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When we introduce a new symbol or definition we will use the convenient form := which
means that the term introduced at its left is defined by the expression at its right. A
typical example could be P := {x ∈ N|2 divides x} which stands for: P is by definition
the set of all natural numbers x such that 2 divides x.

The symbol π : A → B denotes a mapping named π from the set A to the set B.
Most of our work will be for algebras over the field of real or complex numbers, sometimes

we will take a more combinatorial point of view and analyze some properties over the
integers. Associative algebras will implicitely be assumed to have a unit elment. When we
discuss matrices over a ring A we always identify A with the scalar matrices.

We use the standard notations:

N, Z, Q, R, C

for the natural numbers (including 0), the integers, rational, real and complex numbers.
We shall try to explain in detail all the constructions which belong to invariant theory and

instead introduce and use, sending the reader to other texts, the notions of differential or
algebraic geometry or of measure theory and functional analysis which might be necessary
for the treatment. In general our point of view is that some of the interesting special
objects under consideration may be treated by more direct and elementary methods, and
we will try to do so whenever possible, since a direct approach often reveals some of the
special features which are lost in a general theory.
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Introduction In this chapter we will develop the formal language a nd some
general methods and theorems, to some extent the reader is advised not to read it
too systematically since most of the interesting examples will appear only in the next
chapters. The exposition here is quite far from the classical point of view since we are
forced to establish the language in a rather thin general setting. Hopefully this will
be repaid in the chapters in which we will treat the interesting results of Invariant
Theory.

1 Groups and their actions

1.1 In our treatment groups will appear always as transformation groups, the main
point being that, given a set X the set of all bijective mappings of X into X is a group
under composition. We will denote this group S(X) and call it the symmetric group of X .

In practice the full symmetric group is used only for X finite, in this case it is usually
more convenient to fix as X the set [1, n] formed by the first n integers (for a given value
of n); in this case the corresponding symmetric group has n! elements and it is indicated
by Sn, its elements are called permutations.
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In general the groups wich appear are subgroups of the full symmetric group, defined
by special properties of the set X arising from some extra structure (like a topology or
the structure of a linear space etc.), the groups of our interest will usually be symmetry
groups of the structure under consideration.

To illustrate this concept we start:

Definition. A partition of a set X is a family of non empty disjoint subsets Ai with union
X.

A partition of a number n is a (non increasing) sequence of positive numbers:

m1 ≥ m2 ≥ . . . ≥ mk > 0 with
k∑

j=1

mj = n.

Remark. To a partition of the set [1, 2, . . . , n] we can associate the partition of n given by
the cardinality of the sets.

We represent graphycally such a partition by a Young diagram e.g. (8,5,5,2):

If X = ∪Ai is a partition, the set:

G := {σ ∈ Sn|σ(Ai) = Ai, ∀i},

is a subgroup of S(X), isomorphic to the product
∏

S(Ai) of the symmetric groups on the
sets Ai.

1.2 It is useful at this stage to procede in a formal way. We set:

Definition. An action of a group G on a set X is a mapping π : G × X → X , denoted
by gx := π(g, x) satisfying the following conditions:

(1.2.1) 1x = x, h(kx) = (hk)x

for all h, k ∈ G and x ∈ X.

The reader will note that the definition just given can be reformulated as follows:

i) The map %(h) := x → hx from X to X is bijective for all h ∈ G.

ii) The map % : G → S(X) is a group homomorphism.
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In our theory we will usually fix our attention on a given group G and consider different
actions of the group, it is then convenient to refer to a given action on a set X as to a
G-set.

Examples. a) The action of G as left multiplications on itself.

b) The action of G on the set G/H := {gH|g ∈ G} given by:

(1.2.2) a(bH) := abH.

c) The action of G × G on G given by (a, b)c = abc−1.

d) The action of G by conjugation on itself.

e) The action of a subgroup of G induced by restricting an action of G.

It is useful right from the start to use a categorical language:

Definition. Given two G−sets X,Y , a G−equivariant mapping, or more simply a mor-
phism, is a map f : X → Y such that for all g ∈ G and x ∈ X we have:

f(gx) = gf(x).

In this case we also say thet f intertwines the two actions. Of course if f is bijective we
speak of an isomorphism of the 2 actions.

The class of G−sets and equivariant maps is clearly a Category.

Example. The equivariant maps of the action of G on itself by left multiplication are the
right multiplications. They form a group isomorphic to the opposite of G (but also to G).

More generally:

Proposition. The equivariant maps of the action of G on G/H by left multiplication are
induced by the right multiplications with elements of the normalizer NG(H) of H (cf. 1.4).
They form a group Γ isomorphic to NG(H)/H .

Proof. Let σ : G/H → G/H be such a map, hence for all a, b ∈ G we have σ(a.bH) =
aσ(bH). In particular if σ(H) = uH we must have that:

σ(aH) = auH = σ(ahH) = ahuH, ∀h ∈ H,

hence u ∈ NG(H) and uH = Hu. Conversely if u ∈ NG(H) the map σ(u) : aH → auH =
aHu is well defined and in Γ. The map u → σ(u−1) is clearly a surjective homomorphism
from NG(H) to Γ with kernel H.

Exercise Describe the set of equivariant maps G/H → G/K for 2 subgroups.

2 Orbits, invariants and equivariant maps.

2.1 The first important notion in this setting is given by the following:
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Proposition. The binary relation R in X given by: xRy if and only if there exists g ∈ G
with gx = y, is an equivalence relation.

Definition. The equivalence classes under the previous equivalence are called G-orbits (or
simply orbits), the orbit of a given element x is formed by the elements gx with g ∈ G and
is denoted Gx. The mapping G → Gx given by g → gx is called the orbit map.

The orbit map is equivariant (with respect to the left action of G). The set X is
partitioned in its orbits, and the set of all orbits (quotient set) is denoted by X/G.

In particular we say that the action of G is transitive or that X is a homogeneous space
if there is a unique orbit.

More generally we say that a subset Y of X is G stable if it is a union of orbits. In this
case G induces naturally an action on Y . Of course the complement C(Y ) of Y in X is
also G stable and X is decomposed as Y ∪ C(Y ) in 2 stable subsets.

The finest decomposition into stable subsets is the decomposition into orbits.

Basic examples

i Let σ ∈ Sn be a permutation and A the cyclic group which it generates, then the orbits
of A on the set [1, n] are the cycles of the permutation.

ii Let G be a group and H,K be subgroups, we have the action of H × K on G induced
by the left and right action. The orbits are the double cosets. In particular if either H
or K is 1 we have left or right cosets.

iii Consider G/H, the set of left cosets gH , with the action given by 1.2.2. Given a subgroup
K on G/H the K orbits in G/H are in bijictive correspondence with the double coset
KgH .

iv The action of G on itself by conjugation (g, h) → ghg−1. Its orbits are the conjugacy
classes.

v An action of the additive group R+ of real numbers on a set X is called a 1-parameter
group of transformations or in a more physical language a reversible dynamical system.
In this case the parameter t is thought as time and an orbit is seen as the time evolution

of a physical state. The hypotheses of the group action mean that the evolution is reversible
(i.e. all the group transformations are invertible) and the forces do not vary with time
so that the evolution of a state depends only on the time lapse (group homomorphism
property).

The previous examples lead to single out the following general fact:

Remark. Let G be a group and K a normal subgroup in G, if we have an action of
G on a set X we see that G acts also on the set of K orbits X/K, since gKx = Kgx,
moreover we have (X/K)/G = X/G.

2.2 The study of group actions should start with the elementary analysis of a single
orbit. The next main concept is that of stabilizer:
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Definition. Given a point x ∈ X we set Gx := {g ∈ G|gx = x}. Gx is called the
stabilizer (or little group) of x.

Proposition. Gx is a subgroup and the action of G on the orbit Gx is isomorphic to the
action on the coset space G/Gx.

Proof. The fact that Gx is a subgroup is clear. Given two elements h, k ∈ G we have that
hx = kx if and only if k−1hx = x or k−1h ∈ Gx.

The mapping between G/Gx and Gx which assigns to a coset hGx the element hx is
thus well defined and bijective, it is also clearly G−equivariant and so the claim follows.

Example. Consider the action of G × G on G by left right translation. G is a single
orbit and the stabilizer of 1 is the subgroup ∆ := {(g, g)|g ∈ G} isomorphic to G embedded
in G × G diagonally.

Example. In the case of a 1-parameter subgroup acting continuously on a topological
space, the stabilizer is a closed subgroup of R. If it is not the full group it is the set of
integral multiples ma, m ∈ Z of a positive number a. The number a is to be considered
as the first time in which the orbit returns to the starting point. This is the case of a
periodic orbit.

Remark. Given two different elements in the same orbit their stabilizers are conjugate, in
fact Ghx = hGxh−1. In particular when we identify an orbit to a coset space G/H this
implicitely means that we have made the choice of a point for which the stabilizer is H .

Remark. The orbit cycle decomposition of a permutation can be interpreted in the previous
language. To give a perputation on a set S is equivalent to give an action of the group of
integers Z on S.

If S is finite this induces an action of a finite cyclic group isomorphic to Z/(n).
To study a single orbit we only remark that a subgroup will be of the form Z/(m) with

m a divisor of n. The corresponding coset space is Z/(m) and the generator 1 of Z/(n)
acts on Z/(m) as the cycle x → x + 1.

Consider the set of all subgroups of a group G, on this set G acts by conjugation.
The orbits of this action are the conjugacy classes of subgroups, let us denote by [H ] the
conjugacy class of a subgroup H .

The stabilizer of a subgroup H under this action is called its normalizer. It should not
be confused with the centralizer which for a given subset A of G is the stabilizer under
conjugation of all the elements of A.

Given a group G and an action on X it is useful to introduce the following notions.
For an orbit in X the conjugacy class of the stabilizers of its elements is well defined.

We say that two orbits are of the same orbit type if the associated stabilizer class is the
same. This is equivalent to say that the two orbits are isomorphic as G−spaces. It is often
useful to partition the orbits according to the orbit types. The group of symmetries of the
G action permutes transitively orbits of the same type.
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Suppose that G and X are finite and assume that we have ni orbits of type [Hi] then
we have, from the partition into orbits, the formula:

|X|
|G| =

∑

i

ni

|Hi|

we denote in general by |A| the cardinality of a finite set A.
Exercise Let G be a group with pmn elements, p a prime number not dividing n.
Deduce the theorems of Sylow by considering the action of G by left multiplication on the
set of all subsets of G with pm elements (Wielandt).

Exercise Given two subgroups H,K of G describe the orbits of H acting on G/K, in
particular give a criterion for G/K to be a single H orbit.

Discuss the special case [G : H ] = 2.

2.3 From all the elements of X we may single out the ones for which the stabilizer is
the full group G.

These are the fixed points of the action or invariant points, i.e. the points whose orbit
consists of the point alone. These points will be usually denoted by XG.

XG := {fixed points or invariant points}.

We have thus introduced in a very general sense the notion of Invariant but its full meaning
for the moment is completely obscure, we have first to procede with the formal theory.

2.4 One of the main features of set theory consists in the fact that it allows us to
perform constructions, out of given sets we construct new ones.

This is also the case of G−sets. Let us point out at least 2 constructions:

(1) Given 2 G−sets X,Y we give the structure of a G−set to their disjoint sum X t Y
by acting separately on the two sets and to their product X × Y setting:

(2.4.1) g(x, y) := (gx, gy),

(i.e. once the group acts on the elements it acts also on the pairs.)
(2) Consider now the set Y X of all maps from X to Y , we can act with G (verify it)

setting:

(2.4.2) (gf)(x) := gf (g−1x).

Notice that in the second definition we have used again twice the action of G, the
particular formula given is justified by the fact thet it is really the only way to get a group
action using the two actions.

It reflects a general fact well known in category theory, that maps between two objects
X,Y are a covariant functor in Y and controvariant in X.

We want to explicit immediately a rather important consequence of our formalism:
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Proposition. A map f : X → Y between two G−sets is equivariant (cf. 1.2) if and only
if it is a fixed point under the G−action on the maps.

Proof. This statement is really a tautology, nevertheless deserves to be clearly understood.
The proof is trivial following the definitions. Equivariance means that f(gx) = gf(x). This,
if we substitute x with g−1x, reads f (x) = gf (g−1x) which in the functional language
means that the function f equals the function gf , i.e. it is invariant.

Exercise

i) Show that the orbits of G on G/H × G/K are in canonical 1-1 correspondence with the
double cosets HgK of G.

ii) Given a G equivariant map π : X → G/H show that:

a) π−1(H) is stable under the action of H .
b) The set of G orbits on X is in 1-1 correspondence with the H orbits on π−1(H).
c) Study the case in which X = G/K is also homogeneous.

2.5 We will often consider a special case of the previous section, the case of the trivial
action of G on Y . In this case of course the action of G on the functions is simply:

(2.5.1) (gf )(x) = f(g−1x)

A mapping is equivariant if and only if it is constant on the orbits. In this case we will
always speak of Invariant function. In view of the particular role of this idea in our
treatment we repeat the formal definition.

Definition. A function f on a G set is called an invariant if f (g−1x) = f (x) for all
x ∈ X and g ∈ G.

As we have just remarked a function is invariant if and only if it is constant on the orbits.
Formally we may thus say that the quotient mapping π := X → X/G is an invariant map
and any other invariant function factors as :

X−→
f

Y

π↘ ↗f

X/G

We want to explicit the previous remark in a case of importance.

Let X be a finite G set. Consider a field F (a ring would suffice) and the set F X of
functions on X with values in F .

An element x ∈ X can be identified to the characteristic function of {x}, in this way X
becomes a basis of FX as vector space.

The induced group action of G on FX is by linear transformation and by permuting the
basis elements.

Since a function is invariant if and only if it is constant on orbits we deduce:
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Proposition. The invariants of G on FX form the subspace of F X having as basis the
characteristic functions of the orbits.

In other words given an orbit O consider uO :=
∑

x∈O x. The elements uO form a basis
of (FX )G.

We finish this section with two examples which will be useful in the theory of symmetric
functions.

Consider the set [1, n] := {1, 2, . . . , n} with its canonical action of the symmetric group.

The maps from {1, 2, . . . , n} to the field R of real numbers form the standard vector
space Rn. The symmentric group then acts by permuting the coordinates and in every
orbit there is a unique vector (a1, a2, . . . , an) with a1 ≥ a2 ≥ . . . ≥ an.

The set of these vectors can thus be identified to the orbit space. It is a convex cone
with boundary the elements in which at least two coordinates are equal.

Exercise Discuss the orbit types of the previous example.

Definition. A function M : {1, 2, . . . , n} → N (to the natural numbers) is called a mono-
mial. The set of monomials is a semigroup by addition of values and we indicate by xi

the monomial which is the characteristic function of {i}.

Remark. It is customary to write the semigroup law of monomials multiplicatively. Given
a monomial M if M (i) = hi we have that M = xh1

1 xh2
2 . . . xhn

n . The number
∑

i hi is the
degree of the monomial.

Representing a monomial as a vector (h1, h2, . . . , hn) we see that every monomial is
equivalent, under the symmetric group, to a unique vector in which the coordinates are
non increasing. The non zero coordinates of such a vector form thus a partition, with at
most n parts, of the degree of the monomial.

Exercise To a monomial M we can also associate a partition of the set {1, 2, . . . , n}
by the equivalence i ∼= j iff M (i) = M(j), show that the stabilizer of M is the group of
permutations which preserve the sets of the partition (cf. 1.1) and determine a basis of
invariant symmetric polynomials.

2.6 It is time to develop some other examples. First of all consider the set [1, n] and
a ring A (in most applications the integers or the real or complex numbers).

A function f from [1, n] to A may be thought as a vector and displayed for instance
as a row with the notation (a1, a2, . . . , an) where ai := f (i). The set of all functions is
thus denoted by An. The symmetric group acts on such functions according to the general
formula 2.5.1.

σ(a1, a2, . . . , an) = (aσ−11, aσ−12, . . . , aσ−1n).

In this simple example we already see that the group action is linear. We will refer to this
action as the standard permutation action.



10 Cap. 1, General methods

Remark that if ei denote the canonical basis vector with coordinates 0 except 1 in the
ith position, we have σ(ei) = eσ(i). This formula allows us to describe the matrix of σ in
the given basis, it is the matrix δσ−1(j),i. These matrices are called permutation matrices.

This is a general fact, if we consider a G−set X and a ring A, the set of functions on
X with values in A form also a ring under pointwise sum and multiplication and we have
that:

Remark. The group G acts on the functions with values in A as a group of ring automor-
phisms.

In this particular example it is important to procede further. Once we have the action
of Sn on An we may continue and act on the functions on An! In fact let us consider the
coordinate functions: xi : (a1, a2, . . . , an) → ai, it is clear from the general formulas that
the symmetric group permutes the cordinate functions and σ(xi) = xσ(i). The reader may
note the fact that the inverse has now disappeared.

If we have a ring R and an action of a group G on R as ring automorphisms it is clear
that:

Proposition. The invariant elements form a subring of R.

Thus we can speak of the ring of invariants RG.

2.7 We need another generality. Suppose that we have two group actions on the same
set X i.e. assume that we have two groups G and H acting on the same set X .

We say that the two actions commute if gh(x) = hg(x) for all x ∈ X, g ∈ G and h ∈ H .
This means that every element of G gives rise to an H equivariant map (or we can

reverse the roles of G and H) it also means that we really have an action of the product
group G × H on X given by (g, h)x = ghx.

In this case we easily see that if a function f is G invariant and h ∈ H then hf is also
G invariant. Hence H acts on the set of G invariant functions.

More generally suppose that we are given a G action on X and a normal subgroup K of
G, then it easily seen that the quotient group G/K acts on the set of K invariant functions
and a function is G invariant if and only if it is K and G/K invariant.

Example. The right and left action of G on itself commute (Example 1.2 c).

3 Linear actions, groups of automorphisms, commuting groups.

3.1 We have seen how, given an action of a group G on a set X and a field F , we can
deduce an action over the set FX of functions from X to F , which is linear, i.e. given by
linear operators.
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In general the groups G and the sets X on which they act may have further structures,
as in the case of e a topological or differentiable or algebraic action. In these cases it will
be important to restrict the set of functions to the ones compatible with the structure
under consideration, we will do it systematically.

If X is finite the vector space of functions on X with values in F has, as a possible basis,
the characteristic functions of the elements. It is convenient to identify an element x with
its characteristic function and thus say that our vector space has X as a basis (cf. 2.5).

A function f is thus written as
∑

x∈X f (x)x, the linear action of G on FX induces
on this basis the action from which we started, we call such an action a permutation
representation.

In the algebraic theory we may in any case consider the set of all functions which are
finite sums of the characteristic functions of points, i.e. the functions which are 0 outside
a finite set.

These are usually called functions with finite support, we will often denote these
functions by the symbol F [X], which is supposed to remind us that its elements are linear
combinations of elements of X.

In particular for the left action of G on itself we have the algebraic regular repre-
sentation of G on F [G]. We shall see that this representation is particularly important.

Let us stress a feature of this representation.

We have two actions of G on G the left and the right action which commute with each
other, or in other words we have an action of G × G on G, given by (h, k)g = hgk−1 (for
which G = G × G/∆ where ∆ = G embedded diagonally cf. 1.2c and 2.2).

Thus we have the corresponding two actions on F [G] by (h, k)f(g) = f (h−1gk) and we
may view the right action as symmetries of the left action and conversely.

Sometimes it is convenient to denote by hfk = (h, k)f to stress the left and right actions.

After these basic examples we give a general definition:

Definition. Given a vector space V over a field F (or more generally a module) we
say that an action of a group G on V is linear if every element of G induces a linear
transformation on V , a linear action of a group is also called a representation.

In a different language let us consider the set of all linear invertible transformations of
V , this is a group under composition ( i.e. it is a subgroup of the group of all invertible
transformations) and will be called the:

General linear group of V , indicated with the symbol GL(V ).

In case we take V = Fn (or equivalently in case V is finite dimensional and we identify
V with F n by choosing a basis) we can identify GL(V ) with the group of n × n invertible
matrices, denoted GL(n, F ).

According to our general principles a linear action is thus a homomorphism % of G in
GL(V ) (or in GL(n,F )).
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When we are dealing with linear representations we usually consider also equivariant
linear maps between them, thus obtaining a category.

Exercise Two linear representations ρ1, ρ2 : G → GL(n, F ) are (linearly) isomorphic
if and only if there is an invertible matrix X such that Xρ1(g)X−1 = ρ2(g) for all g ∈ G.

Before we procede any further we should remark an important feature of the theory.

Given 2 linear representations U, V we can form their direct sum U ⊕ V which is a
representation by setting g(u, v) = (gu, gv). If X = A ∪ B is a G set, disjoint union of 2
G stable subsets, we clearly have F A∪B = FA ⊕ FB thus the decomposition in direct sum
is a generalization of the decomposition of a space in G stable sets.

If X is an orbit it cannot be further decomposed as set while FX might be decomposable.
The simplest example is G = {1, τ = (12)} the group with 2 elements of permutations of
[1, 2], the space FX decomposes, setting:

u1 :=
e1 + e2

2
, u2 :=

e1 − e2

2

we have τe1 = e1, τ (e2) = −e2.

We have implicitely used the following ideas:

Definition. i) Given a linear representation V a subspace U of V is a subrepresenta-
tion if it is stable under G.

ii) V is a decomposable representation if we can find a decomposition V = U1 ⊕U2

with the Ui proper subrepresentations, otherwise it is called indecomposable.

iii) V is an irreducible representation if the only subrepresentations of V are V and 0.

We will study in detail some of the deep connections between these notions.

First 2 basic examples:

Example. Let A,B be the algebra of all, resp. of upper triangular (i.e. 0 below the
diagonal) n × n matrices over a field F .

Exercise The vector space Fn is irreducible as an A module, indecomposable but not
irreducible as a B module.

Given 2 linear representations U, V of a group G, the space of G equivariant linear maps
is denoted HomG(U, V ) and called:

Definition. Space of intertwining operators.

In this book we will almost always treat finite dimensional representations, thus unless
specified otherwise our vector spaces will always be assumed to be finite dimensional.

It is quite useful to rephrase the theory of linear representations in a different way:

Consider the space F [G]:



§3. Linear actions, groups of automorphisms, commuting groups. 13

Proposition. i) The group multiplication extends to a bilinear product on F [G] for which
F [G] is an associative algebra with 1, called the group algebra.

ii) Linear representations of G are the same as F [G] modules.

Proof. The first part is immediate. As for the second given a linear representation of G
we have the module action (

∑
g∈G agg)v :=

∑
g∈G ag(gv). The converse is clear.

Remark. 1) Consider the left and right action on the functions F [G].

Let h, k, g ∈ G and identify g with the characteristic function of the set {g} then
hgk = hgk−1 (as functions).

The space F [G] as G × G module is the permutation representation associated to G =
G × G/∆ with its G × G action (3.1).

Thus a space of functions on G is stable under left (res. right) action if and only if it is
a left (resp. right) ideal of the group algebra F [G].

2) Notice that the direct sum of representations is the same as the direct sum as modules,
also a G linear map between two representations is the same as a module homomorphism.

Example. Let us consider a finite group G, a subgroup K and the linear space F [G/K],
which as we have seen is a permutation representation.

We can identify the functions on G/K as the functions on G which are invariant under
the right action of K, in this way the element gK ∈ G/K is identified to the characteristic
function of the coset gK and F [G/K] is identified to a subrepresentation of the group
algebra F [G].

(3.1.1) F [G/K ] = {a ∈ F [G]|ah = a, ∀h ∈ K}.

If we denote by u the characteristic function of the subgroup H we see that u generates
this module over F [G].

Given 2 subgroups H, K and the linear spaces F [G/H], F [G/K] ⊂ F [G] we want to
determine their intertwiners.

For an intertwiner f , and u := χH as before, let f (u) = a ∈ F [G/K ]. We have
hu = u, ∀h ∈ H and so, since f is an intertwiner a = f (u) = f(hu) = ha. Thus we must
have that a is also left invariant under H . Conversely given such an a the map b → ba

|H| is
an intertwiner mapping u to a. Since u generates F [G/H ] as a module we see that:

Proposition. The space HomG(F [G/H], F [G/K ]) of intertwiners can be identified with
the H invariants of F [G/K ], or to the H − K invariants HF [G]K of F [G]. It has as basis
the characteristic funtions of the double cosets HgK.

In particular for H = K we have that the functions which are biinvariants under H form
under convolution the endomorphism algebra of F [G/H].

These functions have as basis the characteristic funtions of the double cosets HgH , one
usually indicates by Tg = THgH the corresponding operator. In this way we have the Hecke



14 Cap. 1, General methods

algebra and Hecke operators, the multiplication rule between such operators depends on
the multiplication on cosets HgHHkH = ∪HhiH and each double coset appearing in this
product appears with a positive integer multiplicity so that TgTh =

∑
niThi .

1

Similar results when we have 3 subgroups H,K,L and compose:

HomG(F [G/H], F [G/K])HomG(F [G/K ], F [G/L]) → HomG(F [G/H], F [G/L])

The notion of permutation representation is a special case of that of induced rep-
resentation, if M is a representation of a subgroup H of a group G we consider the
space

IndG
HM := {f : G −→ M |f(gh) = h−1f (g), ∀h ∈ H, g ∈ G}.

On this space of functions define a G action by (gf)(x) := f (gx). It is easy to see that this
is a well defined action. Moreover we can identify m ∈ M with the function f such that
f (x) = 0 if x /∈ H and f(h) = h−1m if h ∈ H.
Exercise Verify that, choosing a set of representatives of the cosets G/H we have as
vector space the decomposition

IndG
HM := ⊕g∈G/HgM.

3.2 Suppose we are now given a linear function f ∈ V ∗ on V , by definition the function
gf is given by (gf)(v) = f(g−1v) and hence it is again a linear function.

Thus G acts dually on the space V ∗ of linear functions and it is clear that this is a linear
action which is called the contragredient action.

In matrix notations, if we use as basis of the dual space the dual of a given basis, the
contragredient action of an operator T is given by the inverse transpose fo the matrix of
T .

We will use the notation < ϕ|v > for the value of a linear form on a vector and thus
have the identity:

(3.2.1) < gϕ|v >=< ϕ|g−1v > .

Alternatively it may be convenient to define on V ∗ a right action by the more symmetric
formula:

(3.2.2) < ϕg|v >=< ϕ|gv > .

Exercise. Prove that the dual of a permutation representation is isomorphic to the same
permutation representation. In particular one can apply this to the dual of the group
algebra.

1It is important in fact to use these concepts in a much more general way as done by Hecke in the
theory of modular forms. Hecke studies the action of Sl(2, Z) on M2(Q) the 2 × 2 rational matrices. In
this case one has also double cosets, a product structure on M2(Q) and the fact that a double coset is a
finite union of right or left cosets. These properties suffice to develop the Hecke algebra. In this case this
algebra acts on a different space of functions, the modular forms (cf. Ogg).
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In the set of all functions on a finite dimensional vector space V a special role play the
polynomial functions. By definition a polynomial fuction is an element of the subalgebra
(of the algebra of all functions with values in F ) generated by the linear functions.

If we choose a basis and consider the coordinate functions x1, x2, . . . , xn with respect to
the chosen basis, a polynomial function is a usual polynomial in the xi. If F is infinite
thie expression as a polynomial is unique and we can consider the xi as given variables.

The ring of polynomial functions on V will be denoted by P [V ] the ring of fromal
polymomials by F [x1, x2, . . . , xn].

Choosing a basis we have always a surjective homomorphism F [x1, x2, . . . , xn] → P [V ]
which is an isomorphism if F is infinite.
Exercise If F is a finite field with q elements prove that P [V ] has qn elements and
that the kernel of the map F [x1, x2, . . . , xn] → P [V ] is the ideal generated by the elements
xq

i − xi.
Since the linear funtions are preserved under a given group action we have:

Proposition. Given a linear action of a group G on a vector space V , G acts on the
polynomial functions P [V ] by the rule (gf)(v) = f(g−1v) as a group of ring automorphisms.

Of course the full linear group acts on the polynomial functions. In the language of
coordinates we may view the action as linear changes of coordinates.
Exercise Show that we always have a linear action of GL(n, F ) on the formal poly-
nomial ring F [x1, x2, . . . , xn].

3.3 We assume the base field infinite for simplicity although the reader can see easily
what happens for finite fields. One trivial but important remark is that the group action
on P [V ] preserves the degree.

Recall that a function f is homogeneous of degree k if f(αv) = αkf(v) for all α′s and
v′s.

The set P [V ]q of homogeneous polynomials of degree q is a subspace, called in classical
language the space of quantics. If dim(V ) = n one speaks of n−ary quantics.

In general a direct sum of vector spaces U = ⊕∞
k=0Uk is called a graded vector space. A

subspace W of U is called homogeneous, if, setting Wi := W ∩ Ui, we have W = ⊕∞
k=0Wk.

The space of polynomials is thus a graded vector space P [V ] = ⊕∞
k=0P [V ]k. One has

immediately (gf )(αv) = f (αg−1v) = αk(gf)(v) which has an important consequence:

Theorem. If a polynomial f is an invariant (under some linear group action) then also
its homogeneous components are invariant.

Proof. Let f =
∑

fi be the decomposition of f in homogeneous components, gf =
∑

gfi

is the decomposition in homogeneous components of gf . If f is invariant f = gf and then
fi = gfi for each i since the decomposition into homogeneous components is unique.

In order to summarize the analysis done up to now let us also recall that an algebra A
is called a graded algebra if it is a graded vector space, A = ⊕∞

k=0Ak and, for all h, k we
have AhAk ⊂ Ah+k.
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Proposition. The spaces P [V ]k are subrepresentations. The set P [V ]G of invariant poly-
nomials is a graded subalgebra.

3.4 To some extent the previous theorem may be viewed as a special case of the more
general setting of commuting actions.

Let thus be given two representations %i : G → GL(Vi), i = (1, 2), consider the linear
transformations between V1 and V2 which are G equivariant, it is clear that they form a
linear subspace of the space of all linear maps between V1 and V2.

The space of all linear maps will be denoted by hom(V1, V2) while the space of equivariant
maps will be denoted homG(V1, V2). In particular when the two spaces coincide we write
End(V ) or EndG(V ) instead of hom(V, V ) or homG(V, V ).

These spaces are in fact now algebras, under composition of operators. Choosing bases
we have that EndG(V ) is the set of all matrices which commute with all the matrices
coming from the group G.

Consider now the set of invertible elements of EndG(V ), i.e. the group H of all linear
operators which commute with G.

By the remarks of 3.3, H preserves the degrees of the polynomials and maps the algebra
of G invariant functions in itself thus:

Remark. H induces a group of automorphisms of the graded algebra P [V ]G.

We view this remark as a generalization of Proposition 3.3 since the group of scalar
multiplications commutes (by definition of linear transformation) with all linear operators.
Moreover it is easy to prove:
Exercise Given a graded vector space U = ⊕∞

k=0Uk define an action % of the multi-
plicative group F ∗ of F setting %(α)(v) := αkv if v ∈ Uk. Prove that a subspace is stable
under this action if and only if it is a graded subspace (F is assumed to be infinite).

4 Symmetric functions

4.1 Our aim is to alternate elements of the general theory with significant examples.
We deal now with symmetric functions.

The theory of symmetric functions is a classical theory developed (by Lagrange, Galois
and others) in connection with the theory of algebraic equations in one variable and the
classical question of resolution by radicals.

The main link are the formulas expressing the coefficients of a polynomial through its
roots. A formal approach is the following.
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Consider polynomials in variables x1, x2, . . . , xn and an extra variable t over the ring
of integers. The elementary symmetric functions ei := ei(x1, x2, . . . , xn) are implicitely
defined by the formula:

(4.1.1) p(t) :=
n∏

i=1

(1 + txi) :=
n∑

i=0

eit
i.

More explicitely ei(x1, x2, . . . , xn) is the sum of
(
n
i

)
terms, the products, over all subsets

of {1, 2, . . . , n} with i elements, of the variables with indeces in that subset.

(4.1.2) ei =
∑

1≤a1<a2<···<ai≤n

xa1xa2 . . . xai .

If σ is a permutation of the indeces we obviously have

n∏

i=1

(1 + txi) =
n∏

i=1

(1 + txσi)

and thus the elements ei are invariant under permutation of the variables.

Of course the polynomial tnp(− 1
t ) has the elements xi as its roots.

Definition. A polynomial in the variables (x1, x2, . . . , xn), invariant under permutation
of these variables, is called a symmetric function.

The functions ei are called elementary symmetric functions.

There are several obviously symmetric functions. The power sums ψk :=
∑n

i=1 xk
i and

the funtions Sk defined as the sum of all monomials of degree k.

These are particular cases of the following general construction.

Consider the basis of the ring of polynomials given by the monomials which is permuted
by the symmetric group.

By Proposition 2.4 we have:

A basis of the space of symmetric functions is given by the sums of monomials in the
same orbit, for all orbits.

Orbits correspond to non increasing vectors (h1 ≥ h2 ≥ . . . ≥ hn), hi ∈ N and we may
set Σ(h1,h2,... ,hn) to be the sum of monomials in the corresponding orbit.

As we will see soon there are also some subtler symmetric functions (the Schur functions)
that will play an important role in the sequel.

We can start with a first important fact, the explicit connection between the functions
ei and the ψk.

To do this we will perform the next computations in the ring of formal power series,
although the series that we will consider have also a meanining as convergent series.
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Start from the identity
∏n

i=1(txi + 1) =
∑n

i=0 eit
i and take the logaritmic derivative

(relative to the variable t) of both sides. We use the fact that such an operator transforms
products into sums to get

n∑

i=1

xi

(txi + 1)
=

∑n
i=1 ieit

i−1
∑n

i=0 eiti
.

The left hand side of this formula can be developed as
n∑

i=1

xi

∞∑

h=0

(−txi)h =
∞∑

h=0

(−t)hψh+1.

From this we get the identity

(
∞∑

h=0

(−t)hψh+1)(
n∑

i=0

eit
i) = (

n∑

i=1

ieit
i−1)

which gives, equating coefficients:
∑

i+j=m

(−1)iψi+1ej = (m + 1)em+1

where we intend ei = 0 if i > n.
It is clear that these formulas give recursive ways of expressing the ψi in terms of the

ej with integral coefficients, on the other hand they can also be used to express the ei

in terms of the ψj , but in this case it is necessary to perform some divisions and the
coefficients are rational and usually not integers.

It is useful to give a second proof, consider the map:

πn : Z[x1, x2, . . . , xn] → Z[x1, x2, . . . , xn−1]

given by evaluating xn in 0.

Lemma. The intersection of Ker(πn) with the space of symmetric functions of degree < n
is 0.

Proof. Consider Σ(h1,h2,... ,hn), a sum of monomials in an orbit, if the degree is less than n
we have hn = 0; under πn we get πn(Σ(h1,h2,... ,hn)) = Σ(h1,h2,... ,hn−1) thus if the degree is
less than n the map πn maps these basis elements into distinct basis elements.

Now the second proof. In the identity
∏n

i=1(t − xi) :=
∑n

i=0(−1)ieit
n−i substitute t

with xi and then sum over all i we get:

0 =
n∑

i=0

(−1)ieiψn−i, or ψn =
n∑

i=1

(−1)i−1eiψn−i.

By the previous lemma this identity remains valid also for symmetric functions in more
than n variables and gives the required recursion.
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It is in fact a general fact that symmetric functions can be expressed as polynomials in
the elementary ones, we will now discuss an algorithmic proof.

To make the proof transparent let us stress in our formulas also the number of variables
and denote by e

(k)
i the ith elementary symmetric function in the variables x1, . . . , xk. Since:

(
n−1∑

i=0

e
(n−1)
i ti)(txn + 1) =

n∑

i=0

e
(n)
i ti

we have:

e
(n)
i = e

(n−1)
i−1 xn + e

(n−1)
i or e

(n−1)
i = e

(n)
i − e

(n−1)
i−1 xn.

In particular, in the homomorphism π : Z[x1, . . . , xn] → Z[x1, . . . , xn−1] given by
evaluating xn in 0 we have that symmetric functions map to symmetric functions and

π(e(n)
i ) = e

(n−1)
i , i < n, π(e(n)

n ) = 0.

Given a symmetric polynomial f (x1, . . . , xn) we evaluate it at xn = 0, if the resulting
polynomial f (x1, . . . , xn−1) is 0 then f is divisible by xn.

If so, by symmetry it is divisible by all of the variables and hence by the function en.
We perform the division and pass to another symmetric function of lower degree.

Otherwise by induction there exists a polynomial p in n−1 variables which, evaluated in
the n − 1 elementary symmetric functions of x1, . . . , xn−1, gives f(x1, . . . , xn−1, 0). Thus
f − p(e1, e2, . . . , en−1) is a symmetric function vanishing at xn = 0.

We are back to the previous step.

The uniqueness is implicit in the algorithm which can be used to express any symmetric
polynomial as a unique polynomial in the elementary symmetric functions.

Theorem. A symmetric polynomial is a polynomial, in a unique way, in the elementary
symmetric functions.

4.2 In the same way the reader may discuss the following fact.

Consider the n! monomials

xh1
1 . . . x

hn−1
n−1 , 0 ≤ hi ≤ n − i.

Theorem. The previous monomials are a basis of Z[x1, . . . , xn] over Z[e1, . . . , en].

Remark. The same theorem is clearly true if we replace the coefficient ring Z by any
commutative ring A. In particular we will use it when A is itself a polynomial ring.
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5 Resultant, discriminant, Bezoutiante

5.1 In order to understand the importance of theorem 4.1 on elementary symmetric
functions and also the classical point of view let us develop a geometric picture.

Consider the space Cn and the space Pn := {tn +b1t
n−1+ . . .+bn} of monic polynomials

(which can be identified to Cn by the use of the coefficients).
Consider next the map π : Cn → Pn given by:

π(α1, . . . , αn) :=
n∏

i=1

(t − αi).

We thus obtain a polynomial tn−a1t
n−1+a2t

n−2+· · ·+(−1)nan = 0 with roots α1, . . . , αn

(and the coefficients ai are the elementary symmetric functions in the roots), any monic
polynomial is obtained in this way (fundamental theorem of Algebra).

Two points in Cn project to the same point in Pn if and only if they are in the same
orbit under the symmetric group, i.e. Pn parametrizes the Sn orbits.

Suppose we want to study a property of the roots which can be verified by evaluating
some symmetric polynomials in the roots, this will usually be the case for any condition
on the set of all roots. Then one can perform the computation without expliciting the
roots, since one has only to study the formal symmetric polynomial expression and, using
the previous or another algorithm express the value of a symmetric function of the roots
through the coefficients.

In other words a polynomial function f on Cn which is symmetric, factors through the
map π giving rise to an effectively computable2 polynomial function f on Pn such that
f = fπ.

A classical example is given by the discriminant.
The condition that the roots be distinct is clearly that

∏
i<j(αi − αj) 6= 0. The polyno-

mial V (x) :=
∏

i<j(xi − xj) is in fact not symmetric. It is the value of the Vandermonde
determinant, i.e. the determinant of the matrix:

(5.1.1) A :=




xn−1
1 xn−1

2 . . . xn−1
n

...
...

. . .
...

x2
1 x2

2 . . . x2
n

x1 x2 . . . xn

1 1 . . . 1




Proposition. V (x) is antisymmetric, i.e. permuting the variables it is multiplied by the
sign of the permutation.

Remark. The theory of the sign of permutations can be deduced by analyzing the Van-
dermonde. In fact since for a transposition τ it is clear that V (x)τ = −V (x) it follows

2i.e. computable without solving the equation
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that V (x)σ = V (x), or − V (x) according to whether σ is a product of an even or an odd
number of permutations. The sign is then clearly a homomorphism.

We also see immediately that V 2 is a symmetric polynomial.

We can compute it in terms of the functions ψi as follows. Consider the matrix B := AAt,
clearly in the ij position of B we find the symmetric function ψ2n−(i+j) and its determinant
is V 2.

The matrix B (or rather the one reordered with ψi+j−2 in the ij position) is classically
known as the Bezoutiante and it carries some further information on the roots. We shall
see for it a different determinant formula involving directly the elementary symmetric
functions.

We write V 2 as a polynomial D(e1, e2, . . . , en) in the elementary symmetric functions.

Definition. The polynomial D is called the discriminant.

Since this is an interesting example we will pursue it a bit further.

Let us assume that F is a field, f(t) a monic polynomial (of degree n) with coefficients
in F and let R := F [t]/(f(t)). R is an algebra over F of dimension n.

For any finite dimensional algebra A over a field F we can perform the following con-
struction.

Any element a of A induces a linear transformation La : x → ax on A (and also a right
one). We define tr(a) := tr(La), the trace of the operator La.

We consider next the bilinear form (a, b) := tr(ab) this is the trace form of A. It is
symmetric and associative in the sense that (ab, c) = (a, bc).

We compute it first for R := F [t]/(tn) using the fact that t is nilpotent we see that
tr(tk) = 0 if k > 0 and so the trace form has rank 1 with kernel the ideal generated by t.

To compute it for the algebra R := F [t]/(f (t)) we pass to the algebraic closure F and
compute in F [t]/(f (t)).

We split the polynomial with respect to its distinct roots f (t) =
∏k

i=1(t − αi)hi and
F [t]/(f(t)) = ⊕k

i=1F [t]/(t − αi)hi .

Thus the trace of an element mod f (t) is the sum of its traces mod (t − αi)hi .

Let us compute the trace of tk mod (t − αi)hi we claim that it is hiα
k
i . In fact in

the basis 1, (t − αi), (t − αi)2, . . . , (t − αi)hi−1 (mod (t − αi)hi) the matrix of t is upper
triangular with constant eigenvalue αi on the diagonal and so the claim follows.

As a consequence we see that the matrix of the trace form, in the basis 1, t, . . . , tn−1 is
the Bezoutiante of the roots. Since for a given block F [t]/(t − αi)hi the ideal generated
by (t − αi) is nilpotent of codimension 1, we see that it is exactly the radical of the block
and the kernel of its trace form. It follows that:
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Proposition. The rank of the Bezoutiante equals the number of distinct roots.

Given a polynomial f(t) let f(t) denote the polynomial with the same roots as f (t) but
all distinct. In characteristic zero this polynomial is obtained dividing f (t) by the G.C.D.
between f(t) and its derivative.

Let us consider now the algebra R := F [t]/(f (t)) its radical N and R := R/N . By the
previous analysis it is clear that R = F [t]/(f (t)).

Consider now the special case in which F = R is the field of real numbers. Then
we can divide the distinct roots into the real roots α1, α2, . . . , αk and the complex ones
β1, β1, β2, β2, . . . , βh, βh.

The algebra R is isomorphic to the direct sum of k copies of R and h copies of C, its
trace form is the orthogonal sum of the corresponding trace forms. On R the trace form
is just x2 but on C we have tr((x + iy)2) = 2(x2 − y2). We deduce that:

Theorem. The number of real roots of f (t) equals the signature of its Bezoutiante.

There are simple variations on this theme, for instance if we consider the quadratic form
Q(x) := tr(tx2) we see that its matrix is again easily computed in terms of the ψk and its
signature equals the number of real positive minus the number of real negative roots. In
this way one can also determine the number of real roots in any interval.

These results are Sylvester’s variations on Sturm’s theorem. They can be found in the
paper in which he discusses the law of Inertia which now bears his name.

5.2 Let us go back to the roots, if x1, x2, . . . , xn; y1, y2, . . . , ym are two sets of variables
consider the polynomial

A(x, y) :=
n∏

i=1

m∏

j=1

(xi − yj).

This is clearly symmetric, separately in the variables x and y, if we evaluate it in numbers
it vanishes if and only if one of the values of the x’s coincides with a value of the y’s,
conversely any polynomial in these two sets of variables which has this property is a
multiple of A.

By the general theory A can be expressed as a polynomial R in elementary symmetric
funtions.

Let us denote by a1, a2, . . . , an the elementary symmetric functions in the xi’s and
b1, . . . , bm the ones in the yj ’s. Thus A(x, y) = R(a1, . . . , an, b1, . . . , bm).

The polynomial R is called the resultant.

When we evaluate the variables x and y to be the roots of two polynomials f (t), g(t) of
degrees n, m respectively we see that the value of A can be computed evaluating R in the
coefficients (with some signs) of these polynomials. Classically thus the resultant is the
polynomiasl vanishing when the two polynomials have a common root.
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There is a classical expression as determinant, the theory is the following.
Let f (t) := a0t

n + a1t
n−1 + · · · + an g(t) := b0t

n + b1t
n−1 + · · · + bm and let us denote

by Ph the h + 1 dimensional space of all polynomials of degree ≤ h.
Consider now the linear transformation Tf,g : Pm−1 ⊕ Pn−1 → Pm+n−1 given by

Tf,g(a, b) := fa + gb.
This is a transformation between two n + m dimensional spaces and it is quite easy to

write down its square matrix Rf,g in the bases (1, 0), (t, 0), . . . , (tm−1, 0), (0, 1), (0, t), . . . , (0, tn−1)
and 1, t, t2, . . . , tn+m−1 (say n ≤ m).

(5.2.1)




an 0 0 . . . 0 bm 0 . . . 0 0

an−1 an 0 . . . 0 bm−1 bm . . .
. . . 0

an−2 an−1 an 0 . . . 0 bm−1 bm
. . .

...
...

...
...

. . .
...

...
. . .

...
. . .

...

a1 a2 a3
. . .

...
a0 a1 a2

0 a0 a1
. . .

...
...

...
...

. . .
...

...
. . .

...
. . .

...

0
... b0 b1 b2

. . .
...

0 0 . . . 0 b0 b1
. . .

...

0 0 0 0 b0
. . .

...
...

...
...

. . .
...

...
. . .

...
. . .

...
...

...
...

. . .
...

...
. . .

... b0
...

0 0 0 . . . a0 0 . . . . . . 0 b0




Proposition. If a0b0 6= 0, the rank of Tf,g (n ≤ m) equals m+n−d where d is the degree
of h := G.C.D(f, g).

Proof. By Euclid’s algorithm the image of Tf,g consists of all polynomials of degree ≤
n + m − 1 and multiples of h, its kernel of pairs (sg′,−sf ′) where f = hf ′, g = hg′, hence
the claim.

As a corollary we have that the determinant R(f, g) of Rf,g vanishes exactly when the
two polynomials have a common root.

Definition. The polynomial R(f, g) is called the resultant of the two polynomials f (t), g(t).

If we consider the coefficients of f and g as variables we can still think of Tf,g as a map
of vector spaces, except that the base field is the field of rational functions in the given
variables.

Then we can solve the equation fa + gb = 1 by Cramer’s rule and we see that the
coefficients of the polynomials a, b are given by the cofactors of the first row of the matrix
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Rf,g divided by the resultant, in particular we can write R = Af(t) + Bg(t) where A,B
are polynomials in t of degrees m − 1, n − 1 respectively and with coefficients polynomials
in the variables (a0, a1, . . . , an, b0, b1, . . . , bm).

This can also be understood as follows. In the matrix Rf,g we add to the first row
the second multiplied by t the third multiplied by t2 and so on, we see that the first
row becomes f(t), f (t)t, f(t)t2, . . . , f(t)tm−1, g(t), g(t)t, g(t)t2, . . . , g(t)tn−1. Under these
operations of course the determinant does not change and we see that developing it along
the first row we get the desired identity.
Exercise Consider the two polynomials as a0

∏n
i=1(t − xi), b0

∏m
j=1(t − yj) and thus

substitute in R to the variables ai the element (−1)ia0ei(x1, . . . , xn) and to bi the element
(−1)ib0ei(y1, . . . , ym). The polynomial we obtain is am

0 bn
0A(x, y).

5.3 In the special case when we take g(t) = f ′(t), the derivative of f(t), we have that
the vanishing of the resultant is equivalent to the existence of multiple roots. We have
already seen that the vanishing of the discriminant implies the existence of multiple roots,
it is now easy to connect the two approaches.

The resultant R(f, f ′) is considered as a polynomial in the variables (a0, a1, . . . , an), if
we substitute in R(f, f ′) to the variables ai the element (−1)ia0ei(x1, . . . , xn) we have
a polynomial in the x with coefficients involving a0 which vanishes whenever two x’s
coincides.

Thus it is divisible by the discriminant of these variables. A degree computation shows
in fact that it is a constant (with respect to the x) multiple cD. The constant c can be
evaluated easily since the given substitution in the matrix Rf,f ′ gives that every row of
the resulting matrix is a multiple of a0 thus a0 will appear with exponent 2n − 1 and
c = c0a

2n−1
0 with c0 an integer, by specializing to the polynomial xn − 1 we see that

c0 = ±nn.

6 Schur functions

6.1 It is important to discuss along symmetric, also alternating functions, we assume
to work on integral polynomials.

Definition. A polynomial f in the variables (x1, x2, . . . , xn), is called an alternating func-
tion, if given a permutation σ of these variables

fσ = f (xσ(1), xσ(2, . . . , xσ(n)) = εσf (x1, x2, . . . , xn),

εσ being the sign of the permutation.

We have seen the Vandermonde determinant as a basic alternating polynomial, V (x) :=∏
i<j(xi − xj).
The main remark on alternating functions is the following.
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Proposition. A polynomial f is alternating if and only if it is of the form f := V (x)g
with g a symmetric polynomial.

Proof. Substitute, in an alternating polynomial f to a variable xj a variable xi for i 6= j.
We get the same polynomial if we first exchange xi and xj in f . Since this changes the
sign it means that, under this substitution f becomes 0.

This means that f is divisible by xi − xj ; since i, j are arbitrary f is divisible by V (x).
Writing f = V (x)g it is clear that g is symmetric.

Let us be more formal, let A,S denote the sets of antisymmetric and symmetric poly-
nomials. We have seen that A = V (x)S or A is a free rank 1 module over the ring S
generated by V (x).

In particular any integral basis of A gives, dividing by V (x), an integral basis of S. In
this way we will presently obtain the Schur functions.

To understand the construction let us make a fairly general discussion. In the ring of
polynomials Z[x1, x2, . . . , xn] let us consider the basis given by the monomials (which are
permuted by Sn).

Recall that the orbits of monomials are indexed by non increasing sequences of in-
tegers. To m1 ≥ m2 ≥ m3 · · · ≥ mn ≥ 0 corresponds the orbit of the monomial
xm1

1 xm2
2 xm3

3 . . . xmn
n .

Let f be an antisymmetric polynomial and (ij) a transposition. Applying this transpo-
sition to f it changes sign while the transposition fixes all monomials in which xi, xj have
the same exponent.

It follows that all the monomials which have non 0 coefficient in f must have distinct
exponents. Given a sequence of exponents m1 > m2 > m3 > · · · > mn ≥ 0 the coefficients
of the monomial xm1

1 xm2
2 xm3

3 . . . xmn
n and of xm1

σ(1)x
m2
σ(2)x

m3
σ(3) . . . xmn

σ(n) differ by the sign of σ.

It follows that:

Theorem. The functions:
∑

σ∈Sn

εσxm1
σ(1)x

m2
σ(2) . . . xmn

σ(n), m1 > m2 > m3 · · · > mn ≥ 0

are an integral basis of the space of antisymmetric functions.

It is often useful, when computing with alternating functions, to use a simple de-
vice. Consider the subspace SM spanned by the set of standard monomials xk1

1 xk2
2 . . . xkn

n

with k1 > k2 > k3 . . . > kn and the linear map L from the space of polynomials to
SM which is 0 on the non standard monomials and it is the identity on SM . Then
L(

∑
σ∈Sn

εσxm1
σ(1)x

m2
σ(2) . . . xσ(n)) = xm1

1 xm2
2 . . . xmn

n thus L establishes a linear isomorphism
between the space of alternating polymonials and SM which maps the basis of the theorem
in the standard monomials.
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6.2 It is convenient to use the following conventions. Consider the sequence

% := (n − 1, n − 2, . . . , 2, 1, 0),

Lemma. The map λ = (m1,m2, m3, . . . ,mn) −→ λ + % == (m1 + n − 1,m2 + n − 2,m3 +
n − 3, . . . ,mn) is a a bijiective correspondence between decreasing and strictly decreasing
sequences.

We thus indicate by Aλ the corresponding antisymmetric function. We can express it
also as a determinant of the matrix Mλ having in the i, j position the element xmi+n−i

j

and remark that A0 = V (x).3

We next set Sλ(x) := Aλ/V (x) the Schur function associated to λ, when there is no
ambiguity we will drop the variables symbol and speak of Sλ.

Sometimes we refer to λ as a partition of the integer
∑

mi and write λ `
∑

i mi.

We call heigth of λ and denote it by ht(λ) the number of non 0 elements in the sequence
mi.

We also graphically represent it by a Young diagram. The numbers mi appear then as
the lengths of the rows (cf. Chapter 3).

We can also consider the columns of the diagram which will be thought as rows of the
dual partition.

We have thus that:

Theorem. The functions Sλ are an integral basis of the ring of symmetric functions. If
λ ` m the degree of Sλ is m.

Notice that the Vandermonde determinant is the alternating function A0 and S0 = 1.

Several interesting combinatorial facts are associated to these functions we will see
some of them in the next section. The main significance of the Schur functions is in the
representation theory of the linear group as we will see later in Chapter 3.

If λ = (m1,m2,m3, . . . , mn) is a partition and a a positive integer let us denote by a
the partition (a, a, a, . . . , a) then from 6.1.1 follows that

(6.2.1) Aλ+a = (x1x2 . . . xn)aAλ, Sλ+a = (x1x2 . . . xn)aSλ.

We let m+1 be the number of variables and want to understand, given a Schur function
Sλ(x1, . . . , xm+1) the form of Sλ(x1, . . . , xm, 0) as symmetric function in m variables.

Let λ := h1 ≥ h2 ≥ · · · ≥ hm+1 ≥ 0, we have seen that, if hm+1 > 0 then Sλ(x1, . . . , xm+1) =∏m+1
i=1 xiSλ(x1, . . . , xm+1) where λ := h1 − 1 ≥ h2 − 1 ≥ · · · ≥ hm+1 − 1.

In this case, clearly Sλ(x1, . . . , xm, 0) = 0.

3It is conventional to drop the numbers equal to 0 in a decreasing sequence.
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Assume now hm+1 = 0 and denote by the same symbol λ the sequence h1 ≥ h2 ≥
· · · ≥ hm. Let us start from the Vandermonde determinant V (x1, . . . , xm, xm+1) =∏

i<j≤m+1(xi − xj) and set xm+1 = 0 getting

V (x1, . . . , xm, 0) =
m∏

i=1

xi

∏

i<j≤m

(xi − xj) =
m∏

i=1

xiV (x1, . . . , xm).

Now consider the alternating function Aλ(x1, . . . , xm, xm+1).

Set `i := hi + m + 1 − i so that `m+1 = 0 and

Aλ(x1, . . . , xm, xm+1) =
∑

σ∈Sm+1

εσx
`σ(1)
1 . . . x

`σ(m+1)
m+1 ,

setting xm+1 = 0 we get the sum restricted only on the terms for which σ(m +1) = m + 1
or

Aλ(x1, . . . , xm, 0) =
∑

σ∈Sm

εσx
`σ(1)
1 . . . x

`σ(m)
m

now in m− variables the partition λ corresponds to the decreasing sequence hi +m +1 − i
hence

Aλ(x1, . . . , xm, 0) =
m∏

i=1

Aλ(x1, . . . , xm), Sλ(x1, . . . , xm, 0) = Sλ(x1, . . . , xm).

Thus we see that, under the evaluation of xm+1 to 0 the Schur functions Sλ van-
ish, if heigth(λ) = m + 1 otherwise they map to the corresponding Schur functions in
m−variables.

One uses these remarks as follows. Consider a fixed degree n, for any m let Sn
m be the

space of symmetric functions of degree n in m variables.

From the theory of Schur functions the space Sn
m has as basis the functions Sλ(x1, . . . , xm)

where λ ` n has heigth ≤ m. Under the evaluation xm → 0 we have a map Sn
m → Sn

m−1.
We have proved that this map is an isomorphism as soon as m > n hence all identities
which we prove for symmetric functions in n variables of degree n are valid in any number
of variables.4

We want to prove now that for the elementary symmetric functions we have

(6.2.2) eh = S1h .

According to our previous discussion we can set all the variables xi, i > h to 0. Then eh

reduces to
∏h

i=1 xi as well as S1h from 6.2.1.

4One way of formalizing this is to pass formally to a ring of symmetric functions in infinitely many
variables which has as basis all Schur functions without restriction to the heigth and is a polynomial ring
in infinitely many variables corresponding to all possible elementary symmetric functions.
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6.3 Next we want to discuss the value of Sλ(1/x1, 1/x2, . . . , 1/xn). We see that sub-
stituting xi with 1/xi in the matrix Mλ and multiplying the jth column by xm1+n−1

j

we obtain a matrix which equals, up to rearranging the rows, that of the partition
λ′ := m′

1,m
′
2, . . . ,m

′
n where mi + m′

n−i+1 = m1. Up to a sign thus:

(x1x2 . . . xn)m1+n−1Aλ(1/x1, . . . , 1/xn) = Aλ′ .

For the Schur function we have to apply the procedure to both numerator and denominator
so that the signs cancel and we get Sλ(1/x1, 1/x2, . . . , 1/xn) = (x1x2 . . . xn)−m1Sλ′ .

If we use the diagram notation for partitions we easily visualize λ′ by inserting λ in a
rectangle of base m1 and then taking its complement.

7 Cauchy formulas

7.1 The formulas we want to discuss have important applications in representation
theory, for the moment we wish to present them as purely combinatorial identities.

∏

i,j=1,n

1
1 − xiyj

=
∑

λ

Sλ(x)Sλ(y)

the right hand side is the sum over all partitions.
∏

i≤j=1,n

1
1 − xixj

=
∑

λ∈Λec

Sλ(x),

if n is even ∏

i<j=1,n

1
1 − xixj

=
∑

λ∈Λer

Sλ(x),

Here Λec, resp. Λer indicates the set of diagrams with rows (resp. columns) of even length.
Let us start from the first one. It can be deduced considering the determinant of the

n × n matrix:
A := (aij), with aij =

1
1 − xiyj

.

Claim
V (x)V (y)∏

i,j=1,n(1 − xiyj)
= det(A).

Subtracting the first row to the ith one has a new matrix (bij) where:

b1j = a1j , and for i > 1, bij =
1

1 − xiyj
−

1
1 − x1yj

=
(xi − x1)yj

(1 − xiyj)(1 − x1yj)
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thus from the ith row i > 1 one can extract from the determinant the factor xi − x1 and
from the jth columnn the factor 1

1−x1yj
.

Thus the given determinant is the product of
∏n

i=2
(xi−x1)
(1−x1yi)

with the determinant

(7.1.1)




1 1 1 . . . 1 1
y1

1−x2y1

y2
1−x2y2

. . . . . . yn

1−x2yn

...
...

...
. . .

...
...

y1
1−xny1

y2
1−xny2

. . . . . . yn

1−xnyn




subtracting the first column to the ith we get the terms yi−y1
(1−xjy1)(1−xjyi)

thus we end

extracting the product
∏n

i=2
(yi−y1)
(1−xiy1) and we are left with the determinant of the same

type of matrix but without the variables x1, y1, we can thus finish by induction.
Now we can develop the determinant by developing each element 1

1−xiyj
=

∑∞
k=0 xk

i yk
j

or in matrix form each row (resp. column) as a sum of infinitely many rows (or columns).
By multilinearity in the rows the determinant is a sum of determinants of matrices:

∞∑

k1=0

. . .

∞∑

kn=0

det(Ak1,k2,... ,kn), Ak1,k2,... ,kn := ((xiyj)ki).

Clearly det(Ak1,k2,... ,kn) :=
∏

i xki
i det(yki

j ). This is zero if the ki are not distinct, otherwise
we reorder the sequence ki so to be decreasing at at the same time we must introduce a
sign, collecting all the terms in which the ki are a permutation of a given sequence λ + ρ
we get the term Aλ(x)Aλ(y). Finally:

V (x)V (y)∏
i,j=1,n(1 − xiyj)

=
∑

λ

Aλ(x)Aλ(y).

From this the required identity follows.

8 The conjugation action

8.1 We inspect now a representation strictly connected to the theory of symmetric
functions.

Let us consider the space Mn(C) of n ×n matrices over the field C of complex numbers.
We view it as a representation of the group G := GL(n, C) of invertible matrices by
conjugation: XAX−1.

Remark. The scalar matrices C∗ act trivially, hence we have a representation of the quo-
tient group (the projective linear group):

PGL(n, C) := GL(n, C)/C∗.
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Given a matrix A consider its characteristic polynomial:

det(t − A) :=
n∑

i=0

(−1)iσi(A)tn−i.

The coefficients σi(A) are polynomial functions on Mn(C) which are clearly conjugation
invariant, by definition σi(A) is the ith elementary symmetric function computed in the
eigenvalues of A.

Recall that Sn can be viewed as a subroup of GL(n, C) (the permutation matrices).
Consider the subspace D of diagonal matrices. Setting aii = ai we identify such a matrix
with the vector (a1, . . . , an). The following is clear.

Lemma. D is stable under conjugation by Sn, the induced action is the standard per-
mutation action (2.6). The function σi(A), restricted to D, becomes the ith elementary
symmetric function.

We want to consider the conjugation action on Mn(C), GL(n, C), SL(n, C) and compute
the invariant functions. As functions we will take the ones which come from the algebraic
structure of these sets (as affine varieties) and namely, on Mn(C) the polynomial functions.
On SL(n, C) the restriction of the polynomial functions and on GL(n, C) the regular
functions i.e. the quotients f/dk where f is a plynomial on Mn(C) and d is the determinant
function.

Theorem. Any polynomial invariant for the conjugation action on Mn(C) is a polynomial
in the functions σi(A), i = 1, . . . , n.

Any invariant for the conjugation action on SL(n, C) is a polynomial in the functions
σi(A), i = 1, . . . , n − 1.

Any invariant for the conjugation action on GL(n, C) is a polynomial in the functions
σi(A), i = 1, . . . , n and in σn(A)−1.

Proof. Let f(A) be such a polynomial, restrict f to D. By the previous remark it becomes
a symmetric polynomial which can then be expressed as a polynomial in the elementary
symmetric functions. Thus we can find a polynomial p(A) = p(σ1(A), . . . , σn(A)) which
coincides with f (A) upon restriction to D. Since both f (A), p(A) are invariant under
conjugation they must coincide also on the set of all diagonalizable matrices. The theorem
follows therefore from:

Exercise. The set of diagonalizable matrices is dense.

Hint A matrix with distinct eigenvalues is diagonalizable, these matrices are character-
ized by the fact that on them the discriminant is non 0.

On any Ck the set of points where a (non identically zero) polynomial u(x) is non zero
is dense, take any point P and a P0 with g(P0) 6= 0 on the line connecting P,P0 the
polynomial g is not identically 0 etc..

The statements for the two groups are simiar and we leave them to the reader.
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Remark. The map Mn(C) → Cn given by the functions σi(A) is constant on orbits but a
fiber is not necessarily a conjugacy class. In fact when the characteristic polynomial has a
multiple root there are several types of Jordan canonical forms corresponding to the same
eigenvalues.

There is a second approach to the theorem which is also very interesting and leads to
some generalizations, we leave the details.

Proposition. For an n × n matrix A the following conditions are equivalent:

(1) There is a vector v such that the n vectors Aiv, i = 0, . . . , n − 1 are linearly
independent.

(2) The minimal polynomial of A equals its characteristic polynomial.
(3) The conjugacy class of A has maximal dimension n2 − n.
(4) A is conjugate to a companion matrix




0 0 0 . . . 0 0 an

1 0 0 . . . 0 0 an−1
0 1 0 . . . 0 0 an−2
0 0 1 . . . 0 0 an−3

. . . . . . . . .

. . . . . . . . .
0 0 0 . . . 1 0 a2
0 0 0 . . . 0 1 a1
0 0 0 . . . 0 0 1




with characteristic polynomial tn +
∑n

i=1 ait
n−i.

(5) In a Jordan canonical form distinct blocks belong to different eigenvalues.

Proof. 1) and 4) are clearly equivalent, taking as matrix conjugate to A the one of the
same linear transformation in the basis Aiv, i = 0, . . . , n − 1.

2) and 5) are easily seen to be equivalent and also 5) and 1).

As for 3 we leave it here since we have not yet developed enough geometry of orbits.

Definition. The matrices satisfying the previous conditions are called regular ant their
set is the regular sheet.

One can prove easily that the regular sheet is open dense and it follows again that every
invariant function is determined by the value it takes on the set of companion matrices
hence a new proof of the theorem on invariants for the conjugation representation.

There is a deeper theory of all sheets due to Peterson [P].
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9 The Aronhold method, polarization.

9.1 Before proceding let us recall in a language suitable for our purposes the usual
Taylor Maclaurin expansion.

Consider a function F (x) of a vector variable x ∈ V , under various types of assumptions
we have a development for the function F (x + y) of two vector variables.

In our case we may restrict to polynomials and develop F (x+y) :=
∑∞

i=0 Fi(x, y) where
by definition Fi(x, y) is homogeneous of degree i in y (of course for polynomials the sum
is really finite).

Therefore, for any value of a parameter λ, we have F (x + λy) :=
∑∞

i=0 λiFi(x, y).
If F is also homogeneous of degre k we have:

∞∑

i=0

λkFi(x, y) = λkF (x + y) = F (λ(x + y)) = F (λx + λy) =
∞∑

i=0

λiFi(λx, y)

and we deduce that Fi(x, y) is also homogeneous of degree k − i in x.
Given 2 functions F, G we clearly have that

F (x + y)G(x + y) =
∞∑

i=0

∑

a+b=i

Fa(x, y)Gb(x, y)

is the decomposition in homogeneous components relative to y.
The operator D = Dy,x defined by the formula Dy,xF (x) := F1(x, y) is clearly linear and

also by the previous formula we have D(FG) = D(F )G + FD(G), these are the defining
conditions of a derivation.

If we use coordinates x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) we have that Dy,x =
∑n

i=1 yi
∂

∂xi
.

Definition. The operator Dy,x =
∑n

i=1 yi
∂

∂xi
is called a polarization operator.

So the effect of applying it to a bihomogeneous function of 2 variables x, y is to decrease
by 1 the degree of the function in x and raise by 1 the degree in y.

Assume we are now in characteristic 0, we have then the standard theorem of calculus:

Theorem. F (x + y) =
∑∞

i=0
1
i!D

i
y,xF (x).

Proof. We reduce to the one variable theorem and deduce that

F (x + λy) :=
∞∑

i=0

λi

i!
di

dλi
F (x + λy)λ=0

then

Fi(x, y) =
1
i!

di

dλi
F (x + λy)λ=0
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and this is by the chain rule 1
i!D

i
y,xF (x).

9.2 Suppose now that we consider the action of an invertible linear transformation on
functions, we have (gF )(x + y) = F (g−1x + g−1y) hence we deduce that the polarization
operator commutes with the action of the linear group. The main consequence is the:

Proposition. If F (x) is an invariant of a group G so are the polarized forms Fi(x, y).

Of course implicitely we are using the (direct sum) linear action of G on pairs of variables.
Let us further push this idea, consider now any number of vector variables and, for a

polynomial function F , homogeneous of degree m the expansion:

F (x1 + x2 · · · + xn) =
∑

h1,h2,...,hn

Fh1,h2,...,hn(x1, x2, . . . , xn)

where
∑

hi = m, the indeces hi represent the degrees of homogeneity in the variables xi.
A repeated application of the Taylor Maclaurin expansion gives:

(9.2.1) Fh1,h2,...,hn(x1, x2, . . . , xn) =
1

h1!h2! . . . hn!
Dh1

x1xDh2
x2x . . .Dhn

xnxF (x)

In particular in the expansion of F (x1 + x2 · · · + xm) there will be a term which is linear
in all the variables xi, this is called the full polarization of the form F .

Let us indicate with PF := F1,1,...,1(x1, . . . , xm), to stress the fact that this is a linear
operator. It is clear that, if σ ∈ Sm is a permutation

F (x1 + x2 · · · + xn) = F (xσ1 + xσ2 · · · + xσn)

hence we deduce that the polarized form satisfies the symmetry property:

PF (x1, . . . , xm) = PF (xσ1, . . . , xσm),

we have thus found that:

Lemma. The full polarization is a linear map from the space of homogeneous forms of
degree m to the space of symmetric multilinear functions in m (vector) variables.

Now let us substitute for each variable xi the variable λix (the λi’s being distinct
numbers), we obtain:

(λ1 + λ2 · · · + λm)mF (x) = F ((λ1 + λ2 · · · + λm)x) =

= F (λ1x + λ2x · · · + λmx) =
∑

h1,h2,...,hm

Fh1,h2,...,hm(λ1x, λ2x, . . . , λmx) =

=
∑

h1,h2,...,hm

λh1
1 λh2

2 . . . λhm
m Fh1,h2,...,hm(x, x, . . . , x),

comparing the coefficients of the same monomials on the two sides we get
(

m

h1h2 . . . hm

)
F (x) = Fh1,h2,...,hm(x, x, . . . , x),
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in particular:
m!F (x) = PF (x, x, . . . , x)

Since we are working in characteristic zero we can also rewrite this identity as:

F (x) =
1

m!
PF (x, x, . . . , x)

The linear operator

R : G(x1, x2, . . . , xm) → 1
m!

G(x, x, . . . , x)

is called in the classical literature the restitution. We have:

Theorem. The maps P,R are inverse isomorphisms, equivariant for the group of all
linear transformations, between the space of homogeneous forms of degree m and the space
of symmetric multilinear functions in m variables.

Proof. We have already proved that RPF = F , let now G(x1, x2, . . . , xm) be a symmetric
multilinear function. In order to compute PRG we must determine the multilinear part
of 1

m!G(
∑

xi,
∑

xi, . . . ,
∑

xi).
By the multilinearity of G we have that

G(
∑

xi,
∑

xi, . . . ,
∑

xi) =
∑

G(xi1 , xi2 , . . . , xim)

where the right sum is over all possible sequences of indeces i1i2 . . . im out of the numbers
1, . . . ,m. But the multilinear part is exactly the sum over all the sequences without
repetitions, i.e. the permutations. Thus

PRG =
1

m!

∑

σ∈Sm

G(xσ1, xσ2, . . . , xσm),

since G is symmetric this sum is in fact G. ¤

Remark. The main use that we will make of the previous theorem will be to reduce the
computation of invariants to the multilinear ones. At this point it is not yet clear why this
should be simpler, in fact we will see that in several interesting cases this turns out to be
true and we will succeed to compute all the invariants by this method. This sequence of
ideas is sometimes referred to as Arhonold’s method.

9.3 In order to formalize the previous method consider an infinite sequence of n−dimensional
vector variables x1, x2, . . . , xk, . . . , each xi being a vector x1i, x2i, . . . , xni, in other words
we cosider the xij as the coordinates of the space of n × ∞ matrices or of the space of
sequences of (column) vectors.

Let A = F [xij ] be the polynomial ring in the variables xij , for the elements of A we
have the notion of being homogeneous with respect to one of the vector variables xi and
A is a multigraded ring.

With Ah1,h2,...,hi,... we denote the multihomogeneous part relative to the degrees
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h1, h2, . . . , hi, . . . , .
We have of course the notions of multihomogeneous subspace or subalgebra. For

each pair i, j of indeces we consider the corresponding polarization operator Dij =
∑n

h=1 xhi
∂

∂xhj
, we view these operators as acting as derivations on the ring A.

Given a function F homogeneous in the vector variables x1, x2, . . . , xm of degrees
h1, h2, . . . , hm, we can perform the process of polarization on each of the variables xi as
follows.

Choose out of the infinite list of vector variables m disjoint sets Xi of variables each
with hi elements and we fully polarize the variable xi with respect to the chosen set Xi.

The result is multilinear and symmetric in each of the sets Xi, the function F is recovered
from the polarized form by a sequence of restitutions.

We should remark that a restitution is a particular form of polarization since, if a
function F is linear in the varable xi the effect of the operator Dji on F is that of
substituting in F the variable xi with xj .

Definition. A subspace V of the ring A is stable under polarization if it is stable under
all polarization operators.

Remark. Given a polynomial F , F is homogeneous of degree m with respect to the vector
variable xi if and only if DiiF = mF .

From this remark one can easily prove the following:

Lemma. A subspace V of A is stable under the polarizations Dii if and only if it is
multihomogeneous.

9.4 In this section we will use the term multilinear function in the following sense:

Definition. We say that a polynomial F ∈ A is multilinear if it is homogeneous of degree
0 or 1 in each of the variables xi.

In particular we can list the indeces of the variables i1, . . . , ik in which F is linear (the
variables which appear in the polynomial) and say that F is multilinear in the xij .

Given a subspace V of A we will denote by Vm the set of multilinear elements of V .

Theorem. Given 2 subspaces V,W of A stable under polarization and such that Vm ⊂ Wm

then V ⊂ W .

Proof. Since V is multihomogeneous it is enough to prove that, given a multihomogeneous
function F in V we have F ∈ W . We know that F can be obtained by restitution fron its
fully polarized form F = RPF . The hypotheses imply that PF ∈ V and hence PF ∈ W .
Since the restitution is a composition of polarization operators and W is assumed to be
stable under polarization we deduce that F ∈ W .
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Corollary. If two subspaces V,W of A are stable under polarization and Vm = Wm then
V = W .

This corollary is what we shall use often to compute invariants, the strategy is as
follows. We want to compute the space W of invariants in A under some group G of
linear transformations in n−dimensional space. We produce some list of invariants (which
are more or less obvious) forming a subspace V closed under polarization and we hope to
have found all invariants and try to prove V = W , then if we can do it for the multilinear
invariants we are done.

10 Lie Algebras and Lie groups

10.1 The polarization operators are special types of derivations. Let us recall the
general definitions. First of all, given an associative algebra A, we define the Lie product

[a, b] := ab − ba,

and verify immediately that it satisfies the properties:
[a, b] = −[b, a] (antisymmetry), and [a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0 (Jacobi identity).
More generally an algebra (i.e. a vector space with a bilinear product denoted by [a, b])

satisfying the antisymmetry and the Jacobi identity is called a Lie algebra.
The first class of Lie algebras to be considered are the algebras gl(U), the Lie algebra

associated to the associative algebra End(U) of linear operators on a vector space U .
Given any algebra A (not necessarily associative), with product denoted ab, we define:

Definition. A derivation of A is a linear mapping D : A → A satisfying
D(ab) = D(a)b + aD(b) for every a, b ∈ A.

The main remarks are:

Proposition.
i) In a Lie algebra L the Jacobi identity expresses the fact that the map

Ad(a) := b → [a, b]

is a derivation.5

ii) The derivations of any algebra A form a Lie subalgebra of the space of linear operators.

Proof. By direct verification.

The main reason why Lie algebras and derivations are important is that they express
the infinitesimal analogues of groups and symmetries.

The main geometric example is given by:

5Ad stands for adjoint action.
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Definition. A derivation X of the algebra C∞(M ) of C∞ functions on a manifold M is
called a vector field.

The first formal properties of vector fields is that they are local, this means that, given
a function f ∈ C∞(M ) and an open set U the value of X(f) on U depends only on the
value of f on U , in other words:

Lemma. If f ∼= 0 on U also X(f ) ∼= f on U .

Proof. Let p ∈ U and V a small neighborhood of p in U so that we can find a C∞ function
u on M which is 1 outside U and 0 in V .

Hence f = uf and X(f ) = X(u)f + uX(f ) which is manifestly 0 in p.

The previous property can be easily interpreted by saying that we can consider either
a derivation of the algebra of C∞ functions as a section of the tangent bundle, in local

coordinates xi we have X =
∑n

i=1 fi(x1, . . . , xn)
∂

∂xi
.

It is important at this moment to start to introduce and use more systematically the
language of Lie groups and Lie algebras, we will not start in the full generality.

Consider the finite dimensional vector space Fn where F is either C or R (complex or
real field), with its standard Hilbert norm. Given a matrix A we define its norm:

{|A| := max(
|A(v)|

|v|
), v 6= 0}, or |A| = max(|A(v)|), |v| = 1.

Of course this extends to infinite dimensional Hilbert spaces and bounded operators, i.e.
linear operators A with

sup|v|=1(|A(v)|) := |A| < ∞

|A| is a norm on the space of bounded operators, i.e.:
(1) |A| ≥ 0, |A| = 0 if and only if A = 0.
(2) |αA| = |α||A|, ∀α ∈ F,∀A.
(3) |A + B| ≤ |A| + |B|.

With respect to the multiplicative structure the following facts can be easily verified:

Proposition. i) Given two operators A,B we have |AB| ≤ |A||B|.
ii) The series eA :=

∑∞
k=0

Ak

k! is totally convergent in any bounded subset of the space of
operators.
iii) The series log(1 + A) :=

∑∞
k=1(−1)k+1 Ak

k is totally convergent for |A| ≤ 1 − ε any
ε > 0.
iv) The functions eA and logA are inverse of each other in suitable neighborhoods of 0 and
1.

Remark. For matrices (aij) we can also take the equivalent norm max(|aij|).

10.2 The following properties of the exponential map are easily verified:
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Proposition.
i) If A,B are two commuting operators (i.e. AB = BA) we have eAeB = eA+B and also

log(AB) = log(A) + log(B) if A,B are sufficiently close to 1.
ii) e−AeA = 1 .

iii)
detA

dt
= AetA

iv) BeAB−1 = eBAB−1
.

Furthermore for matrices we have also:
v) If α1, α2, . . . , αn are the eigenvalues of A, the eigenvalues of eA are eα1 , eα2 , . . . , eαn .

vi) det(eA) = eTr(A).

vii) eAt

= (eA)t.

In particular the mapping t → etA is a homomorphism from the additive group of real
(or complex) numbers to the multiplicative group of matrices (real or complex).

This homomorphism is called the 1 parameter subgroup generated by A. Given a vector
v0 the function v(t) := etAv0 is the solution to the differential equation v′(t) = Av(t) with
initial condition v(0) = v0.

10.3 It is not restrictive to consider such 1-parameter subgroups, in fact we have:

Proposition. A continuous homomorphism ϕ : R → Gl(n, F ) (from the additive group of
real numbers to Gl(n, F )) is of the form etA for a unique matrix A, called the infinitesimal

generator of the group ϕ. We also have A =
dϕ(t)

dt t=0
.

Proof. Since the map ϕ is continuous there is a neighborhood of 0 such that the values
ϕ(t) lie in a neighborhood of 1 where the logarithm is defined.

From the group homomorphism hypotheses and the properties of the logarithm one
immediately has that log(ϕ(t + s)) = log(ϕ(t)) + log(ϕ(s)) for s, t sufficiently small.

Now it is an easy exercise to prove that any continuous mapping λ(t) from a neighbor-
hood of 0 in R to a finite dimensional vector space F n which satisfies λ(t+s) = λ(t)+λ(s),
for t, s close to zero is, in a neighborhood of 0, of the form λ(t) = tv for a unique vector v.

Thus, at least for t small we have log(ϕ(t)) = tA for some matrix A and so ϕ(t) = etA.
The group homomorphism hypotheses imply immediately that this eqality is valid for

all values of t. In fact any t it is of the form t = nt0 with n a positive integer and t0

arbitrarily small, and so ϕ(t) = ϕ(t0)n = (et0A)n = etA.

In the proof we had in mind the following simple facts.

Remark. If two actions of a group G coincide on a set of generators of G then they are
equal.

A connected topological group is generated by the elements of any given non empty
open set.

10.4 Let us develop a few basic properties of 1 parameter groups. First of all:
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Proposition. A vector v is fixed under a group etA if and only if Av = 0.

Proof. If Av = 0 then tkAkv = 0 for k > 0 hence etAv = v, conversely if etAv is constant
its derivative is 0, but its derivative at 0 is in fact Av.

Remark. Suppose that etA leaves a subspace U stable, then, if v ∈ U we have that Av ∈ U
since this is the derivative of etAv at 0. Conversely if A leaves U stable it is clear from the
definition that etA leaves U stable and on U it is the 1 parameter subgroup generated by
the restriction of A.

We stress again that the main application of the exponential is to systems of ordinary

linear differential equations. Precisely let us consider the system
dy(t)
dt

= Ay(t), where

A is a constant n × n matrix and y(t) a vector of unkown functions, if we fix the initial
condition y(0) we have the global solution y(t) = etAy(0).

Let us now consider a function f(y) on an n-dimensional vector space, we can follow its
evolution under a 1 parameter subgroup and set ϕ(t)(f ) := f (t, y) := f (e−tAy), we have
thus a 1 parameter group of transformations on the space of functions, induced from the
action on the space.

Of course this is not a finite dimensional space and so we cannot apply directly the results
of the previous paragraph. If we restrict for a moment to homogeneous polynomials we
are in the finite dimensional case, thus for this group we have ϕ(t)(f ) = etDAf where DA

is the linear operator defined by:

DA(f ) =
df(t, y)

dt t=0
.

We have
df(t, y)

dt
=

∑n
i=1

∂f

∂yi

dyi(t)
dt

and since
dy(t)
dt

= −Ay(t), at t = 0
dyi(t)

dt t=0
=

−
∑n

j=1 ajiyj hence
df (t, y)

dt t=0
= −

∑n
i=1

∑n
j=1 ajiyj

∂f

∂yi
.

Thus we have found that DA is the differential operator:

DA := −
n∑

i=1

n∑

j=1

ajiyj
∂

∂yi
.

We deduce that the formula ϕ(t)(f) = etDAf is just the Taylor series:

f (t, y) =
∞∑

k=0

(tDA)k

k!
f (y).

In order to understand better the operators DA let us compute

DAyi =
n∑

j=1

ajiyj .

We see that, on the linear space spanned by the functions yi’s this is just the linear
operator given by the matrix A.

Since a derivation is determined by its action on the variables yi’s we have:
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Proposition. The differential operators DA are a Lie algebra and:

[DA,DB ] = D[A,B].

Proof. This is true on the space spanned by the variables (cf. later comments on the
contragredient action).

Example. Sl(2, C).
We want to study the case of polynomials in 2 variables x, y. The Lie algebra of 2 × 2

matrices decomposes as the direct sum of the 1 dimensional algebra generated by

D = x
∂

∂x
+ y

∂

∂y
and the 3 dimensional algebra sl(2, C) with basis the operators

H = −x
∂

∂x
+ y

∂

∂y
, E = −y

∂

∂x
, F = −x

∂

∂y
,

these operators correspond to the matrices
(

1 0
0 1

) (
1 0
0 −1

) (
0 1
0 0

) (
0 0
1 0

)

We can see how these operators act on homogeneous polynomials of degree n, this is an
n + 1 dimensional space spanned by the monomials ui := (−1)iyn−ixi on which D acts by
multiplication by n . We have:

Hui = (n − 2i)ui Fui = (n − i)ui+1 Eui = iui−1.

The reader who has seen these operators before will recognize the standard irreducible
representations of the Lie algebra sl(2, C).

We will return to this point later remarking only that for larger numbers of variables
the situation is much more complex.

10.5 Of course these ideas have much more general range of validity, for instance the
main facts about exponential and logarithm are sufficiently general to hold for any Banach
algebra, i.e. an algebra with a norm for which it is complete. Thus one can apply these
results also to bounded operators on a Hilbert space.

Moreover the linearity of the transformations A is really not essential, for instance if we
consider a C∞ differentable manifold M we can discuss dynamical systems (in this case
also called flows) in 2 ways.

Definition. A C∞ flow on a manifold M is a C∞ map:

φ(t, x) : R × M → M

which defines a group action of R+ on M .

It is also usual to think of the diffeomorphisms:

φs : M → M, φs(m) := φ(s,m); φ0 = 1M , φs+t = φs ◦ φt.

To a flow is associated a vector field X, called the infinitesimal generator of the flow.
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The vector field X associated to a flow φ(t, x) can be defined in each point p as:

Xp := dφ(0,p)(
d

dt
).

In other words, given a function f on M we have:

X(f )(p) :=
d

dt
f (φ(t, p))t=0.

In other words, given a point p the map t → φ(t, p) describes a curve in M which is the
evolution of p or the orbit under the flow and Xp is the velocity of this evolution in p,
which by the group action depends only on the position and not on the time:

Xφ(s,p) := dφ(s,p)(
d

dt
).

In the previous paragraph thus we were studying a special class of vector fields on
n−dimensional space:

DA := −
n∑

i=1

n∑

j=1

ajixj
∂

∂xi
.

A vector field gives rise at least locally, to a flow which one obtains solving a linear
system of ordinary differential equations

dxi(t)
dt

= fi(x1, . . . , xn)

thus one has local solutions ϕ(t)(x) = F (t, x), with F (0, x) = x defined for small values of
t in a neighborhhod of a given point x0, which by the uniqueness of solutions of ordinary
differential equations satisfy the properties of local 1 parameter groups, again a point is
fixed under the flow if and only if the vector field vanishes in it.

For the vector field DA the flow is the 1-parameter group of linear operators etA.

We can again define, at least locally, the evolution of a function f by the formula
f (t, x) := f(F (t, x)), by restricting to an orbit we again have the Taylor series for f(t, x).

But, by the definition of the orbit, the derivative with respect to t in a point of the orbit
is the same as the derivative with respect to the vector given by X hence the Taylor series∑∞

k=0 tk Xk

k! f(x).
In this sense the flow becomes a linear flow on the space of functions with infinitesimal

generator X and equals etX .
Of course in order to make this equality strict we need some hypotheses, as the fact that

the flow exists globally and also that the functions under consideration are analytic.

The special case of linear flows has the characteristic that one can find global coordi-
nates on the manifold so that the evolution of these coordinates is by a linear group of
ttransformations of the finite dimensional vector space spanned by the coordinates! In
general of course the evolution of coordinates develops non linear terms.



42 Cap. 1, General methods

10.6 Let us return to the point derivations and automorphisms.
Consider thus an algebra A and a linear operator D on A, assume that there are sufficient

convergence properties to insure the existence of etD as convergent power series (like for
Banach algebras) then:

Proposition. D is a derivation if and only if etD is a group of automorphisms.

Proof. This is again a variation of the fact that a vector v is fixed under etD if and only
if Dv = 0, in fact to say that etD are automorphisms means that:

a, b ∈ A, etD(ab) − etD(a)etD(b) = 0.

Writing in power series and taking the coefficient of the linear term we get

D(ab) − D(a)b − aD(b) = 0

the condition for a derivation.
Conversely given a derivation we see by an easy induction that, for any positive integer

k,

Dk(ab) =
k∑

i=0

(
k

i

)
Dk−i(a)Di(b),

hence:

etD(ab) =
∞∑

k=0

tkDk(ab)
k!

=
∞∑

k=0

tk
k∑

i=0

(
k
i

)

k!
Dk−i(a)Di(b) =

=
∞∑

k=0

k∑

i=0

1
(k − i)!i!

tk−iDk−i(a)tiDi(b) = etD(a)etD(b).

§11 Lie groups

11.1 As we have already mentioned it is quite interesting to analyze group actions
subject to special structural requirements.

First of all in a group G we always have the two basic maps which describe its structure,
the multiplication m : G × G → G, m(a, b) := ab and the inverse i : G → G, i(g) := g−1.
If G has an extra structure it is natural to consider the compatibility of these maps with
the structure thus we will say that:

Definition. A group G is a:
1) topological group,
2) Lie group,
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3) complex analytic group,
4) algebraic group,
5) affine group,

if G is also a
1) topological space,
2) differentiable manifold,
3) complex analytic manifold,
4) algebraic variety,
5) affine variety,

and if the two maps m, i are compatible with the given strucure, i.e. are continuous,
differentiable, complex analytic or regular algebraic.

When speaking of Lie groups we have not discussed the precise differentiability hy-
potheses. In fact there is a rather general theorem (solution of Hilbert’s inserire problem)
which insures that a topological group which is locally homeomorphic to euclidean space
can be naturally given a real analytic structure, thus Lie groups are in fact real analytic
manifolds.

The group GL(n, C) is clearly an affine algebraic group, acting on Cn by linear and
hence algebraic transformations. A group G is called a linear group if it can be embedded
in GL(n, C) (of course one shoud more gerally consider as linear groups the subgroups of
GL(n, F ) for an arbitrary field F ).

As we shall see a closed subgroup of a Lie group is automatically a real analytic sub-
manifold and hence a Lie subgroup.

For an action of G on a set X we can also have the same type of analysis.

Continuous action of a topological group on a topological space, differentiable actions
of Lie groups on manifolds etc..

We shall meet many very interesting examples of these actions in the course of our
treatment.

Let us consider manifolds and Lie groups.

11.2 In order to understand the previous considerations in a more general setting let
H ⊂ GL(n, F ) be a closed linear subgroup (F the field of real or complex numbers). What
we are going to discuss would be valid for any closed subgroup of a Lie group.

Set L := {A ∈ Mn(F )|etA ∈ H, ∀t ∈ R.}

Theorem. a) L is a Lie subalgebra of Mn(F ) (called Lie(H)).

b) There are neighborhoods A,B of 0,1 in Mn(F ) so that exp, log are inverse isomor-
phisms between A, B and the set log(B∩H) is the intersection of A with the Lie subalgebra
L.

In particular we will have that exp(L) ⊂ H and, if H is connected it is generated by
exp(L).
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We want to apply the previous analysis to invariant theory, let us give a linear action of
a connected Lie group G on a space U , thus G acts as a group of automorphisms on the
polynomial ring P [U ] and its Lie algebra as derivations .

Theorem. A polynomial f is invariant under G if and only if it satisfies the differential
equations Af = 0 for all A ∈ Lie(G).

Proof. Since G is connected it is generated by its 1 parameter subgroups exp(tA), A ∈
Lie(G). Hence a polynomial f is fixed under G if and only if it is fixed under these 1
parameter groups. We have seen that f is fixed under exp(tA) if and only if Af = 0.

11.3 We finish by making the connection with polarizations, let us consider as in sec-
tion 1.3.3 m−tuples of vector variables x1, x2, . . . , xm each xi being a vector x1i, x2i, . . . , xni,
in other words we consider the xij as the coordinates of the space Mn,m of n×m matrices.

Let A = F [xij] be the polynomial ring in the variables xij , which we also think as
polynomials in the vector variables xi given by the columns; on Mn,m we want to consider
some special 1 parameter subgroups (induced by left or right multiplications).

For any m × m matrix A we consider the 1 parameter group X → Xe−tA.
In particular for the elementary matrix eij (with 1 in the ij position and 0 elsewhere),

the matrix Xe−teij is obtained from X adding to its jth column its ith column multiplied
by −t.

We act dually on the functions in A and the 1 parameter group acts substituting xj

with xj + txi. By the results of the previous sections we see that:

Proposition. The infinitesimal generator of the transformation of functions induced by
X → Xe−teij is the polarization operator Dji.

We should summarize these ideas.
On the space of n×m matrices acts the group GL(m, F ) by the action (A,X) → XA−1.
The infinitesimal action is then X → −XA.
If we denote by rA this operator, we have therefore [rA, rB ] = r[A,B]. In other words the

map A → rA is a Lie algebras homomorphism associated to the given action.
The derivation operators induced on polynomials are the linear span of the polarization

operators which correspond to elementary matrices.
A space of functions is stable under polarization if and only if it is stable under the

action of GL(m,F ).


