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Abstract

We give here a short review of Takesaki’s seminal paper [5], in which a character-

ization of a commutative measured involutive Hopf–von Neumann algebra is given,

as the algebra L∞(G) of a locally compact Hausdorff topological group G.

While referring the reader to the original paper for the majority of proofs and for

the details of all others, we focus on the measure theoretical tools and implications

underlying the general ideas.

1 Preliminaries

Definition 1.1 (Hopf–von Neumann Algebra). Let H be a Hilbert C-space and

Lb(H) be the C∗-algebra of the bounded linear operators on H. A trace-class operator

on H is any operator t ∈ Lb(H) such that trH |t| <∞. Let now Lb(H)∗ be the Banach

space of all trace-class operators. The σ-weak (read: ultra-weak) topology on Lb(H)

is defined as the σ(Lb(H),Lb(H)∗)-topology. A von Neumann algebra M is any unital

σ-weakly closed ∗-subalgebra of Lb(H). The tensor product ⊗iMi of von Neumann

algebras Mi acting on Hilbert spaces Hi (i = 1, . . . , n) is defined as the weak closure

of the algebraic tensor product ⊗iMi acting on ⊗iHi.
A co-multiplication δ on M is a unital σ-weakly continuous co-associative *-ho-

momorphism δ : M →M⊗M :=M⊗2, where co-associativity is to be understood as

the commutativity of the diagram

M
δ //

δ

��

M⊗2

ι⊗δ
��

M⊗2

δ⊗ι
// M⊗3

(with ι := idM the identity morphism of M).

A Hopf–von Neumann algebra (M, δ) is any von Neumann algebra endowed

with a co-multiplication δ and is said to be commutative whenever M is. The twist

τ : M ⊗M is defined by τ : (x⊗ y) 7→ (y ⊗ x). The co-multiplication δ is said to be

symmetric or co-commutative if it absorbs τ (i.e. τ ◦ δ = δ). If so, (M, δ) is said to

be symmetric.

Everywhere in the following the algebraic tensor product of algebras

is denoted by ⊗, while the topological one by ⊗.

Theorem 1.2 (Sakai). Every von Neumann algebra M admits a unique predual

M∗, i.e. a Banach space such that (M∗)
∗ = M (see [6, I.3.9]). Furthermore, M∗

may be regarded as the Banach space of σ-weakly continuous functionals on M

(see [4, §1.1.1]).
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Lemma 1.3 (Pre-duality for Hopf–von Neumann algebras). Let M be a Hopf–von

Neumann algebra and (M∗, ∗) be the predual of M endowed with the convolution ∗
defined by

∀f, g ∈M∗, ∀x ∈M 〈f ∗ g |x〉 := 〈f ⊗ g | δ(x)〉 .

Then (M∗, ∗) is a Banach algebra.

Proof. Straightforward. �

Definition 1.4 (Involutive Hopf-von Neumann algebras). An involution (or an-

tipode) j : M →M is any 2-involutive anti-automorphism (i.e. σ-weakly continuous

unital morphism) such that

τ ◦ j ◦ δ = (j ⊗ j)δ.(1.1)

Lemma 1.5. Setting j∗ := j∗
∣∣
M∗

, (M∗, j∗) is an involutive Banach algebra.

Proof. Straightforward. �

Everywhere in the following let j(a) := aˇ and j∗(f) := fˆ for a ∈M , f ∈M∗.

Definition 1.6 (Trace). A trace µ on M is any R≥-valued (positively) additive

positively homogeneous function on M which is conjugation-invariant w.r.t. the

unitary operators of M . A trace µ is said to be faithful if it is strictly positive

on M+ \ {0}, finite if R≥-valued and semi-finite if for all a ∈ M+ it holds that

µ(a) = supM+3b≤a µ(b). A σ-weakly continuous semi-finite faithful trace is said to

be a measure on M .

Definition 1.7 (Measured involutive Hopf–von Neumann (MIHvN) algebra). An

involutive Hopf–von Neumann algebra is said to be right- (resp. left-)measured

whenever endowed with a measure which is also right (resp. left) invariant, i.e.

(µ⊗ µ) [(a⊗ b)δ(c)] =(µ⊗ µ) [(aˆ⊗ c)δ(b)]

(resp. (µ⊗ µ) [(a⊗ b)δ(c)] =(µ⊗ µ) [(c⊗ b̂ )δ(a)]).

A right-left invariant measure (resp. algebra) is said to be unimodular.

A morphism θ of measured involutive Hopf–von Neumann algebras (Mi, δi, ji,µi)

is any morphism of von Neumann algebras preserving δ, j and µ in the sense that

θ ◦ j1 = j2 ◦ θ (θ ⊗ θ) ◦ δ1 = δ2 ◦ θ µ2 = θ]µ1.

2 MIHvN algebra of a locally compact group

Everywhere in the following, a topological measurable space is always

endowed with its Baire algebra A, that is the σ-algebra generated by

functionally closed subsets of X.

Theorem 2.1 (Canonical MIHvN algebra of a locally compact group). To any

locally compact Hausdorff topological group G it may be naturally associated a

MIHvN algebra.

Proof. Recall that G has a (unique, locally finite, regular) left-invariant Haar measure

µ. Letting MG :=L∞(G,µ), set

∀s, t ∈ G,∀f ∈MG δG(f)(s, t) := f(st)

jG(f)(s)
.
= f (̂s) := f(s−1) µG(f) :=

∫
G

f dµ.

Let µ⊗2 denote the product measure on the σ-algebra generated by the squared σ-

algebra of G. By Stone–Weierstraß theorem it holds C(K)⊗C(K) ∼= C(K2) for every
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compact subset of G. Since µ is locally finite and inner regular w.r.t. closed sets and

G is locally compact, µ is also Radon, whence the inclusion C(K) ⊆ L∞(K,µ
∣∣
K

)

is a weak∗ dense one. Varying K among the compact subsets of G thus yields

M⊗2 ∼= L∞(G2, µ⊗2).

Thanks to the properties of Haar measure, it can easily be verified that δG is

a co-multiplication; also, jG is trivially an involution and µG is a left-invariant

measure on (MG, δG, jG) (a proof of the latter statement may be easily deduced by

the one of Corollary 2.4 below).

Thus (MG, δG, jG,µG) is a left-measured involutive Hopf–von Neumann algebras.

�

Notice that L∞(G,µ) is a natural realization of the dual space (L1(G,µ))∗ and it

is not difficult to verify that it holds (MG)∗ ∼= L1(G,µ) and the convolution defined

via δG (see Lemma 1.3) is the usual one.

¿Question? When does the converse of Theorem 2.1 hold? Read: when given

a MIHvN algebra (M, δ, j, µ) there exists a locally compact Hausdorff group such

that (MG, δG, jG,µG) ∼= (M, δ, j,µ) in the sense of Definition 1.7.

Since (MG, δG, jG,µG) is a commutative algebra, we can restrict ourselves to

the case when (M, δ, j, µ) is a commutative MIHvN algebra (cMIHvN). Then, the

statement we want to prove is the following.

Theorem 2.2 (Duality realization for cMIHvN algebras). Let (M, δ, j,µ) be any

commutative measured involutive Hopf–von Neumann algebra. There exists a locally

compact Hausdorff topological group G such that (M, δ, j,µ) = (MG, δG, jG,µG)

(see Theorem 2.1 for the definitions).

As a first step, we want to realize M as the space L∞(X,µ) where X is some

locally compact Hausdorff topological space endowed with its Baire σ-algebra A and

µ is some measure on A. In fact, this will not be our final realization of M , for we

need to get rid of the dependence on the space X. To achieve this, we shall need

to realize M in some “more canonical” way, using L∞(X,µ) as a starting point to

construct some representations also involving L1(X,µ) and L2(X,µ).

Theorem 2.3 (Realization of a commutative von Neumann algebra). Let M be a

commutative von Neumann algebra. Then there exists a locally compact Hausdorff

topological measurable space (X,T,A) endowed with a σ-ideal N of A such that

M ∼= L∞(X,A,N).

Proof. See [3, I.7.3.1]. �

At this time, the dependence of this realization on µ is misleading, since no

measure is in fact required in defining a L∞ space, for the latter is the datum of a

measurable space (X,A) endowed with a σ-ideal N of A. Nonetheless, the measure

is relevant when we want to identify any such space L∞(X,A,N) as a ∗-subalgebra

of Lb(H) for some Hilbert space H. Indeed, letting µi (i = 1, 2) be different measures

on A which generate the same ideal N = Nµi of null-measured sets, the spaces

L∞(X,A, µi) are ∗-isomorphic to each other and they may be both regarded as a

∗-subalgebra of Lb(L2(X,A, µi)) via the (left) multiplication action

L : L∞(X,A,N) 3 f 7→ (Lf : L2(X,A, µi) 3 h 7→ fh),

whereas the spaces Hi :=L2(X,A, µi) need not to be the same.

The absence of a specific measure is not an issue if we confine ourselves to the

study of the Banach algebra structure of M , since, taking e.g. L1(X,µ) to be a

realization of its predual M∗, this must be isomorphic to any other by Theorem 1.2.

Nonetheless, since our main goal is to realize M as induced by a Haar measure

(rather than simply by a σ-ideal N of null-measured sets), we need to be more careful

in the construction of all spaces involved, for the measure actually plays a key role.
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At this point we ask ourselves wether the choice of the measure µ generating

the null-sets ideal Nµ involved in the definition of L∞(X,A,Nµ) may be chosen in

some canonical way. We can answer in the affirmative as soon as we justify calling a

σ-weakly continuous semi-finite faithful trace on M a measure on it.

Corollary 2.4 (Canonical realization of a commutative measured von Neumann

algebra). Let (M,µ) be a commutative measured von Neumann algebra. Then there

exists a (unique) topological measured space (X,T,A, µ) such that

M ∼= L∞(X,A,Nµ)

and µ represents µ in the sense that

µ(f) = 〈µ | f〉 :=
∫
X

f dµ.

Proof. The existence of the space (X,T,A,N) is granted by Theorem 2.3 so that it

suffices to construct µ representing µ as above and verify that N = Nµ.

Firstly, for any E ∈ A set µ(E) :=µ(1E); since µ is faithful and a trace, it is

straightforward that µ(∅) = µ(1∅) = µ(0) = 0, thus it suffices to show that µ is

countably additive on disjoint sets. Let (En)n be a countable family of A-measurable

mutually disjoint sets and set Ek :=∪knEn. Then

µ(E∞) =µ(1E∞) (semi-finiteness of µ)

= sup
0≤f≤1E∞

µ(f)

≥ lim sup
k

µ(1Ek )

(
positive additivity of µ,1Ek =

k∑
n

1En

)

= lim sup
k

k∑
n

µ(1En)

=

∞∑
n

µ(1En) =

∞∑
n

µ(En).

For the opposite inequality it is sufficient to take the limit in k in

µ(Ek) = µ(1Ek ) =
k∑
n

µ(En) = µ(En),

which follows again by positive additivity.

Therefore µ is a measure and, since µ is faithful it is straightforward that Nµ ⊆ N.

On the other hand, if E ∈ N, then µ(E) = µ(1E) = µ(0) = 0, hence N = Nµ. �

Corollary 2.5 (Modular function of a cMIHvN algebra). Let (M, δ, j,µ) be a

cMIHvN algebra and notice that µ̂ :=µ ◦ j−1 is a measure on µ. Let then (X,A, µ)

and (X,A, µ̂) be canonical realizations of (M, δ, j,µ) and (M, δ, j, µ̂) respectively.

Then there exists a strictly positive (non necessarily bounded) continuous function

∆: X → X such that

∀f ∈ Cc(X)

∫
X

f dµ =

∫
X

f∆ dµ̂

Proof. Since µ and µ̂ are induced by semi-finite traces, they are easily seen to be τ -

additive (i.e. for every net (Eα) of increasing measurable sets it holds limα µ(Eα) =

µ(∪αEα)). It follows by local compactness of X (see Theorem 2.3) that µ is Radon

whenever restricted to a compact subset of X (see [1, 7.2.2.(ii)]). As a consequence,

〈µ | f〉 <∞ for every continuous compactly supported f .

Since µ̂ is also a measure, by Corollary 2.4 it holds Nµ = Nµ̂, thus µ and µ̂

are mutually absolutely continuous w.r.t. each other, whence the Radon–Nikodým

derivative ∆ := dµ̂µ is strictly positive.
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The continuity of ∆ is nontrivial consequence of the σ-weak continuity of j and

µ, which may be deduced by comparing the σ-weak topology restricted to Cc(X)

with the σ(Cc(X),MbR)-topology (MbR denoting the Banach space of totally finite

Radon measures on X). �

Finally, as a result of some calculations (see [5, 2.1]), it can be proved that

Cc := Cc(X) is j-invariant when regarded as a subspace of M and also j∗-invariant

when regarded as a subspace of L1(X,µ) ∼= M∗, thus the (Cc(X),A, µ) may be

chosen as a canonical realization of (M, δ, j,µ). To see the latter invariance property

notice that, for every f ∈ Cc

fˆ = (∆f )̌ = ∆−1fˇ ∆f = fˆˇ(2.1)

Indeed, for every continuous compactly supported f, g one has∫
X

f ĝ dµ =

(∫
X

fgˇdµ =

∫
X

f ǧ dµ̂ =

∫
X

∆−1f ǧ dµ

)
=

∫
X

∆fgˇdµ̂ =

∫
X

(∆f )̌ g dµ

and so fˆ = (∆f )̌ for every f ∈ Cc by σ-weak density of Cc(X) in L∞(X,A,Nµ).

Now since ∆ was continuous by Corollary 2.5, it follows that ∆Cc = Cc and thus

Ccˇ = Cc. The invariance now follows, the inclusion Cc(X) ⊆ L1(X,µ) being

σ-weakly dense.

Reassuringly, it is straightforward that whenever (M, δ, j,µ) = (MG, δG, jG,µG),

then µ̂G induces the right-invariant Haar measure on G and ∆ is its modular

function.

3 Interpolation between multiplication and convolution

The main goal is now the construction of some suitable representation of L1(X,µ).

To further this task we need some explicit automorphism of the space L2(X⊗2, µ⊗2).

In view of the previous results, we drop from now on the µ (bold) notation.

Since we deal with a product space, the following verifications are required

(see [5, 3.1&3.2])

∀f, g, h ∈ Cc (µ⊗ µ) [(f ⊗ g)δ(h)] =(µ⊗ µ) [(h⊗ g )̌δ(f)](3.1)

(µ⊗ µ) [(f ⊗ 1)δ(g)] =µ(f)µ(g)(3.2)

which follows by the commutation properties of j, δ and τ (cfr. (1.1)).

Via the identification of the measure with its concrete counterpart, equation (3.2)

implies that

‖(f ⊗ 1)δ(g)‖(L1)2 = ‖f‖L1 ‖g‖L1(3.3)

so that the ∗-morphism ω0 : Cc
⊗2 →M⊗2 defined as the linear extension of

(f ⊗ g) 7→ (f ⊗ 1)δ(g)

has, by (3.3) a unique continuous extension

ω :
(

Cc
⊗2, ‖ · ‖L1(X,µ)

)
→
(
M⊗2 ∩ L1(X⊗2, µ⊗2)

)
.
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It also holds∥∥∥∥∥ω
(∑

i

fi ⊗ gi

)∥∥∥∥∥
2

(L2)2

=(µ⊗ µ)

[
n∑
i,j

(fif̄j ⊗ 1)δ(giḡj)

]
((3.2))

=

n∑
i,j

µ(fif̄j)µ(giḡj) =

∥∥∥∥∥∑
i

fi ⊗ gi

∥∥∥∥∥
2

(L2)2

so that ω uniquely extends to an isometry W : L2(X⊗2, µ⊗2)→ L2(X⊗2, µ⊗2). It is

readily seen (see [5, 3.3&3.4]) that W is in fact unitary, since it has an isometric

adjoint W ∗, for which it also holds

(j ⊗ ι)ω0(j ⊗ ι) = W ∗
∣∣
Cc
⊗2 .

Thanks to its reflexivity and Riesz Representation Theorem for Hilbert spaces,

L2(X,µ) is now the perfect environment to study the convolution. By (3.1) and

Lemma 1.3, we can equivalently define the convolution f ∗ g := δ∗(f ⊗ g) on M∗ as

the unique element satisfying

µ [(f ∗ g)h] = µ [g(fˆ∗ h)] = µ [f(h ∗ g )̌](3.4)

for all h ∈ L1(X,µ).

When we restrict ourselves to functions in L1(X,µ) ∩ L∞(X,Nµ), it is possible

to prove a suitable Young inequality.

Lemma 3.1 (Young inequality). For f, g ∈ L1(X,µ) ∩ L∞(X,Nµ) it holds

‖f ∗ g‖L∞ ≤ ‖f‖L2 ‖gˇ‖L2 , ‖f ∗ gˇ‖L∞ ≤ ‖f‖L2 ‖g‖L2 .

Proof. First of all notice that the inequality is well-posed and non-vacuous for

f, g ∈ L1(X,µ) ∩ L∞(X,Nµ) implies f, g ∈ L2(X,µ) by Interpolation Inequality

(see [2, §4.2, Rem.2, p.93]). By definition of convolution, for all h ∈ Cc and u ∈M
such that u |h| = h, we have

|µ [(f ∗ g )̌h]| = ((3.1))

= |(µ⊗ µ) [(f ⊗ g )̌δ(h)]| ((3.4))

= |(µ⊗ µ) [(h⊗ g)δ(f)]| (u |h| = h)

=
∣∣∣(µ⊗ µ)

[
(u |h|1/2 ⊗ g)(|h|1/2 ⊗ 1)δ(f)

]∣∣∣ (def. of ω)

=
∣∣∣(µ⊗ µ)

[
(u |h|1/2 ⊗ g)ω(|h|1/2 ⊗ f)

]∣∣∣ (W bounded)

≤
∥∥∥u |h|1/2 ⊗ g∥∥∥

(L2)2
‖W‖Lb(L

2)

∥∥∥|h|1/2 ⊗ f∥∥∥
(L2)2

(W unitary)

= ‖h‖L1 ‖g‖L2 ‖f‖L2 . �

By the previous Lemma 3.1, the convolution operator

∗ :
(
L1(X,µ) ∩ L∞(X,Nµ)

)2 → L∞(X,Nµ)

is L2-continuous, and may thus be extended to the whole (L2(X,µ))2 by density

of its original domain in the latter space. In fact, it is possible to prove that

this L2(X,µ)-convolution coincides with the original one on (L1(X,µ) ∩ L2(X,µ))2

(see [5, 4.2]).

4 Involution and representations of predual algebras

Thanks to the properties of the convolution, we are able to define an involution

on L1(X,µ) via the following lemma.
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Lemma 4.1. Let f, g ∈ L1(X,µ) ∩ L∞(X,µ). Then

(f ∗ g)̂ = gˆ∗ fˆ (f ∗ g)̌ = gˇ∗ f .̌(4.1)

Proof. For any h ∈ L∞(X,µ) we have by (3.1) and (1.1)

µ [(f ∗ g)̂ h] =µ [(f ∗ g)h ]̌ = (µ⊗ µ) [(f ⊗ g)δ(h)]

=(µ⊗ µ) [(f ⊗ g)τ(j ⊗ j)δ(h)]

=(µ⊗ µ) [(gˆ⊗ f )̂δ(h)]

=µ [(gˆ∗ f )̂h] .

The conclusion follows by faithfulness of µ. Proceeding in almost the same way

it is possible to that it also holds (f ∗ g)̌ = gˇ∗ fˇ (see [5, 5.3]). �

The previous lemma allows us to define the involution

−∗ : L1(X,µ) 3 f 7→ f∗ := fˆ ∈ L1(X,µ)

making (L1(X,µ),−∗) an involutive Banach algebra.

Our next goal will be the construction of some representation of the predual

algebra L1(X,µ) ∼= M∗ (at this point an involutive Banach algebra) to further our

construction.

By Lemma 3.1 and the strong density of the inclusion Cc(X) ⊆ L1(X,µ),

(L2(X,µ))2 3 (g1, g2) 7→ µ [f(ḡ1 ∗ g2 )̌]

is a continuous sesquilinear on (L2(X,µ))2 and may therefore be represented by

〈λ(f)− |−〉L2 where λ(f) : L2(X,µ)→ L2(X,µ) is a bounded operator. Again by

Lemma 3.1, taking the supremum for g1, g2 in the unit sphere of L2(X,µ), it follows

that ‖λ(f)‖Lb(L
2(X,µ)) ≤ ‖f‖L1 . Furthermore, by (3.4) it holds

λ(f)∗ = λ(f∗)

for every f ∈ L1(X,µ), representing the convolution ∗ in the sense that λ(f)g = f ∗g
for all f, g ∈ Cc(X) (hence in L2(X,µ) by density of the former).

Definition 4.2 (Left regular representation of L1(X,µ)). At this point we have

proved that

λ : L1(X,µ)→ Lb(L2(X,µ))

is a ∗-representation of L1(X,µ) on L2(X,µ). Further calculations (proceeding as for

the usual convolution on Rn, see [5, 5.1&5.2]) show that λ is a faithful representation.

Now we are ready to introduce a second operator V in Lb(L2(X,µ)) which will

allow us to define a right regular representation of L1(X,µ). To this purpose notice

that by (4.1) and (2.1) it follows that

∆(f ∗ g) = (∆f) ∗ (∆g).

Along the same line of reasoning it is possible to see (see [5, 5.4]) that it also

holds

∆1/2(f ∗ g) = (∆1/2f) ∗ (∆1/2g).

Using again Cc(X) as included in every Lebesgue space on (X,µ), we define

V f := ∆−1/2fˇ
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and notice that

‖V f‖2L2 = µ
[
∆−1 |f |̌2

]
= µ̂

[
|f |̌2

]
= µ(|f |2) = ‖f‖2L2

whence V uniquely extends to an operator on L2(X,µ), which we denote in the

same way.

Lemma 4.3 (Extension of the predual involution j∗ to L2(X,µ)). Let ∆1/2 denote

the (unbounded) multiplication operator induced by the same function and set

J := ∆1/2V : L2(X,µ)→ L2(X,µ)

with dom J := dom ∆1/2. Then J is a closed extension of j on L2(X,µ) ∩ L∞(X,µ)

and its adjoint J∗ its a closed extension of j∗ on L2(X,µ)∩L1(X,µ). The following

also hold

J =∆1/2V = V∆−1/2 V JV =J∗ ∆ =JJ∗

J∗ =∆−1/2V = V∆1/2 V J∗V =J V∆V =∆−1

∀f ∈ L1(X,µ) ∩ L2(X,µ) J∗f̄ =f∗

Proof. It is sufficient to notice that Jf = ∆1/2V f = ∆1/2∆−1/2fˇ = fˇ for all f in

Cc(X) and that j∗ is a ‖ · ‖L2 -isometry on Cc(X). All the above equalities are a

consequence of both the definition of J and (2.1). �

Definition 4.4 (Right regular representation). Another straightforward conse-

quence of the previous lemma is that V is also a self-adjoint operator, thus the

conjugation of λ via V defined by

λ′ : L1(X,µ) 3 f 7→ V λ(f)V ∈ Lb(L2(X,µ))

is again a ∗-representation of L1(X,µ) on L2(X,µ). Since one has

V λ( · ) = λ( · )′V

this justifies the name of right (and left) regular representation. On the other hand,

these are said to be regular for they coincide, in the case M = MG, with the regular

representation of G in the usual sense.

Now that we have defined the morphisms λ and λ′, we set

M(λ) :=
[
λ(L1(X,µ))

]′′
M(λ′) :=

[
λ′(L1(X,µ))

]′′
to be the von Neumann algebras generated by them (by von Neumann Bicommutant

Theorem).

5 Commutants and dual IHvN algebras

The notation λ′ might seem confusing w.r.t. the construction of M(λ′), though

it is consistent. It is in fact the major achievement of [5, §6&7] the proof that

M(λ)′ = M(λ′) M(λ′)′ = M(λ).

Thus, thanks to Tomita’s result [3, p.29], it also holds[
M(λ)⊗2

]′
=
[
M(λ)′

]⊗2
= M(λ′)⊗2.

With the previous results at hand it is possible to define the dual IHvN algebra of

our MIHvN algebra (M, δ, j, µ) (see [5, §9] for the proofs). This will be von Neumann

algebra M(λ), endowed with the co-multiplication

π(−) :=W−1(−⊗ 1)W
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and the involution

κ : a 7→ ā∗

where −∗ is the usual adjoint of an operator (recall that M(λ) consists of operators

acting on L2(X,µ)) and the conjugate of an operator a is defined by a(f) := a(f̄), f̄

being the complex conjugate.

It turns out that π is indeed co-associative and it commutes with κ, so that

(M(λ), π, κ) is truly a symmetric IHvN algebra.

6 The predual group of a MIHvN algebra

The main goal of this final section will be the construction of the group G

whose canonical MIHvN algebra coincides with the assigned (M, δ, j, µ). Given

the algebra (M(λ), π, κ) constructed above, since λ is a faithful representation (see

Definition 4.2), it makes sense to push the measure µ forward to M(λ), by setting

µ(λ(f)) :=µ(f)

and then extending to the whole algebra by continuity of λ. We will denote this new

trace (which is clearly a measure since µ is) by λ]µ. At this point, (M(λ), π, κ, λ]µ)

is a MIHvN algebra, so that we can reason as in §2 and identify it with some L∞-

space, which we denote simply by L∞(λ), while its predual will be L1(λ) ∼= M∗(λ)

as constructed via the measure λ]µ.

It is now our task to prove that the group G we are looking for from the beginning

is in fact the spectrum of L1(λ).

We replicate here the constructions of §3, in order to construct the space L2(λ).

Indeed, set for φ ∈ L1(λ)

‖φ‖L2(λ)
:= sup

{
|〈λ(f)∗ |φ〉| ; f ∈ L1(X,µ) ∩ L∞(X,µ), ‖f‖L2(X,µ) ≤ 1

}
where the coupling is taken to be the one induced by the dual couple

(
L1(λ), L∞(λ)

)
.

Letting L1
2(λ) be the set of φ’s with finite ‖ · ‖L2(λ) norm, the closure of L1

2(λ) w.r.t.

‖ · ‖L2(λ) is a Hilbert space (as realized in its bidual via the canonical embedding),

which we denote by L2(λ).

Now, for any fixed φ ∈ L1(λ), the map L1(µ) 3 f 7→ 〈λ(f)∗ |φ〉 is a bounded

anti-linear (thanks to taking the adjoint of λ(f)) functional on L1(µ) for every φ,

thus it is uniquely represented by some g := gφ ∈ L∞(X,µ) satisfying

µ(f̄g) = 〈λ(f)∗ |φ〉 .

Thus, we can the dual map γ of λ by setting

γ : L1(λ) 3 φ 7→ gφ ∈ L∞(µ).

From the definition of λ∗ it also follows that λ∗ : L2(λ) ∩ L1(λ) → L1(X,µ) ∩
L2(X,µ) is a (‖ · ‖L2(λ) ; ‖ · ‖L2(X,µ))-isometry, thus it may be extended to an isometry

Γ: L2(λ)→ L2(X,µ).

At this point it is possible to replicate the reasoning of §3 and §4, Γ playing the

role of W , to construct ρ the left regular representation of L1(λ) as acting on the

Hilbert space L2(λ). Namely,

ρ : L1(λ) −→ Lb(L2(λ))

φ 7−→ − ∗ φ.



10

Furthermore, notice that γ is itself a representation on L1(λ), this time acting

on L2(X,µ), when γ(φ) is understood as the multiplication operator induced on

L2(X,µ) by the L∞(X,µ)-function γ(φ)). Also, by definition of γ it follows that

γ(−) = Γρ(−)Γ−1.

We therefore have constructed representations

λ : L1(µ)→ Lb(L2(µ))

ρ : L1(λ)→ Lb(L2(λ))

γ : L1(λ)→ Lb(L2(µ)),

where γ may be thought of as ρ′ (the role of V being also played by Γ).

This triplet of representation morphisms (which turn out to be all faithful) may

be used to show that L1(λ) is a semi-simple involutive abelian Banach algebra.

By known results of the theory (see [6, 3.8&3.11]), the semi-simplicity of L1(λ)

as a Banach algebra yields that the Gel’fand representation ̂ is faithful, its kernel

being coincident with the Jacobson radical of the algebra. Thus, L1(λ) ∼= M∗(λ) is

faithfully represented by ̂ on C0(G), where G = ΦM∗(λ) denotes the spectrum of

the algebra.

We are now able to endow G with a group structure. Indeed, letting s ∈ G and

φ̂(s) the Gel’fand representation of φ ∈ L1(λ) evaluated on s, by faithfulness of the

representation there exists a (unique) unitary vector u ∈ L∞(λ) such that

〈u∗ |φ〉 = φ̂(s);

we will denote such vector by λ(s). Since λ is injective, we may define, for all

s, t ∈ G,

st :=λ−1 [λ(s)λ(t)] .

It is in fact possible to show that λ−1(1) =: e is the identity in G and that for

every u ∈ λ(G), ū∗ = ū−1 also belongs to λ(G) and is the inverse of u, so that G is

in fact a group. The continuity of the operations w.r.t. the topology of G follows by

the coincidence of the strong and weak operator topologies on the closed unit ball of

L∞(λ), so that G is a locally compact topological group.

Finally, since ‖u‖op = ‖u‖L∞(λ) = 1 for all u ∈ λ(G) whenever regarded as their

corresponding multiplication operator acting on L2(λ), the morphism λ is itself a

faithful unitary group representation of G, whose image generates the von Neumann

algebra L∞(λ) ∼= M(λ).

At this point it is possible to construct (see [5, §11]) a Haar measure µG on G,

which is induced by the representation ρ. The MIHvN algebra induced by G is then

isomorphic to our original algebra (M, δ, j,µ), so that our conclusive theorem holds.

Theorem 6.1 (Duality realization for cMIHvN algebras). Let (M, δ, j,µ) be any

commutative measured involutive Hopf–von Neumann algebra.

There exists a locally compact Hausdorff topological groupG such that (M, δ, j,µ) =

(MG, δG, jG,µG) (see Theorem 2.1 for the definitions).
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