Module page

Analisi Numerica                  

academic year:   2013/2014
instructor:  Silvia Noschese
degree course:  Mathematics - DM 270/04 (triennale), II year
type of training activity:  caratterizzante
credits:  9 (72 class hours)
scientific sector:  MAT/08 Analisi numerica
teaching language:  italiano
period:  II sem (03/03/2014 - 13/06/2014)


Lecture meeting time and location

Presence: highly recommended

Module subject:

  1. Linear and nonlinear systems of equations
    Iterative methods for linear systems. Convergence and theorem of the spectral radius. Some iterative methods: Gauss-Seidel, Jacobi, relaxation. Stability of the algorithms. Conditioning analysis of the problem. Direct methods for some classes of matrices. Comparison of the methods. Newton methods in R^n. Nonlinear equations in the complex plane. Algebraic equations, numerical methods to compute all the roots.
  2. Eigenvalues and eigenvector
    Caracterization and localization of the eigenvalues, Gershgorin theorems. Global and individual conditioning numbers. Unitary transformations of similarity. QR factorization and QR method. Power method. Inverse iteration method.
  3. Functions interpolation
    Langrange and Hermite polynomial interpolation. Divided differences and Newton form. Orthogonal polynomials and Gaussian interpolation. Chebychev nodes and polynomials. Conditioning and stability of the algortihms. Lebesgue function and constant. Splines. Convergence properties. Minimum squared method. Numerical derivation via finite differences. Approximation of derivatives via splines functions. Richardson extrapolation. Sketch of the applications to partial differential equations.
  4. Numerica integration
    Newton-Cotes formulas. Gaussian formulas. Generalized quadrature formulas. Convergence and error estimates. Sketch on cubature formulas.
  5. Ordinary differential equations
    Numerical methods for the approximation of the Cauchy problem. Explicit and implicit schemes. One step and multistep methods. One step methods: consistency or order p, stability and convergence. Local and global error. Error analysis. Some one-step methods: Euler, Heun, modified Euler. Runge-Kutta methods. Adams formulas. Predictor-corrector schemes. Adams-Mooulton scheme. Error estimates. Sketch on the implementation of adaptive time step technique.

Detailed module subject: PROGRAMMA

Suggested reading:
A. Quarteroni, R. Sacco, F. Saleri, "Matematica Numerica", Springer, 2008
V. Comincioli, Analisi Numerica, Mc Graw Hill, 1990

Type of course: standard

Exercises:

Examination tests:

Useful link: registrazione prima prova in itinere

Prerequisites: Sono richieste nozioni di base di Analisi Matematica e di Algebra Lineare, quali quelle acquisite nei corsi di Calcolo I e II, Algebra Lineare e di Analisi Matematica I. E' inoltre richiesta la conoscenza di un linguaggio di programmazione (C, C++ o MATLAB) del livello acquisito nel corso di Laboratorio di Programmazione e Calcolo oppure in uno dei corsi di Abilita' Informatiche.

Knowledge and understanding:
The students will know the classical methods and algorithms of numerical analysis.

Skills and attributes:
The students will be able to choose a correct numerical method to solve their problem and they will be able to write the code corresponding to the algorithm.

Personal study: the percentage of personal study required by this course is the 65% of the total.

Examination dates on Infostud

Statistical data on examinations

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma