ω1,λ). From now on we will denote by λ the weight ω1,λ.

In this case, Ki acts as q(αi,λ) and the Bruhat order induces the classical order on weights.

Let us describe what happens in the sl2(C) case.

Example 4.1. Let g = sl2(C). There are exactly 2 irreducible Uq(sl2(C))-modules for any

(finite) dimension λ + 1 ≥ 1: Vq(ωσ,λ) for σ = ±1. They have basis {v(λ)
0 , . . . , v

(λ)
λ }, and

v
(λ)
0 is the highest weight vector. The generators of Uq(sl2(C) act on the basis as follows:

• K1v
(λ)
r = σqλ−2rv(λ)

r ;

• X+
1 v

(λ)
r = σ[λ− r + 1]qv

(λ)
r−1;

• X−i v
(λ)
r = [r + 1]qv

(λ)
r+1.

For Vq(ω1,λ) the above formulas clearly resemble those describing the irreducible represen-
tation of U(sl2(C)) of dimension λ + 1 in the limit q → 1 (we have to think of K1 as ‘qH ’
though): h · vi = (λ− 2i)vi, x · vi = (λ− i+ 1)vi−1, y · vi = (i+ 1)vi+1.

In the general case, it can be proved that the structure of the irreducible Uq(g)-module
Vq(λ), is exactly parallel to that of the corresponding highest weight module in the classical
case. Indeed, given a highest weight Uq(g)-module V with highest weight vector v we
can use the restricted integral form to construct a U res

1 (g)-module V on which Ki acts as
the identity, hence a Ũ res

1 (g)-module. By Equation (3.12) V is a module for the universal
enveloping algebra of g (over Q) and it is highest weight as a UQ(g)-module as well, with
the same highest weight of V and highest weight vector the image v of v. As a consequence,
to any irreducible highest weight Uq(g)-module Vq(λ), λ ∈ P+ corresponds an irreducible

highest weight UQ(g)-module Vq(λ) with the same highest weight, and the dimensions of
their weight spaces coincide. Hence, the character of Vq(λ) is given by the classical Weyl
character formula. By analogy with the classical case we get that every finite dimensional
highest weight Uq(g)-module is irreducible and has highest weight in P+. As a consequence,
every finite-dimensional Uq(g)-module is completely reducible. We say that the category of
finite-dimensional Uq(g)-modules of type 1 is semisimple.

Actually, we know more. Indeed it is possible to define an invertible operator R̃ that, al-
though not an element of Uq(g)⊗Uq(g), acts on any tensor product of two finite-dimensional
Uq(g)-modules playing the role of the universal R-matrix of Uh(g). Therefore, the category
of finite-dimensional representations of Uq(g) is a (semisimple) quasitensor category.

5 Representation theory of the restricted integral form

As already mentioned, the representation theory of Uq(g) turns out to be very different from
the one of Uq(g) (hence of U(g)) when q is specialized at a root of unity. It is also remarkable
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that the two integral forms lead to representation theories which are very different from
one another. In the restricted case, the finite-dimensional irreducible modules are still
parametrized by dominant weights, but their structure is in general different from that of
the corresponding U(g)-module parametrized by the same weight (e.g. their dimension is
not the same). The main difference it that for finite-dimensional U res

ε (g)-modules complete
reducibility does not hold anymore. However, we will use tilting modules to recover a a
suitable semisimple category of representations.

As for the Uq(g) case, up to tensoring with a one-dimensional representation, we will
only consider representations of type 1, that is on which K`

i = 1 for all i = 1, . . . , n.

Let V be a finite-dimensional U res
ε (g)-module. The action of the commuting elements

K1, . . . ,Kn on V is simultaneously diagonalizable with eigenvalues in the set {±εr}`−1
r=0. Let

λ ∈ P be a weight of V : we would like to define weight spaces Vλ for U res
ε (g) analogously

to those for Uq(g):

(5.1) Vλ = {v ∈ V |Ki · v = ε
(λ,α̌i)
i v, ∀i}.

However, it is clear that we would have Vλ = Vµ as soon as λ − µ ∈ `P , hence the weight
space decomposition would not be direct. The reason why this definition fails is that to get

a maximal abelian subalgebra of U res
ε (g) we have to add to the Ki all the elements

[
Ki; 0
`

]
εi

.

The correct definition of the weight space associated to λ ∈ P is therefore

(5.2) Vλ = {v ∈ V |Ki · v = ε
(λ,α̌i)
i v,

[
Ki; 0
`

]
εi

· v =

[
(λ, α̌i)
`

]
εi

v, ∀i = 1, . . . , n}.

The elements

[
Ki; c
`

]
εi

act on Vλ as

[
(λ, α̌i) + c

`

]
εi

, and it follows from Equations (3.2) and

(3.6) that (X±i )(r)(Vλ) ⊂ Vλ±rαi .

The definitions of weight, primitive vector, highest weight module, etc... can be carried
out as in the Uq(g)-case; we just have to remind that for a primitive vector v we also

require (X+
i )(`) · v = 0 for i = 1, . . . , n. As for the Uq(g) case, it can be proved that a

finite-dimensional irreducible U res
ε (g)-module V of type 1 is the direct sum of its weight

spaces.

We can construct a highest weight U res
ε (g)-module of highest weight λ ∈ P from the

correspondent highest weight Uq(g)-module Vq(λ) as follows:

(5.3) W res
ε (λ) := V res

A (λ)⊗A C

where V res
A (λ) is the U res

A -submodule of Vq(λ) generated by its highest weight vector v (C is
an A-module via the homomorphism sending q to ε). This so-called Weyl module clearly
is a highest weight module, but it is in general not irreducible, neither finite-dimensional.
However, for a dominant weight λ ∈ P+ we have a remarkable result.

Proposition 5.1. Let λ ∈ P+. Then dim(W res
ε (λ)) <∞, and it is irreducible if one of the

following conditions holds:

(i) (λ+ ρ, α̌) < `, for all positive roots α;

(ii) λ = (`− 1)ρ+ `µ, for some µ ∈ P+.
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Moreover, as in the Uq(g)-case, the character of W res
ε (λ) is given by the classical Weyl

character formula.

Being a highest weight module, W res
ε (λ) possesses a unique irreducible quotient, which

we denote by V res
ε (λ). Actually, it is possible to prove that every finite-dimensional irre-

ducible U res
ε (g)-module V of type 1 is isomorphic to a module V res

ε (λ) for some λ ∈ P+.
It is equivalently possible to construct the irreducible modules V res

ε (λ) directly via a usual
Verma module construction; however, Weyl modules are very useful tool in the study of
the representation theory of U res

ε (g), as it will later be clear with the introduction of the
so-called tilting modules.

Example 5.2. Let g = sl2(C). For m ∈ Z we can consider the Weyl module W res
ε (m)

of highest weight m. It has a basis {v(m)
0 , . . . , v(m)

m } on which the action of U res
ε (sl2(C)) is

given by

• X+
1 · v(m)

r = [m− r + 1]εv
(m)
r−1, (X+

1 )(`) · v(m)
r = ((m− r)1 + 1)v

(m)
r−`;

• X−1 · v(m)
r = [r + 1]εv

(m)
r+1, (X−1 )(`) · v(m)

r = (r1 + 1)v
(m)
r+`;

• K1 · v(m)
r = εm−2rv(m)

r .

W res
ε (m) has a unique maximal submodule, spanned by those v(m)

r for which m0 < r0 < `
and r1 < m1. It is isomorphic to the irreducible module V res

ε (`m1−m0−2) and the quotient
W res
ε (m)/V res

ε (`m1 −m0 − 2) is the unique quotient module V res
ε (m). Clearly, W res

ε (m) is
irreducible if and only if m < ` or m0 = ` − 1: in these cases it is in fact not possible to
define a unique maximal submodule as above. For ` = 5, m = 17 the weight structure of
V res
ε (17) is described by the following picture

Figure 1: Weight structure of V res
ε (17), for ` = 5

where black and white dots indicate basis vectors for V res
ε (17) and for the unique max-

imal submodule (isomorphic to V res
ε (11)) respectively. The actions of X+

1 and (X+
1 )(5) are

given by analogous arrows pointing from the right side to the left side of the diagram.
As a difference with the sl2(C) case, note that dimV res

ε (17) = 12. In general we have
dim(V res

ε (m)) = (m0 + 1)(m1 + 1) 6= m+ 1.

We can actually reduce the study of the irreducible highest weight U res
ε (g)-modules of

highest weight λ to two cases: those for which all components of λ are strictly less than `,
and those for which all components of λ are divisible by `. Indeed, every irreducible U res

ε (g)-
module can be decomposed as a tensor product of two such irreducible U res

ε (g)-modules.
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Theorem 5.3. Let λ ∈ P+ and let λ = λ0 + lλ1 be its unique decomposition with λ0, λ1 ∈
P+, 0 ≤ (λ0, α̌i) < `. Then there is an isomorphism of U res

ε (g)-modules

(5.4) V res
ε (λ) ∼= V res

ε (λ0)⊗ V res
ε (lλ1).

This is an analogue to Steinberg’s Tensor Product Theorem in characteristic p. It occurs
in the representation theory of the hyperalgebra UFp(g), where finite-dimensional irreducible
modules are again parametrized by dominant weights. For a dominant weight λ ∈ P+ and
an irreducible UFp(g)-module VFp(λ), Steinberg’s Theorem describes how it decomposes as
the tensor product of irreducible UFp(g)-modules with respect to the p-adic expansion of
λ. With all the due differences (e.g. as for the decomposition of the binomial coefficient in
characteristic p, the number of factors in Steinberg’s decomposition is not a priori bounded),
it remarks the analogy with the theory of classical Lie algebras in characteristic p.

However, how should we interpret the modules V res
ε (λ0) and V res

ε (`λ1)?

• The modules V res
ε (λ0) essentially are the irreducible modules for the finite-dimensional

Hopf algebra Ufin
ε (g) (they bijectively correspond to irreducible Ufin

ε (g)-modules on
which Kl

i acts as 1);

• The modules V res
ε (`λ1) are isomorphic as U res

ε (g)-modules to the pull-back of the
corresponding irreducible highest weight U(g)-modules V (λ) by the Frobenius map
Frε.

5.1 Tilting Modules and Decompositions of Tensor Products

From now on we assume moreover that ` > h, where h is the Coxeter number of g.

We want to analyse tensor products of irreducible U res
ε (g)-modules: they are not in

general completely reducible, as it appears from Example 5.2. To find some kind of complete
reducibility we need to introduce tilting modules.

A finite-dimensional U res
ε (g)-module V of type 1 is a tilting module if both V and V ∗

possess a Weyl filtration, that is if there exists a sequence of submodules

(5.5) 0 = V0 ⊂ V1 ⊂ . . . ⊂ Vp = V

with Vr/Vr−1
∼= W res

ε (λr) for some λ ∈ P+, r = 1, . . . , p, and an analogous one for V ∗.
We equivalently say that V is a tilting module if it possesses both a Weyl and a dual Weyl
filtration, that is a filtration whose consecutive quotients are isomorphic to the dual of some
Weyl module W res

ε (λr)
∗ for some λ ∈ P+. Indeed, V ∗ possesses a Weyl filtration if and only

if V possesses a dual Weyl filtration.

Example 5.4. Let C` be the principal alcove with respect to the action of the affine Weyl
group of g:

(5.6) C` = {λ ∈ P+ | (λ+ ρ, α̌) < `, ∀α ∈ Φ+}.

This is not empty since we have required ` > h. By Proposition 5.1 we have W res
ε (λ) =

V res
ε (λ) for λ ∈ C`; hence V res

ε (λ) admits a Weyl filtration. Moreover V res
ε (λ)∗ ∼= V res

ε (−w0(λ)),
because the same holds for U(g)-modules, and w0(λ) is in C` as well. Therefore, V res

ε (λ) is
a tilting module.

Some basic properties of tilting modules:
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(i) The dual of a tilting module is a tilting;

(ii) Any (finite) direct sum of tilting modules is tilting;

(iii) Any direct summand of a tilting module is tilting;

(iv) Any (finite) tensor product of tilting modules is tilting.

We can therefore restrict our attention to indecomposable tilting modules., for which we
can give a nice classification via dominant weights. Indeed, for any λ ∈ P+ there exists a
unique (up to isomorphism) indecomposable tilting module Tε(λ) such that:

(i) The set of weights of Tε(λ) is contained in the convex hull of W · λ;

(ii) λ is the unique maximal weight of Tε(λ);

(iii) dimTε(λ)λ = 1;

(iv) Tε(λ)∗ ∼= Tε(−w0(λ));

Conversely, every indecomposable tilting module is isomorphic to a (unique) Tε(λ), for some
λ ∈ P+. Therefore {Tε(λ) |λ ∈ P+} is a complete set of isomorphism classes of indecom-
posable tilting modules for U res

ε (g). As a consequence, any tilting module T decomposes
(non uniquely) as

(5.7) T ∼=
⊕
λ∈P+

Tε(λ)nλ(T )

and the multiplicities nλ(T ) are uniquely determined by T .

We can prove that if T is a tilting module then Ext1(T, T ) = 0 and T has projective
dimension 1. Hence our tilting modules actually correspond to the partial tilting modules,
in the original definition by Ringel (1991) extended by Donkin for algebraic groups (1993).

It is in general not easy to describe the structures of indecomposable Tilting modules,
even in the simplest cases. However, for some special values of λ ∈ P+ we have the following
result.

Example 5.5. Let g = sl2(C). Identifying λ ∈ P+ with the integer (λ, α) (α being
the simple root of sl2(C)), we have the following description of the indecomposable tilting
modules Tε(λ):

(i) If 0 ≤ λ < `− 1, then Tε(λ) is irreducible because of Example 5.2;

(ii) If λ = `−1, then Tε(λ) is irreducible because of Proposition 5.1: Tε(`−1) ∼= V res
ε (`−1);

(iii) If ` ≤ λ ≤ 2`−2, then Tε(λ) is the 2`-dimensional module with basis {tr}λr=0 ∪ {t′r}2l−2−λ
r=0

and the following action of the generators:

• K1 · tr = ελ−2rtr,

[
K1; 0
`

]
ε

· tr = r1tr, K1 · t′r = ε2`−2r−2−λt′r,

[
K1; 0
`

]
ε

· t′r = 0;

• X+
1 · tr = [λ− r + 1]εtr−1, X−1 · tr = [r + 1]εtr+1;
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• X+
1 · t′r = [2`− 1− λ− r]εt′r−1 +

[
λ+ r − `

r

]
ε

tλ+r−`, if 0 < r ≤ 2`− 2− λ;

• X−1 · t′r = [r + 1]εt
′
r+1, if 0 ≤ r < 2`− 2− λ;

• X+
1 · t′0 = [λ− `+ 1]εtλ−`, X−1 · t′2l−2−λ =

[
`− 1

λ− `+ 1

]
ε

tl;

• (X+
1 )(`) · tr = ((λ− r)1 + 1)tr−`, (X−1 )(`) · tr = (r1 + 1)tr+l, (X±1 )(`) · t′r = 0.

Hence Tε(λ) is indecomposable, and it contains a submodule spanned by the tr which
is isomorphic to W res

ε (λ); the corresponding quotient, spanned by the t′r, is isomorphic
to W res

ε (2`− 2− λ). Thus, Tε(λ) admits a Weyl filtration. Actually, Tε(λ) is a tilting
module since Tε(λ)∗ admits a Weyl filtration as well, given by the same Weyl modules
of Tε(λ).

Note that although λ is the unique maximal weight of Tε(λ), it is not a highest weight
module, since it is not generated by the highest weight vector t0. For ` = 7, λ = 8 we
have the following picture, where the action of X+

1 is given by both the upward and
the right-to-left arrows, and the downward arrows describe the action of X−1 . The
structure of Tε(λ)∗ is simply given by turning the diagram upside down.

Figure 2: Structure of the tilting module Tε(8), for ` = 7

The question now is how to decompose the tensor product of irreducible U res
ε (g)-modules

V res
ε (λ) ⊗ V res

ε (µ) for λ, µ ∈ P+. Although it does not decompose in general into the
direct sum of irreducible U res

ε (g)-modules, for λ, µ ∈ C` we have V res
ε (λ) ∼= Tε(λ) and

V res
ε (µ) ∼= Tε(µ) hence the tensor product decomposes as the direct sum of indecomposable

tilting modules.

The first attempt to retrieve some kind of complete reducibility would hence be to
define a new tensor product of U res

ε (g)-modules discarding all the non-irreducible tilting
components. However, we would only get a non-associative tensor product, as it is clear
from the following example.
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Example 5.6. For g = sl2(C) and ` = 5 we have the following decompositions into inde-
composable tilting modules:

V res
ε (0)⊗ V res

ε (4) ∼= V res
ε (4)

V res
ε (2)⊗ V res

ε (2) ∼= V res
ε (0)⊕ V res

ε (2)⊕ V res
ε (4)

V res
ε (2)⊗ V res

ε (4) ∼= V res
ε (4)⊕ Tε(6)

V res
ε (4)⊗ V res

ε (4) ∼= V res
ε (4)⊕ Tε(6)⊕ Tε(8)

If we denote by ⊗̃ the tensor product obtained by discarding the indecomposable non-
irreducible tilting components (e.g. all those of the form Tε(λ)) we get

(5.8) V res
ε (2)⊗̃(V res

ε (2)⊗̃V res
ε (4)) ∼= V res

ε (2)⊗̃V res
ε (4) ∼= V res

ε (4)

while

(V res
ε (2)⊗̃V res

ε (2))⊗̃V res
ε (4) ∼= (V res

ε (0)⊕ V res
ε (2)⊕ V res

ε (4))⊗̃V res
ε (4) ∼=

∼= V res
ε (4)⊕ V res

ε (4)⊕ V res
ε (4).(5.9)

We therefore need a different approach. For a finite dimensional U res
ε (g)-module V we

define its quantum dimension as the quantum trace of the identity morphism idV :

(5.10) qdimV = qtr(idV ) = trace(Kρ∗)

where Kρ∗ =
∏
i

Kri
i and 2ρ =

∑
αi

riαi is the sum of all the positive roots of g with

coefficients ri ∈ Z. For an indecomposable tilting module Tε(λ), it is true that qdimTε(λ) 6=
0 if and only if λ ∈ C`. Moreover, for λ ∈ P+ \ C` every direct summand of the tensor
product Tε(λ)⊗ V , where V is any U res

ε (g)-module of type 1, has quantum dimension zero
(it is negligible).

Proposition 5.7. Let T1, T2 be tilting U res
ε (g)-modules. Then their tensor product decom-

poses as

(5.11) T1 ⊗ T2
∼=

(⊕
λ∈Cl

V res
ε (λ)nλ

)
⊕ Z

where Z is a U res
ε (g)-module with qdimZ = 0.

This is clear since we can decompose a tilting module into the direct sum of indecom-
posable tilting modules, parametrized by λ ∈ P+. Hence, if we denote by Z the sum of all
the indecomposable tilting modules parametrized by λ ∈ P+ \ C`, it obviously has quantum
dimension zero, and it provides the above decomposition.

The idea is therefore to define a new tensor product of T1 and T2 discarding the com-
ponent Z. More precisely, if T is any tilting module, we define T to be the sum of all
the indecomposable summands in the decomposition of T whose maximal weights lie in C`.
Hence we define the truncated tensor product ⊗ of tilting modules T1, T2 as

(5.12) T1⊗T2 := T1 ⊗ T2.

This tensor product is endowed with nice properties. Indeed, for tilting modules T1, T2 and
T3 we have the following isomorphisms of U res

ε (g)-modules:
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(i) T1⊗T2
∼= T2⊗T1, (because the same holds for the “old” tensor product);

(ii) T1⊗(T2⊗T3) ∼= (T1⊗T2)⊗T3.

In the setting of Example 5.6 above, we have instead

V res
ε (2)⊗(V res

ε (2)⊗V res
ε (4)) = 0 = (V res

ε (2)⊗V res
ε (2))⊗V res

ε (4).

Since the decomposition of a tilting module T into indecomposable components is not unique
in general, the choice of a module T is not unique, but it is well defined up to isomorphism.
Hence it is important to make a “canonical choice” for this module: in what follows, assume
that T is such a canonical choice. We can now summarize our result in a categorical language.
Let us introduce the following categories

rep Ures
ε (g) category of finite-dimensional U res

ε (g)-modules of type 1;

tiltl full subcategory of rep Ures
ε (g) whose objects are tilting modules;

tiltl full subcategory of tiltl whose objects are finite-dimensional U res
ε (g)-modules with

weights belonging to

(5.13) {λ ∈ P | 〈λ+ ρ, α̌〉 < l, ∀ roots α}.

tilt′l full subcategory of tiltl whose objects are those tilting modules T having T̄ = 0.

Then tiltl = tiltl⊕ tilt′l (to be precise, tiltl is a “quotient category” of tiltl), and we have
the following results:

• With the usual operations of direct sum, dual and tensor product, rep Ures
ε (g) is a

rigid, C-linear, braided category.

• With the usual operations of direct sum and dual, tiltl is a rigid, C-linear, braided
category;

• With the usual operations of direct sum and dual, and with the truncated tensor
product, tiltl is a rigid, semisimple, C-linear braided category.
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